metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodido(tri-tert-butyl­phosphane-κP)gold(I)

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 17 April 2012; accepted 25 April 2012; online 28 April 2012)

The AuI atom of the title compound, [AuI(C12H27P)], shows an almost linear coordination, with a P—Au—I angle of 178.52 (3)° [Au—P = 2.2723 (14) Å and Au—I = 2.5626 (6) Å].

Related literature

For synthetic background, see: Schödel et al. (2006[Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2006). Z. Anorg. Allg. Chem. 632, 652-654.]). For a related compound, [Au(tBu3P)Cl], see: Schmidbaur et al. (1992[Schmidbaur, H., Brachthauser, B., Steigelmann, O. & Beruda, H. (1992). Chem. Ber. 125, 2705-2710.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [AuI(C12H27P)]

  • Mr = 526.17

  • Triclinic, [P \overline 1]

  • a = 7.8198 (11) Å

  • b = 8.9417 (13) Å

  • c = 12.3507 (19) Å

  • α = 85.325 (12)°

  • β = 72.840 (12)°

  • γ = 80.411 (12)°

  • V = 813.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.02 mm−1

  • T = 173 K

  • 0.19 × 0.17 × 0.15 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.229, Tmax = 0.289

  • 16028 measured reflections

  • 3761 independent reflections

  • 3615 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.11

  • 3761 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 2.30 e Å−3

  • Δρmin = −2.56 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently we have shown that [Au(PF3)Cl] could be synthesized when AuCl was treated with PF3 in toluene at low temperature (208 K) (Schödel et al., 2006). The solid-state structure of [Au(PF3)Cl] reveals attractive interactions between the gold atoms [3.3495 (9) Å]. For closed-shell atoms like Au(I), these interactions can only be rationalized by relativistic effects. In this paper we report the structure of the gold phosphane complex [Au(PtBu3)I] which we obtained from the reaction of AuI with PtBu3 at room temperature. In this context it should be noted that Schmidbaur and coworkers had synthesized the related chloro complex [Au(PtBu3)Cl] from tetrachloroauric acid and tBu3P (Schmidbaur et al., 1992).

The gold centre of the title compound shows an essentially linear coordination with a P—Au—I angle of 178.52 (3)°. A search in the Cambridge Crystallographic Database (CSD, Version 5.33 of November 2011, plus one update; Allen, 2002) yielded mean values of 2.28 (3) Å for a Au—P bond and of 2.55 (5) Å for a Au—I bond. These values compare well with 2.2723 (14) Å for Au1—P1 and 2.5626 (6) Å for Au1—I1. The crystal packing does not reveal any short intermolecular Au···Au, Au···I nor I···I contact. The shortest values found are: Au1···Au1i 5.8551 (9) Å, Au1···I1i 4.9305 (9) Å, I1···Ii 5.2412 (12) Å [symmetry operator (i): -x + 2, -y, -z + 1]. For comparison, the shortest Au···Au contact in [Au(PF3)Cl] (Schödel et al., 2006) amounts to 3.3495 (9) Å. It is remarkable that [Au(PtBu3)Cl] (Schmidbaur et al., 1992) is not isostructural with the title compound and does not show any close Au···Au contact, neither. The shortest Au···Au distance is 6.665 Å.

Related literature top

For synthetic background, see: Schödel et al. (2006). For a related compound, [Au(tBu3P)Cl], see: Schmidbaur et al. (1992). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A mixture of tBu3P (0.008 g, 0.04 mmol) and AuI (0.012 g, 0.04 mmol) was treated with 3 ml THF. The reaction mixture was stirred for 18 h at room temperature. After filtration single crystals of [Au(tBu3P)I] were obtained after 10 days at room temperature (yield 53%).

Refinement top

H atoms were refined using a riding model, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C). The highest peak in the final difference density (2.30 e-3) map is at 0.86 Å from Au1 and the deepest hole (-2.56 e-3) map is at 0.97 Å from Au1.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound with view onto the ac plane. H atoms are omitted.
[Figure 3] Fig. 3. Reaction scheme for the synthesis obtaining the title compound.
Iodido(tri-tert-butylphosphane-κP)gold(I) top
Crystal data top
[AuI(C12H27P)]Z = 2
Mr = 526.17F(000) = 492
Triclinic, P1Dx = 2.149 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8198 (11) ÅCell parameters from 39755 reflections
b = 8.9417 (13) Åθ = 3.3–28.0°
c = 12.3507 (19) ŵ = 11.02 mm1
α = 85.325 (12)°T = 173 K
β = 72.840 (12)°Block, colourless
γ = 80.411 (12)°0.19 × 0.17 × 0.15 mm
V = 813.1 (2) Å3
Data collection top
Stoe IPDS-II two-circle
diffractometer
3761 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source3615 reflections with I > 2σ(I)
Genix 3D multilayer optics monochromatorRint = 0.095
ω scansθmax = 27.7°, θmin = 3.3°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1010
Tmin = 0.229, Tmax = 0.289k = 1111
16028 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.9212P]
where P = (Fo2 + 2Fc2)/3
3761 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 2.30 e Å3
0 restraintsΔρmin = 2.56 e Å3
Crystal data top
[AuI(C12H27P)]γ = 80.411 (12)°
Mr = 526.17V = 813.1 (2) Å3
Triclinic, P1Z = 2
a = 7.8198 (11) ÅMo Kα radiation
b = 8.9417 (13) ŵ = 11.02 mm1
c = 12.3507 (19) ÅT = 173 K
α = 85.325 (12)°0.19 × 0.17 × 0.15 mm
β = 72.840 (12)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
3761 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
3615 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.289Rint = 0.095
16028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.11Δρmax = 2.30 e Å3
3761 reflectionsΔρmin = 2.56 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.89137 (2)0.02882 (2)0.290901 (16)0.03077 (9)
I11.10032 (6)0.20111 (4)0.34174 (4)0.04174 (12)
P10.70393 (18)0.22883 (15)0.24297 (11)0.0274 (3)
C10.4772 (7)0.2434 (6)0.3541 (5)0.0321 (10)
C20.6803 (8)0.1940 (7)0.0984 (5)0.0388 (12)
C30.8073 (7)0.4076 (6)0.2365 (5)0.0353 (11)
C110.3543 (8)0.3980 (6)0.3512 (5)0.0376 (12)
H11A0.41670.48000.36110.056*
H11B0.24110.39860.41260.056*
H11C0.32720.41300.27810.056*
C120.3772 (8)0.1166 (7)0.3382 (5)0.0400 (12)
H12A0.45390.01830.33940.060*
H12B0.34980.13290.26530.060*
H12C0.26420.11770.39970.060*
C130.5073 (8)0.2136 (6)0.4724 (5)0.0365 (12)
H13A0.58570.11620.47390.055*
H13B0.39050.21040.52980.055*
H13C0.56470.29510.48870.055*
C210.6591 (10)0.0242 (7)0.0937 (6)0.0486 (15)
H21A0.75950.04140.11380.073*
H21B0.66030.00280.01690.073*
H21C0.54420.00460.14750.073*
C220.5239 (10)0.2946 (8)0.0668 (6)0.0487 (14)
H22A0.41020.28190.12470.073*
H22B0.51820.26570.00680.073*
H22C0.54260.40090.06210.073*
C230.8575 (10)0.2151 (9)0.0076 (5)0.0547 (17)
H23A0.95890.15060.02740.082*
H23B0.87530.32160.00340.082*
H23C0.85160.18680.06610.082*
C311.0123 (8)0.3756 (8)0.1775 (6)0.0461 (14)
H31A1.06680.28780.21520.069*
H31B1.06780.46450.18220.069*
H31C1.03270.35420.09780.069*
C320.7902 (9)0.4473 (7)0.3588 (5)0.0412 (13)
H32A0.66190.46910.40130.062*
H32B0.84850.53660.35730.062*
H32C0.84920.36120.39570.062*
C330.7229 (9)0.5455 (7)0.1780 (6)0.0475 (15)
H33A0.59260.56650.21570.071*
H33B0.74270.52440.09820.071*
H33C0.77930.63390.18260.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03084 (14)0.02475 (13)0.03615 (14)0.00018 (9)0.01127 (9)0.00028 (9)
I10.0430 (2)0.02648 (19)0.0591 (3)0.00003 (15)0.02362 (19)0.00232 (17)
P10.0271 (6)0.0246 (6)0.0288 (6)0.0015 (5)0.0069 (5)0.0001 (5)
C10.028 (2)0.024 (2)0.039 (3)0.0002 (18)0.004 (2)0.002 (2)
C20.041 (3)0.040 (3)0.035 (3)0.001 (2)0.013 (2)0.002 (2)
C30.033 (3)0.032 (3)0.041 (3)0.008 (2)0.012 (2)0.007 (2)
C110.030 (3)0.029 (2)0.048 (3)0.004 (2)0.007 (2)0.000 (2)
C120.041 (3)0.038 (3)0.043 (3)0.013 (2)0.013 (2)0.004 (2)
C130.044 (3)0.031 (3)0.031 (3)0.006 (2)0.006 (2)0.003 (2)
C210.057 (4)0.047 (3)0.049 (3)0.004 (3)0.029 (3)0.018 (3)
C220.051 (4)0.049 (3)0.046 (3)0.004 (3)0.020 (3)0.002 (3)
C230.056 (4)0.066 (4)0.031 (3)0.001 (3)0.000 (3)0.001 (3)
C310.033 (3)0.051 (3)0.053 (4)0.013 (3)0.010 (3)0.012 (3)
C320.051 (3)0.033 (3)0.046 (3)0.014 (2)0.018 (3)0.002 (2)
C330.045 (3)0.033 (3)0.060 (4)0.005 (2)0.013 (3)0.014 (3)
Geometric parameters (Å, º) top
Au1—P12.2723 (14)C13—H13B0.9800
Au1—I12.5626 (6)C13—H13C0.9800
P1—C11.887 (5)C21—H21A0.9800
P1—C31.894 (5)C21—H21B0.9800
P1—C21.904 (6)C21—H21C0.9800
C1—C121.535 (7)C22—H22A0.9800
C1—C131.544 (8)C22—H22B0.9800
C1—C111.551 (7)C22—H22C0.9800
C2—C221.521 (9)C23—H23A0.9800
C2—C231.533 (9)C23—H23B0.9800
C2—C211.562 (9)C23—H23C0.9800
C3—C331.531 (8)C31—H31A0.9800
C3—C311.540 (8)C31—H31B0.9800
C3—C321.543 (8)C31—H31C0.9800
C11—H11A0.9800C32—H32A0.9800
C11—H11B0.9800C32—H32B0.9800
C11—H11C0.9800C32—H32C0.9800
C12—H12A0.9800C33—H33A0.9800
C12—H12B0.9800C33—H33B0.9800
C12—H12C0.9800C33—H33C0.9800
C13—H13A0.9800
P1—Au1—I1178.52 (3)C1—C13—H13C109.5
C1—P1—C3110.4 (2)H13A—C13—H13C109.5
C1—P1—C2110.7 (3)H13B—C13—H13C109.5
C3—P1—C2110.2 (3)C2—C21—H21A109.5
C1—P1—Au1108.63 (17)C2—C21—H21B109.5
C3—P1—Au1108.65 (18)H21A—C21—H21B109.5
C2—P1—Au1108.20 (19)C2—C21—H21C109.5
C12—C1—C13106.2 (4)H21A—C21—H21C109.5
C12—C1—C11108.7 (5)H21B—C21—H21C109.5
C13—C1—C11109.6 (4)C2—C22—H22A109.5
C12—C1—P1109.0 (4)C2—C22—H22B109.5
C13—C1—P1109.1 (4)H22A—C22—H22B109.5
C11—C1—P1114.0 (4)C2—C22—H22C109.5
C22—C2—C23109.0 (5)H22A—C22—H22C109.5
C22—C2—C21109.0 (5)H22B—C22—H22C109.5
C23—C2—C21105.5 (6)C2—C23—H23A109.5
C22—C2—P1115.0 (4)C2—C23—H23B109.5
C23—C2—P1108.8 (4)H23A—C23—H23B109.5
C21—C2—P1109.1 (4)C2—C23—H23C109.5
C33—C3—C31109.3 (5)H23A—C23—H23C109.5
C33—C3—C32109.0 (5)H23B—C23—H23C109.5
C31—C3—C32105.3 (5)C3—C31—H31A109.5
C33—C3—P1115.0 (4)C3—C31—H31B109.5
C31—C3—P1109.6 (4)H31A—C31—H31B109.5
C32—C3—P1108.1 (4)C3—C31—H31C109.5
C1—C11—H11A109.5H31A—C31—H31C109.5
C1—C11—H11B109.5H31B—C31—H31C109.5
H11A—C11—H11B109.5C3—C32—H32A109.5
C1—C11—H11C109.5C3—C32—H32B109.5
H11A—C11—H11C109.5H32A—C32—H32B109.5
H11B—C11—H11C109.5C3—C32—H32C109.5
C1—C12—H12A109.5H32A—C32—H32C109.5
C1—C12—H12B109.5H32B—C32—H32C109.5
H12A—C12—H12B109.5C3—C33—H33A109.5
C1—C12—H12C109.5C3—C33—H33B109.5
H12A—C12—H12C109.5H33A—C33—H33B109.5
H12B—C12—H12C109.5C3—C33—H33C109.5
C1—C13—H13A109.5H33A—C33—H33C109.5
C1—C13—H13B109.5H33B—C33—H33C109.5
H13A—C13—H13B109.5
C3—P1—C1—C12166.5 (4)Au1—P1—C2—C2372.5 (5)
C2—P1—C1—C1244.2 (5)C1—P1—C2—C2176.8 (5)
Au1—P1—C1—C1274.4 (4)C3—P1—C2—C21160.8 (4)
C3—P1—C1—C1377.9 (4)Au1—P1—C2—C2142.1 (4)
C2—P1—C1—C13159.8 (3)C1—P1—C3—C3375.2 (5)
Au1—P1—C1—C1341.1 (4)C2—P1—C3—C3347.4 (5)
C3—P1—C1—C1144.9 (5)Au1—P1—C3—C33165.8 (4)
C2—P1—C1—C1177.4 (4)C1—P1—C3—C31161.1 (4)
Au1—P1—C1—C11163.9 (4)C2—P1—C3—C3176.3 (5)
C1—P1—C2—C2246.0 (5)Au1—P1—C3—C3142.1 (4)
C3—P1—C2—C2276.4 (5)C1—P1—C3—C3246.8 (5)
Au1—P1—C2—C22164.9 (4)C2—P1—C3—C32169.4 (4)
C1—P1—C2—C23168.6 (4)Au1—P1—C3—C3272.2 (4)
C3—P1—C2—C2346.2 (5)

Experimental details

Crystal data
Chemical formula[AuI(C12H27P)]
Mr526.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8198 (11), 8.9417 (13), 12.3507 (19)
α, β, γ (°)85.325 (12), 72.840 (12), 80.411 (12)
V3)813.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)11.02
Crystal size (mm)0.19 × 0.17 × 0.15
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.229, 0.289
No. of measured, independent and
observed [I > 2σ(I)] reflections
16028, 3761, 3615
Rint0.095
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.11
No. of reflections3761
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.30, 2.56

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmidbaur, H., Brachthauser, B., Steigelmann, O. & Beruda, H. (1992). Chem. Ber. 125, 2705–2710.  CrossRef CAS Web of Science Google Scholar
First citationSchödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2006). Z. Anorg. Allg. Chem. 632, 652–654.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds