organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1553

1,4-Bis[4-(meth­­oxy­carbon­yl)benz­yl]-1H-1,2,4-triazol-4-ium bromide

aGuangdong University of Technology, Faculty of Chemical Engineering and Light Industry, Guangzhou 510006, Guangdong, People's Republic of China
*Correspondence e-mail: coreyhr@yahoo.cn

(Received 11 April 2012; accepted 17 April 2012; online 28 April 2012)

In the title salt, C20H20N3O4+·Br, the dihedral angle between the benzene rings is 8.69 (16)°, and those between the benzene rings and the triazole ring are 69.98 (18) and 72.17 (18)°. In the crystal, C—H⋯Br hydrogen bonds link the cations and anions into chains along the c axis.

Related literature

For general background to triazole derivatives, see: Zanardi et al. (2011)[Zanardi, A., Mata, J. A. & Peris, E. (2011). Eur. J. Inorg. Chem. pp. 416-421.]. For a related structure, see: Huang et al. (2010[Huang, H.-R., Wen-Jiao, G., Du, Z.-Y., Fang, Y.-X. & Zhang, K. (2010). Acta Cryst. E66, o3064.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N3O4+·Br

  • Mr = 446.30

  • Orthorhombic, P c a 21

  • a = 33.6880 (15) Å

  • b = 4.7962 (3) Å

  • c = 12.3337 (6) Å

  • V = 1992.81 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.08 mm−1

  • T = 173 K

  • 0.40 × 0.32 × 0.31 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini Ultra diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.372, Tmax = 0.449

  • 6375 measured reflections

  • 2709 independent reflections

  • 2541 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.05

  • 2709 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 840 Friedel pairs

  • Flack parameter: 0.021 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.95 2.61 3.461 (3) 149
C3—H3A⋯Br1 0.99 2.91 3.795 (4) 149
C2—H2⋯Br1i 0.95 2.75 3.657 (3) 161
Symmetry code: (i) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999)[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.] and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1H-1,2,4-Triazole, like imidazole and benzimidazole, can be N-alkylated to form N-heterocyclic carbine (Zanardi et al., 2011).

In an earlier report, we presented a N-heterocyclic benzimidazole derivative. The crystal structure consists of infinite chains connected via C—H···Br and C—H···O hydrogen bonds; it also shows π···π stacking interactions (Huang et al., 2010).

In this work, we report the structure of a triazole-based N-heterocyclic carbene, 1,4-bis[4-(methoxycarbonyl)benzyl]-1H-1,2,4-triazolium bromide (Fig. 1).

In the crystal structure, the dihedral angles between the triazole ring system and the two (C4–C9) and (C13–C18) benzene rings are 69.98 (18) ° and 72.17 (18) °, respectively; the dihedral angle between the two benzene rings is 8.69 (16) °.

The bromide anions and cations form infinite hydrogen bonding chains along the c-axis via C—H···Br hydrogen bonds between the bromide anions and carbineen atoms of triazole ring and ethylene linkage (Fig. 2, Table 1).

Related literature top

For general background to triazole derivatives, see: Zanardi et al. (2011). For a related structure, see: Huang et al. (2010).

Experimental top

4-(Methoxycarbonyl)benzyl bromide (2.28 g, 10.0 mmol) was slowly added to a solution of 1H-1,2,4-triazole (0.35 g, 5.0 mmol) in acetonitrile (25 ml) and the resulting mixture was stirred under reflux for 8 h.

The solvent was evaporated under reduced pressure. The solid residue was recrystallized in methanol, and colorless block crystals were obtained after few days, yield 1.42 g, 63.5%.

Elemental analysis, calcd (%) for C20H20N3BrO4: C 53.82, H 4.52, N 9.42; found(%): C 53.80, H 4.60, N 9.41.

The FAB mass spectrum showed tje ions at 447.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.98 (CH3), 0.99 (CH2) and 0.95 Å (aromatic and triazole); Uiso(H) = xUeq(attached atom), where x = 1.5 for methyl C and 1.2 for all other C.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines indicate hydrogen bonds. Symmetry: I = -x + 1, -y + 1, z + 1/2; II = -x + 1, -y + 2, z + 1/2. H atoms not involved in the hydrogen bond interactions have been omitted.
1,4-Bis[4-(methoxycarbonyl)benzyl]-1H-1,2,4-triazol-4-ium bromide top
Crystal data top
C20H20N3O4+·BrDx = 1.488 Mg m3
Mr = 446.30Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, Pca21Cell parameters from 3691 reflections
a = 33.6880 (15) Åθ = 3.6–66.9°
b = 4.7962 (3) ŵ = 3.08 mm1
c = 12.3337 (6) ÅT = 173 K
V = 1992.81 (18) Å3Block, colorless
Z = 40.40 × 0.32 × 0.31 mm
F(000) = 912
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
2709 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2541 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.5058 pixels mm-1θmax = 66.9°, θmin = 4.4°
ϕ and ω scansh = 4039
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
k = 54
Tmin = 0.372, Tmax = 0.449l = 1114
6375 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.0837P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2709 reflectionsΔρmax = 0.37 e Å3
255 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack (1983), 840 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (18)
Crystal data top
C20H20N3O4+·BrV = 1992.81 (18) Å3
Mr = 446.30Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 33.6880 (15) ŵ = 3.08 mm1
b = 4.7962 (3) ÅT = 173 K
c = 12.3337 (6) Å0.40 × 0.32 × 0.31 mm
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
2709 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
2541 reflections with I > 2σ(I)
Tmin = 0.372, Tmax = 0.449Rint = 0.027
6375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.24 e Å3
2709 reflectionsAbsolute structure: Flack (1983), 840 Friedel pairs
255 parametersAbsolute structure parameter: 0.021 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47864 (8)0.6564 (6)0.2417 (3)0.0375 (7)
H10.48870.75960.18190.045*
C20.47240 (9)0.3718 (7)0.3756 (3)0.0452 (7)
H20.47880.23500.42850.054*
C30.40894 (9)0.8422 (7)0.2458 (3)0.0480 (8)
H3A0.41840.97930.19170.058*
H3B0.39800.94650.30830.058*
C40.37667 (8)0.6644 (6)0.1961 (3)0.0441 (7)
C50.34867 (10)0.5364 (9)0.2611 (3)0.0554 (9)
H50.34900.56650.33730.067*
C60.32036 (11)0.3655 (9)0.2160 (3)0.0599 (10)
H60.30170.27410.26160.072*
C70.31867 (9)0.3249 (7)0.1051 (3)0.0450 (7)
C80.34607 (8)0.4583 (7)0.0390 (4)0.0538 (7)
H80.34490.43510.03740.065*
C90.37509 (10)0.6255 (8)0.0851 (3)0.0533 (9)
H90.39410.71430.03990.064*
C100.28761 (9)0.1331 (7)0.0608 (4)0.0518 (10)
C110.26013 (14)0.0757 (11)0.0946 (4)0.0807 (13)
H11A0.23350.02630.06900.121*
H11B0.26620.26810.07350.121*
H11C0.26120.05920.17370.121*
C120.53934 (10)0.3639 (7)0.2875 (3)0.0456 (8)
H12A0.53890.20540.23610.055*
H12B0.54920.29360.35800.055*
C130.56784 (9)0.5850 (7)0.2453 (3)0.0389 (7)
C140.59021 (9)0.7440 (7)0.3159 (3)0.0421 (7)
H140.58680.72410.39190.051*
C150.61770 (9)0.9330 (7)0.2758 (3)0.0454 (7)
H150.63341.03980.32460.054*
C160.62246 (8)0.9668 (7)0.1643 (3)0.0428 (7)
C170.59997 (10)0.8069 (8)0.0951 (3)0.0521 (8)
H170.60300.82880.01900.063*
C180.57294 (9)0.6139 (8)0.1348 (3)0.0475 (7)
H180.55800.50210.08610.057*
C190.65221 (11)1.1610 (8)0.1181 (4)0.0541 (10)
C200.70101 (11)1.5049 (8)0.1569 (5)0.0781 (14)
H20A0.70551.64610.21300.117*
H20B0.69211.59600.09010.117*
H20C0.72581.40450.14290.117*
N10.44256 (8)0.6675 (5)0.2823 (2)0.0398 (6)
N20.43770 (8)0.4859 (7)0.3659 (2)0.0497 (8)
N30.49824 (8)0.4702 (6)0.3018 (2)0.0345 (5)
O10.26382 (8)0.0139 (6)0.1165 (3)0.0724 (8)
O20.28892 (9)0.1106 (6)0.0466 (3)0.0679 (7)
O30.65877 (9)1.1836 (7)0.0219 (3)0.0767 (10)
O40.67098 (7)1.3101 (5)0.1933 (3)0.0648 (7)
Br10.479859 (9)1.16298 (6)0.04187 (3)0.04923 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (15)0.0360 (17)0.0391 (17)0.0023 (11)0.0009 (12)0.0032 (13)
C20.0461 (17)0.051 (2)0.0381 (17)0.0054 (13)0.0026 (13)0.0080 (14)
C30.0408 (15)0.0435 (19)0.060 (2)0.0051 (13)0.0021 (15)0.0033 (15)
C40.0349 (14)0.0423 (18)0.0550 (19)0.0042 (11)0.0035 (14)0.0035 (15)
C50.0490 (18)0.073 (3)0.0444 (19)0.0087 (16)0.0028 (15)0.0006 (17)
C60.0504 (18)0.080 (3)0.050 (2)0.0217 (17)0.0059 (16)0.0001 (18)
C70.0335 (14)0.049 (2)0.0527 (19)0.0010 (12)0.0005 (13)0.0019 (15)
C80.0473 (15)0.070 (2)0.0442 (15)0.0054 (13)0.006 (2)0.003 (2)
C90.0431 (16)0.066 (2)0.0507 (18)0.0115 (15)0.0083 (14)0.0001 (16)
C100.0411 (14)0.0516 (18)0.063 (3)0.0008 (13)0.0052 (17)0.0019 (19)
C110.083 (3)0.087 (3)0.072 (3)0.020 (2)0.022 (3)0.009 (3)
C120.0394 (16)0.0411 (18)0.056 (2)0.0024 (13)0.0035 (16)0.0029 (15)
C130.0333 (14)0.0384 (17)0.0450 (18)0.0048 (12)0.0016 (13)0.0034 (15)
C140.0405 (15)0.0466 (17)0.0392 (16)0.0031 (12)0.0009 (13)0.0001 (14)
C150.0393 (15)0.0486 (19)0.0483 (18)0.0006 (12)0.0026 (13)0.0061 (15)
C160.0367 (14)0.0421 (18)0.0494 (17)0.0055 (12)0.0017 (13)0.0057 (14)
C170.0513 (18)0.066 (3)0.0386 (16)0.0032 (16)0.0007 (15)0.0064 (16)
C180.0474 (17)0.055 (2)0.0405 (17)0.0066 (13)0.0061 (14)0.0029 (15)
C190.0439 (17)0.051 (2)0.068 (3)0.0036 (14)0.0061 (18)0.0162 (19)
C200.0489 (19)0.049 (2)0.137 (4)0.0081 (16)0.016 (2)0.009 (2)
N10.0370 (12)0.0420 (16)0.0402 (14)0.0050 (10)0.0018 (12)0.0007 (11)
N20.0437 (14)0.064 (2)0.0408 (16)0.0075 (13)0.0009 (12)0.0105 (14)
N30.0365 (11)0.0365 (14)0.0304 (12)0.0044 (9)0.0003 (9)0.0020 (11)
O10.0623 (16)0.082 (2)0.0729 (19)0.0267 (15)0.0071 (14)0.0048 (16)
O20.0654 (16)0.0780 (19)0.0603 (16)0.0199 (14)0.0075 (14)0.0071 (15)
O30.0720 (17)0.087 (2)0.071 (3)0.0134 (14)0.0174 (17)0.0213 (16)
O40.0499 (13)0.0555 (16)0.089 (2)0.0115 (10)0.0067 (14)0.0025 (15)
Br10.06480 (19)0.04233 (17)0.04057 (16)0.00337 (13)0.0031 (2)0.0041 (2)
Geometric parameters (Å, º) top
C1—N11.316 (4)C11—H11B0.9800
C1—N31.335 (4)C11—H11C0.9800
C1—H10.9500C12—N31.486 (5)
C2—N21.296 (4)C12—C131.522 (5)
C2—N31.345 (4)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—N11.479 (4)C13—C181.381 (5)
C3—C41.512 (4)C13—C141.381 (5)
C3—H3A0.9900C14—C151.387 (5)
C3—H3B0.9900C14—H140.9500
C4—C51.382 (5)C15—C161.394 (5)
C4—C91.383 (5)C15—H150.9500
C5—C61.376 (5)C16—C171.376 (5)
C5—H50.9500C16—C191.482 (5)
C6—C71.382 (5)C17—C181.388 (5)
C6—H60.9500C17—H170.9500
C7—C81.388 (5)C18—H180.9500
C7—C101.497 (5)C19—O31.212 (6)
C8—C91.386 (5)C19—O41.331 (5)
C8—H80.9500C20—O41.449 (4)
C9—H90.9500C20—H20A0.9800
C10—O11.200 (5)C20—H20B0.9800
C10—O21.331 (6)C20—H20C0.9800
C11—O21.445 (5)N1—N21.359 (4)
C11—H11A0.9800
N1—C1—N3105.8 (3)C13—C12—H12A109.0
N1—C1—H1127.1N3—C12—H12B109.0
N3—C1—H1127.1C13—C12—H12B109.0
N2—C2—N3111.9 (3)H12A—C12—H12B107.8
N2—C2—H2124.1C18—C13—C14119.9 (3)
N3—C2—H2124.1C18—C13—C12119.1 (3)
N1—C3—C4110.8 (3)C14—C13—C12120.9 (3)
N1—C3—H3A109.5C13—C14—C15120.1 (3)
C4—C3—H3A109.5C13—C14—H14120.0
N1—C3—H3B109.5C15—C14—H14120.0
C4—C3—H3B109.5C14—C15—C16120.3 (3)
H3A—C3—H3B108.1C14—C15—H15119.9
C5—C4—C9119.3 (3)C16—C15—H15119.9
C5—C4—C3120.4 (3)C17—C16—C15119.0 (3)
C9—C4—C3120.3 (3)C17—C16—C19118.9 (3)
C6—C5—C4120.2 (3)C15—C16—C19122.0 (3)
C6—C5—H5119.9C16—C17—C18120.9 (3)
C4—C5—H5119.9C16—C17—H17119.5
C5—C6—C7120.9 (3)C18—C17—H17119.5
C5—C6—H6119.6C13—C18—C17119.8 (3)
C7—C6—H6119.6C13—C18—H18120.1
C6—C7—C8119.3 (3)C17—C18—H18120.1
C6—C7—C10118.4 (3)O3—C19—O4123.2 (4)
C8—C7—C10122.3 (3)O3—C19—C16123.8 (4)
C9—C8—C7119.7 (4)O4—C19—C16113.0 (3)
C9—C8—H8120.2O4—C20—H20A109.5
C7—C8—H8120.2O4—C20—H20B109.5
C4—C9—C8120.7 (3)H20A—C20—H20B109.5
C4—C9—H9119.6O4—C20—H20C109.5
C8—C9—H9119.6H20A—C20—H20C109.5
O1—C10—O2123.6 (4)H20B—C20—H20C109.5
O1—C10—C7123.4 (4)C1—N1—N2112.0 (3)
O2—C10—C7113.0 (3)C1—N1—C3127.9 (3)
O2—C11—H11A109.5N2—N1—C3120.1 (3)
O2—C11—H11B109.5C2—N2—N1103.4 (3)
H11A—C11—H11B109.5C1—N3—C2106.9 (3)
O2—C11—H11C109.5C1—N3—C12128.6 (3)
H11A—C11—H11C109.5C2—N3—C12124.2 (3)
H11B—C11—H11C109.5C10—O2—C11115.8 (4)
N3—C12—C13112.9 (3)C19—O4—C20117.5 (4)
N3—C12—H12A109.0
N1—C3—C4—C584.0 (4)C14—C13—C18—C171.3 (5)
N1—C3—C4—C995.3 (4)C12—C13—C18—C17177.5 (3)
C9—C4—C5—C62.0 (6)C16—C17—C18—C131.3 (5)
C3—C4—C5—C6177.3 (3)C17—C16—C19—O31.9 (6)
C4—C5—C6—C71.8 (6)C15—C16—C19—O3175.5 (4)
C5—C6—C7—C80.2 (6)C17—C16—C19—O4177.8 (3)
C5—C6—C7—C10179.1 (3)C15—C16—C19—O44.9 (5)
C6—C7—C8—C91.2 (5)N3—C1—N1—N21.9 (4)
C10—C7—C8—C9177.6 (3)N3—C1—N1—C3179.8 (3)
C5—C4—C9—C80.6 (6)C4—C3—N1—C1111.4 (4)
C3—C4—C9—C8178.7 (3)C4—C3—N1—N266.8 (4)
C7—C8—C9—C41.0 (5)N3—C2—N2—N10.8 (4)
C6—C7—C10—O10.6 (5)C1—N1—N2—C21.7 (4)
C8—C7—C10—O1179.4 (3)C3—N1—N2—C2179.8 (3)
C6—C7—C10—O2180.0 (4)N1—C1—N3—C21.3 (4)
C8—C7—C10—O21.1 (5)N1—C1—N3—C12175.9 (3)
N3—C12—C13—C1890.6 (4)N2—C2—N3—C10.3 (4)
N3—C12—C13—C1493.2 (4)N2—C2—N3—C12175.2 (3)
C18—C13—C14—C150.1 (5)C13—C12—N3—C135.4 (5)
C12—C13—C14—C15176.2 (3)C13—C12—N3—C2150.9 (3)
C13—C14—C15—C161.1 (5)O1—C10—O2—C111.6 (6)
C14—C15—C16—C171.1 (5)C7—C10—O2—C11178.9 (3)
C14—C15—C16—C19178.4 (3)O3—C19—O4—C200.9 (5)
C15—C16—C17—C180.1 (5)C16—C19—O4—C20179.4 (3)
C19—C16—C17—C18177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.613.461 (3)149
C3—H3A···Br10.992.913.795 (4)149
C2—H2···Br1i0.952.753.657 (3)161
Symmetry code: (i) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20N3O4+·Br
Mr446.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)33.6880 (15), 4.7962 (3), 12.3337 (6)
V3)1992.81 (18)
Z4
Radiation typeCu Kα
µ (mm1)3.08
Crystal size (mm)0.40 × 0.32 × 0.31
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini Ultra
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.372, 0.449
No. of measured, independent and
observed [I > 2σ(I)] reflections
6375, 2709, 2541
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.05
No. of reflections2709
No. of parameters255
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.24
Absolute structureFlack (1983), 840 Friedel pairs
Absolute structure parameter0.021 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.952.613.461 (3)149.2
C3—H3A···Br10.992.913.795 (4)149.2
C2—H2···Br1i0.952.753.657 (3)160.9
Symmetry code: (i) x+1, y+1, z+1/2.
 

Acknowledgements

This work was funded by the 211 Project of Guangdong Province.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, H.-R., Wen-Jiao, G., Du, Z.-Y., Fang, Y.-X. & Zhang, K. (2010). Acta Cryst. E66, o3064.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZanardi, A., Mata, J. A. & Peris, E. (2011). Eur. J. Inorg. Chem. pp. 416–421.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1553
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds