metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua(μ3-5-aza­niumylisophthalato)­(μ-oxalato)neodymium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: fanj@scnu.edu.cn

(Received 27 March 2012; accepted 28 March 2012; online 4 April 2012)

The title compound, [Nd(C8H6NO4)(C2O4)(H2O)]n, is a layer-like coordination polymer. The NdIII ion is coordinated by four carboxyl­ate O atoms from three bridging 5-aza­nium­yl­isophthalate (Haip) ligands, four carboxyl­ate O atoms from two oxalate (ox) anions and one ligated water mol­ecule in a tricapped trigonal–prismatic geometry. The Haip anion acts as a μ3-bridge, connecting three NdIII ions through two carboxyl­ate groups; the ox anion adopts a bis-bidentate-bridging mode, linking two NdIII ions. The layer framework is further extended to a three-dimensional supra­molecular structure through N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For isotypic complexes, see: Liu et al. (2008[Liu, C. B., Wen, H. L., Tan, S. S. & Yi, X. G. (2008). J. Mol. Struct. 879, 25-29.]); Yan et al. (2009[Yan, L.-S., Huang, D.-H. & Liu, C.-B. (2009). Acta Cryst. E65, m750.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C8H6NO4)(C2O4)(H2O)]

  • Mr = 430.41

  • Monoclinic, C 2/c

  • a = 20.047 (4) Å

  • b = 9.592 (2) Å

  • c = 13.670 (3) Å

  • β = 117.810 (2)°

  • V = 2325.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.52 mm−1

  • T = 298 K

  • 0.28 × 0.22 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.364, Tmax = 0.551

  • 5839 measured reflections

  • 2104 independent reflections

  • 1792 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.03

  • 2104 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5i 0.89 1.91 2.795 (5) 172
N1—H1C⋯O8ii 0.89 2.05 2.872 (5) 154
O1W—H1W⋯O3iii 0.82 2.06 2.812 (4) 153
O1W—H2W⋯O1iv 0.82 1.97 2.750 (4) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+1, -z+{\script{1\over 2}}]; (iii) [-x, y-1, -z+{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 5-aminoisophthalate (aip) anion adopts various coordination modes in lanthanide complexes. In this work, we present the synthesis and structure of a new neodymium coordination polymer with 5-aminoisophthalate and oxalate, [Nd(Haip)(ox)(H2O)], which is isostructural with those reported previously (Liu et al., 2008; Yan et al., 2009).

In the title compound, the asymmetric unit comprises one NdIII ion, one Haip ligand, one oxalate anion and one ligated water molecule (Fig. 1). The neodymium ion is nine-coordinated by four carboxylate O atoms [O1, O2, O3i, and O4ii, symmetry codes: (i) -x, 1 - y, -z; (ii) x, -1 + y, z] from three Haip ligands, four carboxylate O atoms [O5, O6, O7iii, and O8iii, symmetry codes: (iii) 1/2 - x, 1/2 + y, 1/2 - z] from two oxalate ions and one coordinated water molecule. The geometry is a tricapped trigonal prism configuration (Fig. 2). The Nd—O bond distances are in the range of 2.417 (3)–2.603 (3) Å.

The Haip anion acts as µ3-bridge to connect three NdIII ions through two carboxylate groups and the amino group exists as an –NH3+ unit. The oxalate anion adopts a bis-bidenatate-bridging mode to link two NdIII ions with a Nd···Nd separation of 6.3821 (10) Å. The coordination of the metal ions and organic ligands (Haip and ox) results in the formation of a layer-like framework in the ab plane (Fig. 3).

In addition, there are O–H···O [O···O distances, 2.750 (4) and 2.812 (4) Å] and N–H···O hydrogen bonds (Table 1). The layers are further linked via these hydrogen bonds to form a three-dimensional supramolecular architecture (Fig. 4).

Related literature top

For isotypic complexes, see: Liu et al. (2008); Yan et al. (2009).

Experimental top

A mixture of 5-aminoisophthalic acid (0.50 mmol, 90.6 mg), Nd(NO3)3.6H2O (0.30 mmol, 131.5 mg,) oxalic acid (0.50 mmol, 45.0 mg) and 10 ml H2O was sealed in a 15 ml Teflon-lined stainless steel reactor and heated at 423 K under autogenous pressure for 72 h. After the sample had been slowly cooled to room temperature at a rate of 5 K/h, block-shaped pale-purple crystals were isolated (yield 52%). IR (KBr pellet, ν cm-1): 3423 (m), 1631 (s), 1570 (s), 1466 (m), 1394 (s), 1326 (m), 1116 (m), 914 (w), 769 (s), 596 (m).

Refinement top

The H atoms of water molecule were located in a difference Fourier maps and the others were placed in calculated positions and refined as riding atoms with isotropic thermal factors [C–H = 0.93 (aromatic C–H) Å; N–H = 0.89 Å; O–H = 0.83 Å; Uiso(H) = 1.2 Ueq (C), Uiso(H) = 1.5Ueq(N), and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of the polymeric structure, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x, 1 - y, -z; (ii) x, -1 + y, z; (iii) 1/2 - x, 1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. Geometry of the nine-coordinated NdIII ion in the title compound.
[Figure 3] Fig. 3. A packing diagram of the title compound, showing a layer-like structure in the ab plane.
[Figure 4] Fig. 4. . A packing diagram, showing a three-dimensional supramolecular network driven by hydrogen bonds (dashed lines).
Poly[aqua(µ3-5-azaniumylisophthalato)(µ-oxalato)neodymium(III)] top
Crystal data top
[Nd(C8H6NO4)(C2O4)(H2O)]F(000) = 1656
Mr = 430.41Dx = 2.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 2699 reflections
a = 20.047 (4) Åθ = 2.3–28.1°
b = 9.592 (2) ŵ = 4.52 mm1
c = 13.670 (3) ÅT = 298 K
β = 117.810 (2)°Block, pale-purple
V = 2325.0 (9) Å30.28 × 0.22 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2104 independent reflections
Radiation source: fine-focus sealed tube1792 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scanθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 2423
Tmin = 0.364, Tmax = 0.551k = 611
5839 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0254P)2]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Nd(C8H6NO4)(C2O4)(H2O)]V = 2325.0 (9) Å3
Mr = 430.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.047 (4) ŵ = 4.52 mm1
b = 9.592 (2) ÅT = 298 K
c = 13.670 (3) Å0.28 × 0.22 × 0.15 mm
β = 117.810 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1792 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.551Rint = 0.033
5839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
2104 reflectionsΔρmin = 0.53 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0410 (3)0.3120 (5)0.1508 (3)0.0193 (10)
C20.0121 (3)0.4328 (4)0.1225 (4)0.0191 (10)
C30.0873 (3)0.4068 (5)0.0894 (3)0.0202 (10)
H30.10430.31550.08460.024*
C40.1372 (2)0.5164 (4)0.0632 (3)0.0172 (10)
C50.1136 (2)0.6520 (4)0.0653 (3)0.0184 (10)
H50.14800.72490.04650.022*
C60.0386 (2)0.6794 (4)0.0956 (3)0.0154 (9)
C70.0131 (2)0.5702 (4)0.1271 (3)0.0181 (10)
H70.06390.58820.15110.022*
C80.0168 (3)0.8255 (5)0.0841 (4)0.0200 (10)
C90.2271 (2)0.2176 (5)0.1774 (4)0.0180 (10)
C100.2346 (2)0.2223 (5)0.2950 (4)0.0191 (10)
N10.2164 (2)0.4895 (4)0.0294 (3)0.0238 (9)
H1A0.22480.39810.02280.036*
H1B0.24480.53060.03530.036*
H1C0.22820.52350.08000.036*
Nd10.131834 (12)0.06274 (2)0.184227 (18)0.01456 (9)
O10.01407 (17)0.1908 (3)0.1433 (3)0.0254 (7)
O20.10891 (17)0.3304 (3)0.1781 (2)0.0278 (8)
O30.06874 (17)0.9033 (3)0.0145 (2)0.0203 (7)
O40.05001 (17)0.8623 (3)0.1427 (3)0.0258 (8)
O50.20791 (17)0.1221 (3)0.3242 (2)0.0232 (7)
O60.19047 (18)0.1178 (3)0.1175 (2)0.0240 (7)
O70.25959 (17)0.3114 (3)0.1530 (2)0.0264 (8)
O80.26728 (17)0.3267 (3)0.3532 (2)0.0235 (7)
O1W0.10490 (18)0.0638 (3)0.3446 (3)0.0276 (8)
H1W0.10920.00890.39300.041*
H2W0.07170.11860.33960.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.018 (3)0.015 (2)0.004 (2)0.011 (2)0.0035 (19)
C20.023 (2)0.017 (3)0.019 (2)0.008 (2)0.010 (2)0.0066 (19)
C30.025 (3)0.018 (3)0.018 (2)0.0024 (19)0.011 (2)0.0026 (19)
C40.019 (2)0.015 (2)0.016 (2)0.0019 (19)0.0066 (19)0.0008 (19)
C50.018 (2)0.014 (2)0.022 (2)0.0044 (18)0.008 (2)0.0010 (19)
C60.015 (2)0.015 (2)0.017 (2)0.0006 (18)0.0076 (19)0.0005 (19)
C70.014 (2)0.021 (3)0.018 (2)0.0002 (19)0.0065 (19)0.0005 (19)
C80.025 (3)0.017 (3)0.021 (2)0.002 (2)0.014 (2)0.002 (2)
C90.010 (2)0.018 (3)0.023 (2)0.0036 (18)0.007 (2)0.006 (2)
C100.016 (2)0.019 (3)0.023 (2)0.0017 (19)0.010 (2)0.002 (2)
N10.023 (2)0.018 (2)0.028 (2)0.0009 (17)0.0108 (18)0.0036 (17)
Nd10.01452 (14)0.01069 (14)0.01771 (14)0.00055 (10)0.00688 (10)0.00072 (10)
O10.0239 (18)0.0142 (18)0.040 (2)0.0040 (14)0.0170 (16)0.0043 (15)
O20.0174 (18)0.0239 (19)0.039 (2)0.0046 (14)0.0104 (15)0.0028 (15)
O30.0251 (18)0.0131 (17)0.0175 (16)0.0024 (13)0.0055 (14)0.0022 (13)
O40.0208 (18)0.0158 (18)0.0324 (18)0.0050 (14)0.0054 (15)0.0014 (14)
O50.0280 (19)0.0191 (17)0.0234 (17)0.0092 (14)0.0128 (15)0.0022 (14)
O60.0337 (19)0.0192 (18)0.0240 (18)0.0091 (15)0.0175 (16)0.0057 (14)
O70.0238 (18)0.027 (2)0.0259 (17)0.0093 (15)0.0096 (15)0.0052 (15)
O80.0238 (18)0.0200 (19)0.0296 (18)0.0066 (14)0.0149 (15)0.0089 (14)
O1W0.0317 (19)0.028 (2)0.0304 (19)0.0082 (15)0.0204 (16)0.0084 (14)
Geometric parameters (Å, º) top
C1—O21.245 (5)C9—C101.544 (6)
C1—O11.265 (5)C10—O51.253 (5)
C1—C21.498 (6)C10—O81.256 (5)
C2—C31.379 (6)N1—H1A0.8900
C2—C71.402 (6)N1—H1B0.8900
C3—C41.379 (6)N1—H1C0.8900
C3—H30.9300Nd1—O4i2.417 (3)
C4—C51.380 (6)Nd1—O3ii2.425 (3)
C4—N11.454 (5)Nd1—O12.482 (3)
C5—C61.387 (6)Nd1—O1W2.491 (3)
C5—H50.9300Nd1—O62.492 (3)
C6—C71.392 (6)Nd1—O52.532 (3)
C6—C81.497 (6)Nd1—O8iii2.538 (3)
C7—H70.9300Nd1—O7iii2.575 (3)
C8—O41.248 (5)Nd1—O22.603 (3)
C8—O31.274 (5)O1W—H1W0.8182
C9—O71.244 (5)O1W—H2W0.8249
C9—O61.252 (5)
O2—C1—O1121.3 (4)O4i—Nd1—O675.26 (11)
O2—C1—C2120.9 (4)O3ii—Nd1—O676.82 (10)
O1—C1—C2117.7 (4)O1—Nd1—O6145.34 (10)
C3—C2—C7120.1 (4)O1W—Nd1—O6131.15 (10)
C3—C2—C1118.7 (4)O4i—Nd1—O573.98 (10)
C7—C2—C1121.2 (4)O3ii—Nd1—O5139.16 (10)
C4—C3—C2119.8 (4)O1—Nd1—O5133.70 (10)
C4—C3—H3120.1O1W—Nd1—O568.83 (10)
C2—C3—H3120.1O6—Nd1—O564.51 (9)
C3—C4—C5120.9 (4)O4i—Nd1—O8iii143.36 (10)
C3—C4—N1120.0 (4)O3ii—Nd1—O8iii76.48 (10)
C5—C4—N1119.1 (4)O1—Nd1—O8iii120.75 (10)
C4—C5—C6119.9 (4)O1W—Nd1—O8iii134.10 (10)
C4—C5—H5120.0O6—Nd1—O8iii70.15 (10)
C6—C5—H5120.0O5—Nd1—O8iii100.92 (10)
C5—C6—C7119.7 (4)O4i—Nd1—O7iii141.60 (10)
C5—C6—C8118.4 (4)O3ii—Nd1—O7iii133.95 (10)
C7—C6—C8121.7 (4)O1—Nd1—O7iii107.11 (10)
C6—C7—C2119.5 (4)O1W—Nd1—O7iii71.34 (10)
C6—C7—H7120.2O6—Nd1—O7iii106.82 (10)
C2—C7—H7120.2O5—Nd1—O7iii72.95 (10)
O4—C8—O3124.9 (4)O8iii—Nd1—O7iii63.03 (10)
O4—C8—C6118.4 (4)O4i—Nd1—O2133.39 (10)
O3—C8—C6116.7 (4)O3ii—Nd1—O280.76 (9)
O7—C9—O6126.7 (4)O1—Nd1—O250.92 (10)
O7—C9—C10116.8 (4)O1W—Nd1—O285.21 (10)
O6—C9—C10116.5 (4)O6—Nd1—O2141.25 (10)
O5—C10—O8125.7 (4)O5—Nd1—O2138.60 (9)
O5—C10—C9117.5 (4)O8iii—Nd1—O274.13 (10)
O8—C10—C9116.8 (4)O7iii—Nd1—O268.31 (10)
C4—N1—H1A109.5C1—O1—Nd196.4 (3)
C4—N1—H1B109.5C1—O2—Nd191.2 (3)
H1A—N1—H1B109.5C8—O3—Nd1ii137.1 (3)
C4—N1—H1C109.5C8—O4—Nd1iv141.5 (3)
H1A—N1—H1C109.5C10—O5—Nd1119.5 (3)
H1B—N1—H1C109.5C9—O6—Nd1121.7 (3)
O4i—Nd1—O3ii84.35 (10)C9—O7—Nd1v116.4 (3)
O4i—Nd1—O182.57 (10)C10—O8—Nd1v115.8 (3)
O3ii—Nd1—O174.75 (10)Nd1—O1W—H1W136.4
O4i—Nd1—O1W78.94 (10)Nd1—O1W—H2W115.3
O3ii—Nd1—O1W140.51 (11)H1W—O1W—H2W104.8
O1—Nd1—O1W67.81 (10)
O2—C1—C2—C3178.0 (4)O4i—Nd1—O2—C12.9 (3)
O1—C1—C2—C30.4 (6)O3ii—Nd1—O2—C176.0 (3)
O2—C1—C2—C70.7 (7)O1—Nd1—O2—C11.9 (2)
O1—C1—C2—C7179.0 (4)O1W—Nd1—O2—C167.0 (3)
C7—C2—C3—C41.5 (7)O6—Nd1—O2—C1131.1 (3)
C1—C2—C3—C4179.8 (4)O5—Nd1—O2—C1117.0 (3)
C2—C3—C4—C52.7 (7)O8iii—Nd1—O2—C1154.4 (3)
C2—C3—C4—N1179.3 (4)O7iii—Nd1—O2—C1138.8 (3)
C3—C4—C5—C61.0 (6)O4—C8—O3—Nd1ii100.8 (5)
N1—C4—C5—C6178.9 (4)C6—C8—O3—Nd1ii79.5 (5)
C4—C5—C6—C72.1 (6)O3—C8—O4—Nd1iv2.2 (8)
C4—C5—C6—C8172.9 (4)C6—C8—O4—Nd1iv177.5 (3)
C5—C6—C7—C23.3 (6)O8—C10—O5—Nd1173.2 (3)
C8—C6—C7—C2171.5 (4)C9—C10—O5—Nd17.0 (5)
C3—C2—C7—C61.5 (7)O4i—Nd1—O5—C1075.8 (3)
C1—C2—C7—C6177.2 (4)O3ii—Nd1—O5—C1015.1 (4)
C5—C6—C8—O4156.3 (4)O1—Nd1—O5—C10138.4 (3)
C7—C6—C8—O428.9 (6)O1W—Nd1—O5—C10159.9 (3)
C5—C6—C8—O323.5 (6)O6—Nd1—O5—C105.2 (3)
C7—C6—C8—O3151.4 (4)O8iii—Nd1—O5—C1066.8 (3)
O7—C9—C10—O5173.9 (4)O7iii—Nd1—O5—C10124.0 (3)
O6—C9—C10—O54.4 (6)O2—Nd1—O5—C10145.2 (3)
O7—C9—C10—O86.0 (6)O7—C9—O6—Nd1178.6 (3)
O6—C9—C10—O8175.8 (4)C10—C9—O6—Nd10.6 (5)
O2—C1—O1—Nd13.5 (4)O4i—Nd1—O6—C976.3 (3)
C2—C1—O1—Nd1174.9 (3)O3ii—Nd1—O6—C9163.8 (3)
O4i—Nd1—O1—C1174.7 (3)O1—Nd1—O6—C9128.3 (3)
O3ii—Nd1—O1—C188.6 (3)O1W—Nd1—O6—C915.8 (4)
O1W—Nd1—O1—C1104.3 (3)O5—Nd1—O6—C92.7 (3)
O6—Nd1—O1—C1124.5 (3)O8iii—Nd1—O6—C9116.0 (3)
O5—Nd1—O1—C1125.9 (2)O7iii—Nd1—O6—C963.8 (3)
O8iii—Nd1—O1—C124.9 (3)O2—Nd1—O6—C9139.9 (3)
O7iii—Nd1—O1—C143.4 (3)O6—C9—O7—Nd1v156.9 (4)
O2—Nd1—O1—C11.8 (2)C10—C9—O7—Nd1v21.2 (5)
O1—C1—O2—Nd13.3 (4)O5—C10—O8—Nd1v149.6 (4)
C2—C1—O2—Nd1175.0 (4)C9—C10—O8—Nd1v30.3 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5vi0.891.912.795 (5)172
N1—H1C···O8vii0.892.052.872 (5)154
O1W—H1W···O3viii0.822.062.812 (4)153
O1W—H2W···O1ix0.821.972.750 (4)159
Symmetry codes: (vi) x1/2, y+1/2, z1/2; (vii) x, y+1, z+1/2; (viii) x, y1, z+1/2; (ix) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Nd(C8H6NO4)(C2O4)(H2O)]
Mr430.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.047 (4), 9.592 (2), 13.670 (3)
β (°) 117.810 (2)
V3)2325.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)4.52
Crystal size (mm)0.28 × 0.22 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.364, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
5839, 2104, 1792
Rint0.033
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.03
No. of reflections2104
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O5i0.891.912.795 (5)171.5
N1—H1C···O8ii0.892.052.872 (5)154.1
O1W—H1W···O3iii0.822.062.812 (4)152.8
O1W—H2W···O1iv0.821.972.750 (4)158.5
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z+1/2; (iii) x, y1, z+1/2; (iv) x, y, z+1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 21171059 and 21003053) and Guangdong Science and Technology Department (grant Nos. 2010B090300031 and 2011B010400023).

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, C. B., Wen, H. L., Tan, S. S. & Yi, X. G. (2008). J. Mol. Struct. 879, 25–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, L.-S., Huang, D.-H. & Liu, C.-B. (2009). Acta Cryst. E65, m750.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds