metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m633-m634

Poly[[tris­­(μ-4,4′-bi­pyridine-κ2N:N′)bis­­(μ-L-lysinato-κ3N1,O1:O1′)dizinc(II)] tetra­nitrate 0.6-hydrate di­methyl­formamide disolvate]

aOrthopaedic Department, First Hospital, Jilin University, Changchun 130021, People's Republic of China, and bChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: hunh@ciac.jl.cn

(Received 25 February 2012; accepted 13 April 2012; online 21 April 2012)

In the title compound, {[Zn2(C6H14N2O2)2(C10H8N2)3](NO3)4·0.6H2O·2C3H7NO}n, the ZnII ion is six-coordinated with a distorted octa­hedral geometry by two carboxyl­ate O atoms and one amino N atom from two L-lysinate (L-lys) ligands, and three N atoms from three 4,4′-bipyridine (4,4′-bipy) ligands. The ZnII ions are connected by the carboxyl­ate groups of the L-lys ligands in the a-axis direction and the bridging 4,4′-bipy ligands in the b- and c-axis directions, forming a three-dimensional cationic framework with channels along [100]. The nitrate anions and solvent water and dimethyl­formamide (DMF) mol­ecules are located in the channels and linked to the cationic framework by N—H⋯O and O—H⋯O hydrogen bonds. The occupancy of the water mol­ecule was fixed at 0.6. One of the DMF mol­ecules is disordered over two sets of sites, with an occupancy ratio of 0.632:0.368 (11).

Related literature

For general background to the structures and properties of chiral coordination polymers, see: Dai et al. (2005[Dai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. & Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313-1315.]); Kesanli & Lin (2003[Kesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305-326.]); Vaidhyanathan et al. (2006[Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. (2006). Angew. Chem. Int. Ed. 45, 6495-6499.]); Zaworotko (2001[Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.]). For the structures of metal complexes with 4,4′-bipy and L-tyrosinate ligands, see: Li & Hu (2011[Li, S.-Q. & Hu, N.-H. (2011). Acta Cryst. E67, m884-m885.]); Zhang & Hu (2009[Zhang, S. & Hu, N.-H. (2009). Acta Cryst. C65, m7-m9.]). For the structures of CuII complexes with 4,4′-bipy and L-valinate ligands, see: Lou et al. (2007[Lou, B.-Y., Huang, X.-D. & Lin, X.-C. (2007). Z. Anorg. Allg. Chem. 633, 372-374.]); Lou & Hong (2008[Lou, B.-Y. & Hong, M.-C. (2008). Acta Cryst. E64, m405.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C6H14N2O2)2(C10H8N2)3](NO3)4·0.6H2O·2C3H7NO

  • Mr = 1296.76

  • Monoclinic, P 21

  • a = 10.3039 (4) Å

  • b = 24.9425 (10) Å

  • c = 11.5740 (4) Å

  • β = 93.197 (1)°

  • V = 2970.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 187 K

  • 0.26 × 0.23 × 0.13 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.893

  • 16802 measured reflections

  • 11087 independent reflections

  • 10039 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.00

  • 11087 reflections

  • 820 parameters

  • 63 restraints

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5102 Friedel pairs

  • Flack parameter: 0.003 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O15 0.95 1.91 2.823 (11) 159
O1W—H1B⋯O10i 0.90 2.48 3.182 (8) 136
N7—H7A⋯O3ii 0.92 2.54 3.066 (4) 117
N7—H7B⋯O18 0.92 2.03 2.940 (9) 167
N7—H7B⋯O18′ 0.92 2.32 3.215 (17) 163
N8—H8A⋯O17iii 0.91 1.86 2.755 (7) 166
N8—H8B⋯O8iii 0.91 2.04 2.842 (6) 147
N8—H8B⋯O9iii 0.91 2.39 3.057 (6) 130
N8—H8C⋯O5iii 0.91 2.00 2.907 (7) 172
N9—H9A⋯O1iv 0.92 2.44 2.999 (4) 119
N9—H9B⋯O10 0.92 2.16 3.075 (4) 174
N10—H10A⋯O14 0.91 2.00 2.869 (6) 160
N10—H10A⋯O16 0.91 2.44 3.183 (8) 139
N10—H10B⋯O11v 0.91 2.00 2.844 (5) 154
N10—H10B⋯O12v 0.91 2.48 3.066 (6) 123
N10—H10C⋯O7i 0.91 2.04 2.914 (7) 161
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral coordination polymers have attracted much interest because they exhibit potential applications in asymmetric catalysis and chiral separation (Kesanli & Lin, 2003). Mixed-ligand systems containing both chiral and achiral ligands have been developed as an effective approach to construct chiral complexes (Dai et al., 2005; Vaidhyanathan et al., 2006; Zaworotko, 2001). Amino acids are a kind of candidate for chiral building blocks, with their amino and carboxylate groups binding to metal ions (Lou et al., 2007; Lou & Hong, 2008). We previously reported a chiral one-dimensional Zn(II) complex, [Zn(L-tyr)(4,4'-bipy)2(H2O)]NO3.2H2O, (II), (L-tyr = L-tyrosinate, 4,4'-bipy = 4,4'-bipyridine) (Li & Hu, 2011) and a chiral two-dimensional Cu(II) complex, [Cu2(L-tyr)2(4,4'-bipy)(NO3)2(H2O)2], (III), (Zhang & Hu, 2009). Herein, we present the title compound, (I), a three-dimensional Zn(II) complex with L-lysinate (L-lys) and 4,4'-bipy ligands.

In (I), the Zn(II) ion is six-coordinated by one N atom and two O atoms from two L-lys ligands, three N atoms from three 4,4'-bipy ligands in a distorted octahedral geometry (Fig. 1). The L-lys ligands bind to the Zn atoms in a µ-(κ3N,O:O') mode, the same as that observed in (II) and (III). The 4,4'-bipy ligands adopt a bridging mode, similar to that in (III) but different from the monodentate terminal mode in (II). The 4,4'-bipy ligands bridge the Zn atoms in the b and c directions, while the L-lys ligands bridge adjacent Zn atoms through the carboxylate groups in the a direction, forming a three-dimensional chiral cationic framework, which exhibits channels in the a direction (Fig. 2). The nitrate anions and the water and dimethylformamide (DMF) solvent molecules are located in the channels. The ammonium tails of the L-lys ligands extend into the channels and form N—H···O hydrogen bonds with the nitrate anions and DMF molecules (Table 1). Moreover, the water molecules and α-amino groups acting as donors form O—H···O and N—H···O hydrogen bonds with the nitrate anions, carboxylate groups and DMF molecules.

Related literature top

For general background to the structures and properties of chiral coordination polymers, see: Dai et al. (2005); Kesanli & Lin (2003); Vaidhyanathan et al. (2006); Zaworotko (2001). For the structures of metal complexes with 4,4'-bipy and L-tyrosinate ligands, see: Li & Hu (2011); Zhang & Hu (2009). For the structures of CuII complexes with 4,4'-bipy and L-valinate ligands, see: Lou et al. (2007); Lou & Hong (2008).

Experimental top

Zn(NO3)2.6H2O (0.119 g, 0.4 mmol), L-lysine (0.058 g, 0.4 mmol) and 4,4'-bipy (0.062 g, 0.4 mmol) were dissolved in water/DMF (20 ml, v/v 1:1) under stirring. The resulting solution was allowed to stand at room temperature and colorless crystals suitable for X-ray diffraction analysis were obtained after two weeks.

Refinement top

One of the DMF molecules is disordered over two sets of sites, with an occupancy ratio of 0.632 (11):0.368 (11). The water molecule is partly occupied. The occupancy factor was initially refined to 0.612 (11) and it was fixed at 0.60 in the final refinement. H atoms of the water molecule were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2), 1.00 (CH) and 0.98 (CH3) Å and N—H = 0.92 (NH2) and 0.91 (NH3) Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms and the minor component of the disordered DMF molecule have been omitted for clarity. [Symmetry codes: (i) 1 - x, -1/2 + y, 1 - z; (ii) x, y, 1 + z; (iii) 2 - x, 1/2 + y, 1 - z; (iv) x, y, -1 + z; (v) 2 - x, -1/2 + y, 1 - z; (vi) 1 - x, 1/2 + y, 1 - z.]
[Figure 2] Fig. 2. A view of the crystal packing of (I). H atoms have been omitted for clarity. Dashed lines denote hydrogen bonds.
Poly[[tris(µ-4,4'-bipyridine-κ2N:N')bis(µ-L- lysinato-κ3N1,O1:O1')dizinc(II)] tetranitrate 0.6-hydrate dimethylformamide disolvate] top
Crystal data top
[Zn2(C6H14N2O2)2(C10H8N2)3](NO3)4·0.6H2O·2C3H7NOF(000) = 1352
Mr = 1296.76Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7390 reflections
a = 10.3039 (4) Åθ = 2.4–26.0°
b = 24.9425 (10) ŵ = 0.89 mm1
c = 11.5740 (4) ÅT = 187 K
β = 93.197 (1)°Block, colorless
V = 2970.0 (2) Å30.26 × 0.23 × 0.13 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
11087 independent reflections
Radiation source: fine-focus sealed tube10039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.801, Tmax = 0.893k = 2930
16802 measured reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.013
11087 reflectionsΔρmax = 0.81 e Å3
820 parametersΔρmin = 0.33 e Å3
63 restraintsAbsolute structure: Flack (1983), 5102 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (9)
Crystal data top
[Zn2(C6H14N2O2)2(C10H8N2)3](NO3)4·0.6H2O·2C3H7NOV = 2970.0 (2) Å3
Mr = 1296.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.3039 (4) ŵ = 0.89 mm1
b = 24.9425 (10) ÅT = 187 K
c = 11.5740 (4) Å0.26 × 0.23 × 0.13 mm
β = 93.197 (1)°
Data collection top
Bruker APEX CCD
diffractometer
11087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
10039 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.893Rint = 0.019
16802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107Δρmax = 0.81 e Å3
S = 1.00Δρmin = 0.33 e Å3
11087 reflectionsAbsolute structure: Flack (1983), 5102 Friedel pairs
820 parametersAbsolute structure parameter: 0.003 (9)
63 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.56823 (4)0.220094 (14)0.41441 (3)0.01985 (10)
Zn20.93007 (3)0.646779 (14)0.56498 (3)0.01945 (10)
O10.7620 (2)0.19164 (10)0.4199 (2)0.0224 (5)
O20.8839 (2)0.11711 (10)0.4272 (2)0.0223 (5)
O30.7372 (2)0.67874 (10)0.5549 (2)0.0214 (5)
O40.6204 (2)0.75003 (10)0.5995 (2)0.0226 (6)
N10.6347 (3)0.30147 (14)0.4389 (3)0.0247 (7)
N20.8485 (3)0.56755 (12)0.5548 (2)0.0213 (6)
N30.5749 (3)0.23036 (15)0.2219 (3)0.0285 (8)
N40.5693 (3)0.21814 (15)0.3919 (2)0.0232 (6)
N50.9354 (3)0.63940 (14)0.7606 (2)0.0241 (7)
N60.9337 (3)0.64466 (16)1.3743 (2)0.0234 (6)
N70.5354 (3)0.13638 (14)0.4023 (3)0.0301 (8)
H7A0.47460.12660.45370.036*
H7B0.50240.12810.32900.036*
N80.7276 (5)0.09001 (18)0.1681 (4)0.0660 (13)
H8A0.65450.10750.14110.079*
H8B0.79320.11410.18090.079*
H8C0.75090.06550.11480.079*
N90.9625 (3)0.73065 (13)0.5758 (3)0.0254 (7)
H9A1.03640.73730.62190.030*
H9B0.97500.74410.50320.030*
N100.8106 (4)0.94545 (17)0.7743 (4)0.0570 (11)
H10A0.80150.91230.80580.068*
H10B0.73640.96460.78190.068*
H10C0.87860.96270.81160.068*
C10.5721 (4)0.34315 (16)0.3901 (3)0.0316 (9)
H10.50060.33660.33650.038*
C20.6079 (4)0.39617 (16)0.4148 (3)0.0312 (9)
H20.56050.42490.37900.037*
C30.7122 (4)0.40660 (15)0.4913 (3)0.0232 (8)
C40.7785 (4)0.36297 (16)0.5417 (3)0.0286 (9)
H40.85150.36840.59420.034*
C50.7360 (3)0.31163 (15)0.5139 (3)0.0255 (8)
H50.78070.28210.54960.031*
C60.7558 (4)0.55603 (16)0.4730 (3)0.0274 (8)
H60.71950.58470.42800.033*
C70.7106 (4)0.50566 (15)0.4503 (3)0.0274 (8)
H70.64700.49980.38900.033*
C80.7575 (3)0.46277 (15)0.5168 (3)0.0237 (8)
C90.8495 (4)0.47439 (16)0.6051 (3)0.0319 (9)
H90.88230.44670.65490.038*
C100.8935 (4)0.52661 (17)0.6205 (3)0.0299 (9)
H100.95830.53370.68010.036*
C110.4679 (4)0.24046 (18)0.1545 (3)0.0337 (10)
H110.38990.24830.19120.040*
C120.4639 (4)0.24026 (17)0.0350 (3)0.0319 (9)
H120.38450.24690.00840.038*
C130.5770 (4)0.23018 (17)0.0211 (3)0.0290 (10)
C140.6897 (4)0.2229 (2)0.0483 (3)0.0358 (9)
H140.77090.21860.01430.043*
C150.6835 (4)0.2221 (2)0.1664 (3)0.0365 (9)
H150.76150.21520.21170.044*
C160.4819 (4)0.24829 (18)0.3386 (3)0.0332 (10)
H160.41800.26700.38510.040*
C170.4805 (4)0.25351 (17)0.2188 (3)0.0296 (9)
H170.41640.27480.18480.035*
C180.5756 (4)0.22671 (19)0.1495 (3)0.0267 (9)
C190.6641 (4)0.19624 (18)0.2039 (3)0.0358 (10)
H190.72960.17720.15990.043*
C200.6575 (4)0.19326 (18)0.3237 (3)0.0349 (10)
H200.72050.17200.35920.042*
C210.8295 (4)0.6508 (2)0.8174 (3)0.0362 (9)
H210.75140.65860.77310.043*
C220.8265 (4)0.6521 (2)0.9363 (3)0.0351 (9)
H220.74880.66190.97140.042*
C230.9371 (4)0.63896 (17)1.0046 (3)0.0270 (9)
C241.0445 (4)0.62388 (17)0.9460 (3)0.0314 (9)
H241.12110.61210.98800.038*
C251.0411 (4)0.62576 (17)0.8277 (3)0.0302 (9)
H251.11810.61690.79060.036*
C260.8586 (4)0.67658 (18)1.3066 (3)0.0361 (10)
H260.80320.70111.34280.043*
C270.8563 (4)0.67624 (19)1.1882 (3)0.0408 (11)
H270.80100.70011.14450.049*
C280.9368 (4)0.64021 (18)1.1321 (3)0.0269 (8)
C291.0147 (4)0.60713 (18)1.2027 (3)0.0296 (9)
H291.07000.58171.16940.035*
C301.0119 (4)0.61110 (17)1.3200 (3)0.0275 (8)
H301.06870.58881.36610.033*
C310.7762 (3)0.14177 (17)0.4243 (3)0.0212 (7)
C320.6570 (3)0.10546 (16)0.4278 (3)0.0268 (8)
H320.65400.09220.50910.032*
C330.6704 (4)0.05621 (17)0.3512 (4)0.0421 (11)
H33A0.66450.06800.26940.051*
H33B0.75830.04090.36700.051*
C340.5725 (5)0.0125 (2)0.3652 (5)0.0540 (13)
H34A0.48400.02810.36160.065*
H34B0.58810.00460.44190.065*
C350.5818 (6)0.0303 (2)0.2692 (6)0.0812 (19)
H35A0.50650.05480.27190.097*
H35B0.57650.01220.19290.097*
C360.7015 (6)0.0617 (3)0.2801 (6)0.0804 (18)
H36A0.69450.08860.34230.096*
H36B0.77540.03780.30210.096*
C370.7262 (3)0.72627 (15)0.5884 (2)0.0175 (7)
C380.8500 (3)0.75806 (14)0.6249 (3)0.0239 (8)
H380.86220.75420.71080.029*
C390.8394 (4)0.81792 (16)0.6008 (4)0.0371 (10)
H39A0.83870.82390.51620.045*
H39B0.75590.83120.62790.045*
C400.9493 (5)0.84975 (19)0.6590 (5)0.0478 (12)
H40A1.03290.83320.64010.057*
H40B0.94280.84750.74390.057*
C410.9503 (5)0.90914 (19)0.6232 (5)0.0618 (15)
H41A1.02740.92650.66200.074*
H41B0.96060.91100.53870.074*
C420.8355 (6)0.9400 (2)0.6496 (5)0.0609 (14)
H42A0.75860.92300.60980.073*
H42B0.84390.97640.61660.073*
O1W1.0534 (7)0.7542 (3)1.0804 (7)0.094 (2)0.60
H1A0.98690.75771.02010.141*0.60
H1B1.03860.78031.13170.141*0.60
N110.9419 (6)0.9875 (2)0.0281 (5)0.0771 (15)
O50.8211 (5)0.9923 (2)0.0153 (4)0.0944 (15)
O60.9935 (6)0.9850 (2)0.1267 (4)0.121 (2)
O71.0058 (5)0.9887 (2)0.0591 (5)0.0891 (14)
N120.9215 (4)0.81777 (17)0.3054 (3)0.0471 (10)
O80.9535 (4)0.86466 (16)0.2816 (4)0.0716 (12)
O90.8025 (4)0.80580 (18)0.2939 (4)0.0813 (14)
O101.0025 (3)0.78428 (14)0.3412 (3)0.0488 (8)
N130.5965 (4)0.04442 (16)0.7044 (3)0.0408 (9)
O110.5668 (3)0.00369 (14)0.7245 (3)0.0572 (9)
O120.7113 (3)0.05824 (15)0.7120 (3)0.0551 (10)
O130.5102 (3)0.07704 (15)0.6750 (3)0.0550 (9)
N140.8082 (6)0.8281 (2)0.9323 (6)0.0852 (16)
O140.7168 (5)0.8458 (2)0.8613 (5)0.1016 (16)
O150.8287 (5)0.7804 (2)0.9411 (7)0.136 (2)
O160.8814 (6)0.8622 (2)0.9766 (6)0.136 (2)
O170.4854 (5)0.8717 (2)0.0970 (5)0.115 (2)
N150.2865 (5)0.8676 (2)0.0072 (4)0.0790 (15)
C430.4144 (5)0.8691 (3)0.0078 (6)0.0826 (19)
H430.45410.86800.06440.099*
C440.2217 (8)0.8683 (4)0.1147 (6)0.136 (4)
H44A0.25590.83920.16470.203*
H44B0.12810.86320.09880.203*
H44C0.23730.90270.15360.203*
C450.2102 (7)0.8662 (3)0.1010 (5)0.106 (3)
H45A0.26510.85470.16280.158*
H45B0.17560.90200.11870.158*
H45C0.13810.84090.09500.158*
O180.4301 (14)0.0931 (6)0.1802 (10)0.132 (6)0.632 (11)
N160.4160 (12)0.0515 (5)0.0087 (9)0.073 (4)0.632 (11)
C460.3757 (11)0.0613 (4)0.1123 (9)0.097 (5)0.632 (11)
H460.30090.04300.13590.117*0.632 (11)
C470.5301 (11)0.0789 (5)0.0281 (10)0.099 (5)0.632 (11)
H47A0.56490.10220.03440.148*0.632 (11)
H47B0.50670.10070.09670.148*0.632 (11)
H47C0.59600.05250.04690.148*0.632 (11)
C480.340 (2)0.0177 (10)0.0733 (13)0.120 (9)0.632 (11)
H48A0.25040.01540.04990.180*0.632 (11)
H48B0.37840.01830.07390.180*0.632 (11)
H48C0.34110.03330.15090.180*0.632 (11)
O18'0.484 (2)0.1047 (8)0.1345 (15)0.095 (8)0.368 (11)
N16'0.367 (2)0.0472 (9)0.0221 (11)0.054 (5)0.368 (11)
C46'0.4563 (13)0.0842 (6)0.0395 (14)0.063 (5)0.368 (11)
H46'0.50230.09600.02470.076*0.368 (11)
C47'0.3019 (16)0.0244 (8)0.1188 (13)0.097 (9)0.368 (11)
H47D0.32780.04400.18970.146*0.368 (11)
H47E0.32620.01340.12800.146*0.368 (11)
H47F0.20750.02720.10380.146*0.368 (11)
C48'0.331 (3)0.0274 (14)0.0941 (14)0.110 (15)0.368 (11)
H48D0.36400.05210.15160.166*0.368 (11)
H48E0.23650.02490.10450.166*0.368 (11)
H48F0.36960.00820.10420.166*0.368 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0190 (2)0.0191 (2)0.02137 (18)0.00000 (16)0.00039 (14)0.00195 (16)
Zn20.0203 (2)0.0185 (2)0.01949 (18)0.00060 (16)0.00063 (14)0.00140 (16)
O10.0200 (12)0.0209 (15)0.0260 (13)0.0019 (11)0.0007 (10)0.0023 (10)
O20.0192 (12)0.0240 (15)0.0236 (13)0.0035 (10)0.0004 (10)0.0007 (10)
O30.0201 (13)0.0190 (14)0.0249 (12)0.0006 (10)0.0017 (10)0.0005 (10)
O40.0190 (13)0.0241 (15)0.0246 (13)0.0031 (10)0.0006 (10)0.0003 (10)
N10.0204 (16)0.0278 (19)0.0260 (16)0.0033 (13)0.0010 (12)0.0022 (13)
N20.0237 (16)0.0138 (16)0.0261 (15)0.0000 (13)0.0000 (12)0.0007 (12)
N30.0278 (17)0.036 (2)0.0211 (15)0.0023 (15)0.0012 (12)0.0013 (14)
N40.0307 (16)0.0216 (16)0.0173 (13)0.0035 (15)0.0003 (11)0.0008 (14)
N50.0266 (15)0.0259 (19)0.0199 (14)0.0017 (14)0.0021 (11)0.0010 (13)
N60.0241 (15)0.0269 (17)0.0192 (14)0.0011 (15)0.0021 (11)0.0018 (15)
N70.0282 (16)0.026 (2)0.0362 (17)0.0057 (15)0.0034 (13)0.0080 (13)
N80.077 (3)0.047 (3)0.072 (3)0.024 (2)0.012 (2)0.008 (2)
N90.0231 (15)0.023 (2)0.0301 (16)0.0003 (14)0.0015 (12)0.0009 (12)
N100.070 (3)0.042 (3)0.058 (3)0.019 (2)0.005 (2)0.001 (2)
C10.033 (2)0.022 (2)0.039 (2)0.0016 (16)0.0107 (16)0.0016 (16)
C20.029 (2)0.021 (2)0.042 (2)0.0020 (16)0.0104 (16)0.0003 (16)
C30.0217 (18)0.0210 (19)0.0267 (18)0.0017 (14)0.0010 (14)0.0004 (14)
C40.026 (2)0.026 (2)0.033 (2)0.0053 (16)0.0038 (15)0.0021 (16)
C50.024 (2)0.019 (2)0.033 (2)0.0008 (15)0.0032 (15)0.0016 (15)
C60.026 (2)0.025 (2)0.030 (2)0.0019 (16)0.0066 (15)0.0000 (15)
C70.027 (2)0.020 (2)0.034 (2)0.0017 (16)0.0065 (15)0.0033 (15)
C80.0217 (18)0.0211 (19)0.0280 (19)0.0027 (14)0.0017 (14)0.0037 (14)
C90.038 (2)0.021 (2)0.035 (2)0.0032 (16)0.0142 (17)0.0056 (16)
C100.033 (2)0.025 (2)0.031 (2)0.0040 (16)0.0110 (16)0.0011 (16)
C110.037 (2)0.045 (3)0.0198 (19)0.0031 (19)0.0057 (16)0.0015 (17)
C120.027 (2)0.042 (3)0.027 (2)0.0018 (17)0.0035 (16)0.0009 (17)
C130.037 (2)0.031 (3)0.0192 (18)0.0016 (18)0.0038 (15)0.0005 (16)
C140.0264 (19)0.057 (3)0.0240 (18)0.006 (2)0.0041 (14)0.001 (2)
C150.0234 (19)0.060 (3)0.0255 (18)0.003 (2)0.0005 (14)0.001 (2)
C160.035 (2)0.043 (3)0.0220 (19)0.0008 (19)0.0001 (16)0.0011 (17)
C170.035 (2)0.033 (2)0.0207 (19)0.0098 (18)0.0020 (15)0.0057 (16)
C180.0277 (19)0.030 (2)0.0223 (18)0.0017 (18)0.0018 (14)0.0004 (17)
C190.043 (2)0.042 (3)0.0222 (19)0.0166 (19)0.0005 (17)0.0058 (17)
C200.040 (2)0.040 (3)0.025 (2)0.0165 (19)0.0025 (17)0.0013 (17)
C210.036 (2)0.051 (3)0.0211 (17)0.008 (2)0.0032 (15)0.002 (2)
C220.035 (2)0.050 (3)0.0201 (17)0.009 (2)0.0038 (14)0.0045 (19)
C230.033 (2)0.026 (2)0.0219 (18)0.0010 (17)0.0020 (14)0.0005 (16)
C240.032 (2)0.039 (3)0.0224 (19)0.0048 (17)0.0001 (16)0.0022 (16)
C250.025 (2)0.038 (3)0.027 (2)0.0022 (16)0.0021 (15)0.0036 (16)
C260.050 (3)0.036 (3)0.0226 (19)0.015 (2)0.0023 (18)0.0023 (17)
C270.050 (3)0.048 (3)0.024 (2)0.024 (2)0.0003 (18)0.0052 (18)
C280.032 (2)0.028 (2)0.0213 (18)0.0037 (18)0.0032 (14)0.0024 (17)
C290.025 (2)0.038 (2)0.026 (2)0.0027 (17)0.0045 (15)0.0027 (17)
C300.027 (2)0.029 (2)0.0256 (19)0.0068 (16)0.0046 (15)0.0010 (16)
C310.0264 (18)0.026 (2)0.0113 (14)0.0009 (16)0.0003 (12)0.0009 (14)
C320.0261 (19)0.027 (2)0.0272 (19)0.0018 (15)0.0038 (15)0.0013 (15)
C330.034 (2)0.033 (3)0.059 (3)0.0053 (18)0.005 (2)0.016 (2)
C340.056 (3)0.036 (3)0.070 (3)0.005 (2)0.007 (3)0.009 (2)
C350.074 (4)0.048 (3)0.121 (6)0.010 (3)0.001 (4)0.038 (3)
C360.078 (4)0.060 (4)0.100 (5)0.006 (3)0.016 (4)0.021 (3)
C370.0177 (16)0.023 (2)0.0120 (14)0.0003 (15)0.0011 (11)0.0007 (13)
C380.0243 (18)0.0209 (18)0.0264 (19)0.0007 (14)0.0028 (15)0.0009 (14)
C390.034 (2)0.025 (2)0.054 (3)0.0025 (17)0.012 (2)0.0017 (19)
C400.040 (3)0.031 (3)0.074 (3)0.009 (2)0.017 (2)0.018 (2)
C410.084 (4)0.033 (3)0.072 (4)0.016 (2)0.032 (3)0.005 (2)
C420.078 (4)0.045 (3)0.060 (3)0.000 (3)0.011 (3)0.007 (2)
O1W0.099 (5)0.091 (6)0.097 (6)0.014 (4)0.046 (5)0.018 (4)
N110.110 (5)0.055 (3)0.064 (3)0.008 (3)0.026 (3)0.005 (3)
O50.120 (4)0.089 (4)0.072 (3)0.025 (3)0.010 (3)0.005 (2)
O60.184 (6)0.091 (4)0.079 (3)0.021 (4)0.066 (4)0.001 (3)
O70.082 (3)0.088 (4)0.096 (4)0.007 (3)0.009 (3)0.023 (3)
N120.042 (2)0.050 (3)0.049 (2)0.016 (2)0.0059 (18)0.0044 (19)
O80.055 (2)0.056 (3)0.100 (3)0.0173 (19)0.027 (2)0.031 (2)
O90.038 (2)0.063 (3)0.142 (4)0.013 (2)0.014 (2)0.013 (3)
O100.0351 (17)0.052 (2)0.058 (2)0.0029 (16)0.0070 (15)0.0159 (17)
N130.035 (2)0.043 (2)0.043 (2)0.0078 (18)0.0074 (16)0.0057 (17)
O110.049 (2)0.041 (2)0.080 (2)0.0115 (16)0.0111 (18)0.0115 (17)
O120.0346 (19)0.048 (2)0.081 (3)0.0100 (16)0.0079 (17)0.0069 (19)
O130.042 (2)0.052 (2)0.070 (2)0.0007 (17)0.0129 (16)0.0124 (18)
N140.083 (4)0.059 (4)0.113 (5)0.013 (3)0.002 (4)0.010 (3)
O140.096 (4)0.097 (4)0.111 (4)0.025 (3)0.003 (3)0.022 (3)
O150.104 (4)0.062 (4)0.240 (8)0.005 (3)0.009 (4)0.019 (4)
O160.147 (5)0.115 (5)0.147 (5)0.045 (4)0.002 (4)0.033 (4)
O170.124 (4)0.083 (4)0.131 (5)0.014 (3)0.059 (4)0.007 (3)
N150.082 (4)0.062 (3)0.090 (4)0.016 (3)0.017 (3)0.016 (3)
C430.081 (5)0.062 (4)0.102 (5)0.014 (3)0.021 (4)0.004 (4)
C440.183 (9)0.110 (7)0.120 (7)0.011 (6)0.068 (7)0.010 (6)
C450.107 (6)0.107 (7)0.098 (5)0.016 (5)0.045 (5)0.007 (5)
O180.159 (13)0.141 (13)0.085 (8)0.078 (9)0.080 (8)0.072 (9)
N160.108 (12)0.055 (6)0.057 (6)0.000 (7)0.015 (6)0.001 (5)
C460.098 (10)0.074 (9)0.124 (13)0.030 (7)0.036 (9)0.023 (9)
C470.112 (10)0.094 (9)0.091 (9)0.051 (8)0.027 (8)0.025 (7)
C480.16 (2)0.099 (12)0.107 (13)0.079 (13)0.045 (13)0.044 (11)
O18'0.082 (12)0.058 (9)0.137 (19)0.033 (9)0.067 (11)0.020 (11)
N16'0.061 (11)0.082 (11)0.019 (7)0.010 (8)0.008 (6)0.019 (7)
C46'0.053 (10)0.049 (10)0.090 (14)0.001 (8)0.016 (10)0.004 (9)
C47'0.106 (17)0.12 (2)0.065 (11)0.070 (15)0.019 (11)0.034 (12)
C48'0.068 (17)0.17 (4)0.094 (19)0.007 (18)0.011 (14)0.09 (2)
Geometric parameters (Å, º) top
Zn1—O4i2.080 (2)C24—C251.368 (5)
Zn1—N72.119 (3)C24—H240.9500
Zn1—O12.117 (2)C25—H250.9500
Zn1—N12.156 (3)C26—C271.369 (5)
Zn1—N4ii2.242 (3)C26—H260.9500
Zn1—N32.248 (3)C27—C281.406 (6)
Zn2—O2iii2.052 (2)C27—H270.9500
Zn2—N92.121 (3)C28—C291.385 (6)
Zn2—O32.139 (2)C29—C301.363 (5)
Zn2—N22.148 (3)C29—H290.9500
Zn2—N6iv2.210 (3)C30—H300.9500
Zn2—N52.269 (3)C31—C321.528 (5)
O1—C311.253 (5)C32—C331.526 (5)
O2—C311.268 (4)C32—H321.0000
O2—Zn2v2.052 (2)C33—C341.500 (6)
O3—C371.254 (4)C33—H33A0.9900
O4—C371.254 (4)C33—H33B0.9900
O4—Zn1vi2.080 (2)C34—C351.547 (7)
N1—C11.332 (5)C34—H34A0.9900
N1—C51.344 (5)C34—H34B0.9900
N2—C61.338 (5)C35—C361.462 (8)
N2—C101.340 (5)C35—H35A0.9900
N3—C151.337 (5)C35—H35B0.9900
N3—C111.338 (5)C36—H36A0.9900
N4—C201.325 (5)C36—H36B0.9900
N4—C161.348 (5)C37—C381.541 (5)
N4—Zn1iv2.242 (3)C38—C391.522 (5)
N5—C211.335 (5)C38—H381.0000
N5—C251.346 (5)C39—C401.511 (6)
N6—C261.334 (5)C39—H39A0.9900
N6—C301.342 (5)C39—H39B0.9900
N6—Zn2ii2.210 (3)C40—C411.538 (7)
N7—C321.487 (5)C40—H40A0.9900
N7—H7A0.9200C40—H40B0.9900
N7—H7B0.9200C41—C421.457 (7)
N8—C361.513 (7)C41—H41A0.9900
N8—H8A0.9100C41—H41B0.9900
N8—H8B0.9100C42—H42A0.9900
N8—H8C0.9100C42—H42B0.9900
N9—C381.486 (4)O1W—H1A0.9547
N9—H9A0.9200O1W—H1B0.8984
N9—H9B0.9200N11—O61.234 (6)
N10—C421.486 (6)N11—O71.236 (6)
N10—H10A0.9100N11—O51.251 (6)
N10—H10B0.9100N12—O101.236 (5)
N10—H10C0.9100N12—O81.250 (5)
C1—C21.398 (6)N12—O91.262 (5)
C1—H10.9500N13—O121.230 (4)
C2—C31.379 (5)N13—O131.239 (5)
C2—H20.9500N13—O111.263 (5)
C3—C41.395 (5)N14—O151.212 (6)
C3—C81.501 (4)N14—O161.231 (6)
C4—C51.385 (5)N14—O141.292 (6)
C4—H40.9500O17—C431.233 (6)
C5—H50.9500N15—C431.319 (6)
C6—C71.361 (5)N15—C451.441 (6)
C6—H60.9500N15—C441.444 (6)
C7—C81.389 (5)C43—H430.9500
C7—H70.9500C44—H44A0.9800
C8—C91.385 (5)C44—H44B0.9800
C9—C101.387 (6)C44—H44C0.9800
C9—H90.9500C45—H45A0.9800
C10—H100.9500C45—H45B0.9800
C11—C121.382 (5)C45—H45C0.9800
C11—H110.9500O18—C461.229 (9)
C12—C131.389 (5)N16—C461.314 (7)
C12—H120.9500N16—C471.444 (8)
C13—C141.387 (5)N16—C481.463 (8)
C13—C181.488 (5)C46—H460.9500
C14—C151.372 (5)C47—H47A0.9800
C14—H140.9500C47—H47B0.9800
C15—H150.9500C47—H47C0.9800
C16—C171.393 (5)C48—H48A0.9800
C16—H160.9500C48—H48B0.9800
C17—C181.401 (5)C48—H48C0.9800
C17—H170.9500O18'—C46'1.230 (9)
C18—C191.367 (5)N16'—C46'1.310 (8)
C19—C201.386 (5)N16'—C47'1.454 (9)
C19—H190.9500N16'—C48'1.461 (8)
C20—H200.9500C46'—H46'0.9500
C21—C221.378 (5)C47'—H47D0.9800
C21—H210.9500C47'—H47E0.9800
C22—C231.390 (5)C47'—H47F0.9800
C22—H220.9500C48'—H48D0.9800
C23—C241.383 (5)C48'—H48E0.9800
C23—C281.476 (5)C48'—H48F0.9800
O4i—Zn1—N7101.75 (11)C22—C23—C28121.2 (3)
O4i—Zn1—O1176.88 (10)C25—C24—C23120.3 (4)
N7—Zn1—O179.54 (11)C25—C24—H24119.8
O4i—Zn1—N187.76 (11)C23—C24—H24119.8
N7—Zn1—N1170.06 (13)N5—C25—C24124.2 (4)
O1—Zn1—N191.12 (11)N5—C25—H25117.9
O4i—Zn1—N4ii92.15 (10)C24—C25—H25117.9
N7—Zn1—N4ii92.09 (13)N6—C26—C27124.2 (4)
O1—Zn1—N4ii90.64 (10)N6—C26—H26117.9
N1—Zn1—N4ii84.57 (12)C27—C26—H26117.9
O4i—Zn1—N387.85 (11)C26—C27—C28119.3 (4)
N7—Zn1—N393.47 (13)C26—C27—H27120.4
O1—Zn1—N389.23 (11)C28—C27—H27120.4
N1—Zn1—N389.76 (12)C29—C28—C27116.4 (3)
N4ii—Zn1—N3174.33 (15)C29—C28—C23123.0 (3)
O2iii—Zn2—N9102.08 (11)C27—C28—C23120.6 (4)
O2iii—Zn2—O3179.04 (10)C30—C29—C28120.0 (4)
N9—Zn2—O377.21 (11)C30—C29—H29120.0
O2iii—Zn2—N291.85 (11)C28—C29—H29120.0
N9—Zn2—N2166.03 (12)N6—C30—C29123.9 (4)
O3—Zn2—N288.87 (11)N6—C30—H30118.0
O2iii—Zn2—N6iv88.14 (10)C29—C30—H30118.0
N9—Zn2—N6iv94.08 (13)O1—C31—O2125.6 (3)
O3—Zn2—N6iv91.26 (10)O1—C31—C32119.8 (3)
N2—Zn2—N6iv87.23 (12)O2—C31—C32114.5 (4)
O2iii—Zn2—N587.49 (10)N7—C32—C33113.9 (3)
N9—Zn2—N591.50 (12)N7—C32—C31110.9 (3)
O3—Zn2—N593.16 (10)C33—C32—C31111.3 (3)
N2—Zn2—N588.14 (12)N7—C32—H32106.8
N6iv—Zn2—N5173.53 (15)C33—C32—H32106.8
C31—O1—Zn1116.2 (2)C31—C32—H32106.8
C31—O2—Zn2v129.8 (3)C34—C33—C32116.0 (4)
C37—O3—Zn2115.8 (2)C34—C33—H33A108.3
C37—O4—Zn1vi129.5 (2)C32—C33—H33A108.3
C1—N1—C5117.8 (3)C34—C33—H33B108.3
C1—N1—Zn1122.4 (3)C32—C33—H33B108.3
C5—N1—Zn1119.5 (3)H33A—C33—H33B107.4
C6—N2—C10116.7 (3)C33—C34—C35110.8 (4)
C6—N2—Zn2119.9 (2)C33—C34—H34A109.5
C10—N2—Zn2123.2 (3)C35—C34—H34A109.5
C15—N3—C11115.7 (3)C33—C34—H34B109.5
C15—N3—Zn1122.1 (3)C35—C34—H34B109.5
C11—N3—Zn1121.9 (2)H34A—C34—H34B108.1
C20—N4—C16116.2 (3)C36—C35—C34113.2 (5)
C20—N4—Zn1iv124.8 (2)C36—C35—H35A108.9
C16—N4—Zn1iv118.7 (2)C34—C35—H35A108.9
C21—N5—C25115.2 (3)C36—C35—H35B108.9
C21—N5—Zn2120.0 (2)C34—C35—H35B108.9
C25—N5—Zn2124.8 (2)H35A—C35—H35B107.7
C26—N6—C30116.1 (3)C35—C36—N8111.5 (5)
C26—N6—Zn2ii122.1 (3)C35—C36—H36A109.3
C30—N6—Zn2ii121.8 (3)N8—C36—H36A109.3
C32—N7—Zn1111.6 (2)C35—C36—H36B109.3
C32—N7—H7A109.3N8—C36—H36B109.3
Zn1—N7—H7A109.3H36A—C36—H36B108.0
C32—N7—H7B109.3O3—C37—O4124.9 (3)
Zn1—N7—H7B109.3O3—C37—C38118.9 (3)
H7A—N7—H7B108.0O4—C37—C38116.1 (3)
C36—N8—H8A109.5N9—C38—C39115.5 (3)
C36—N8—H8B109.5N9—C38—C37108.1 (3)
H8A—N8—H8B109.5C39—C38—C37113.9 (3)
C36—N8—H8C109.5N9—C38—H38106.2
H8A—N8—H8C109.5C39—C38—H38106.2
H8B—N8—H8C109.5C37—C38—H38106.2
C38—N9—Zn2110.6 (2)C40—C39—C38112.9 (4)
C38—N9—H9A109.5C40—C39—H39A109.0
Zn2—N9—H9A109.5C38—C39—H39A109.0
C38—N9—H9B109.5C40—C39—H39B109.0
Zn2—N9—H9B109.5C38—C39—H39B109.0
H9A—N9—H9B108.1H39A—C39—H39B107.8
C42—N10—H10A109.5C39—C40—C41113.7 (5)
C42—N10—H10B109.5C39—C40—H40A108.8
H10A—N10—H10B109.5C41—C40—H40A108.8
C42—N10—H10C109.5C39—C40—H40B108.8
H10A—N10—H10C109.5C41—C40—H40B108.8
H10B—N10—H10C109.5H40A—C40—H40B107.7
N1—C1—C2122.3 (4)C42—C41—C40115.8 (4)
N1—C1—H1118.8C42—C41—H41A108.3
C2—C1—H1118.8C40—C41—H41A108.3
C3—C2—C1119.8 (4)C42—C41—H41B108.3
C3—C2—H2120.1C40—C41—H41B108.3
C1—C2—H2120.1H41A—C41—H41B107.4
C2—C3—C4117.8 (4)C41—C42—N10116.0 (5)
C2—C3—C8121.7 (3)C41—C42—H42A108.3
C4—C3—C8120.5 (3)N10—C42—H42A108.3
C5—C4—C3118.9 (4)C41—C42—H42B108.3
C5—C4—H4120.5N10—C42—H42B108.3
C3—C4—H4120.5H42A—C42—H42B107.4
N1—C5—C4123.2 (4)H1A—O1W—H1B106.0
N1—C5—H5118.4O6—N11—O7122.3 (7)
C4—C5—H5118.4O6—N11—O5119.3 (7)
N2—C6—C7123.9 (4)O7—N11—O5118.2 (5)
N2—C6—H6118.0O10—N12—O8121.6 (4)
C7—C6—H6118.0O10—N12—O9120.6 (4)
C6—C7—C8120.0 (4)O8—N12—O9117.7 (4)
C6—C7—H7120.0O12—N13—O13120.6 (4)
C8—C7—H7120.0O12—N13—O11119.7 (4)
C9—C8—C7116.8 (3)O13—N13—O11119.8 (4)
C9—C8—C3122.2 (3)O15—N14—O16123.0 (7)
C7—C8—C3121.0 (3)O15—N14—O14120.5 (6)
C10—C9—C8119.8 (4)O16—N14—O14115.8 (6)
C10—C9—H9120.1C43—N15—C45120.1 (5)
C8—C9—H9120.1C43—N15—C44120.4 (5)
N2—C10—C9122.8 (4)C45—N15—C44119.5 (5)
N2—C10—H10118.6O17—C43—N15123.5 (6)
C9—C10—H10118.6O17—C43—H43118.3
N3—C11—C12124.1 (4)N15—C43—H43118.3
N3—C11—H11118.0N15—C44—H44A109.5
C12—C11—H11118.0N15—C44—H44B109.5
C11—C12—C13119.3 (4)H44A—C44—H44B109.5
C11—C12—H12120.3N15—C44—H44C109.5
C13—C12—H12120.3H44A—C44—H44C109.5
C14—C13—C12116.8 (3)H44B—C44—H44C109.5
C14—C13—C18122.2 (3)N15—C45—H45A109.5
C12—C13—C18121.0 (4)N15—C45—H45B109.5
C15—C14—C13119.7 (3)H45A—C45—H45B109.5
C15—C14—H14120.2N15—C45—H45C109.5
C13—C14—H14120.2H45A—C45—H45C109.5
N3—C15—C14124.2 (4)H45B—C45—H45C109.5
N3—C15—H15117.9C46—N16—C47119.0 (7)
C14—C15—H15117.9C46—N16—C48121.0 (8)
N4—C16—C17123.5 (4)C47—N16—C48119.7 (7)
N4—C16—H16118.2O18—C46—N16123.2 (10)
C17—C16—H16118.2O18—C46—H46118.4
C16—C17—C18118.6 (4)N16—C46—H46118.4
C16—C17—H17120.7C46'—N16'—C47'120.5 (8)
C18—C17—H17120.7C46'—N16'—C48'121.3 (9)
C19—C18—C17117.7 (3)C47'—N16'—C48'118.2 (8)
C19—C18—C13121.5 (4)O18'—C46'—N16'123.6 (11)
C17—C18—C13120.8 (3)O18'—C46'—H46'118.2
C18—C19—C20119.6 (4)N16'—C46'—H46'118.2
C18—C19—H19120.2N16'—C47'—H47D109.5
C20—C19—H19120.2N16'—C47'—H47E109.5
N4—C20—C19124.3 (4)H47D—C47'—H47E109.5
N4—C20—H20117.8N16'—C47'—H47F109.5
C19—C20—H20117.8H47D—C47'—H47F109.5
N5—C21—C22124.2 (4)H47E—C47'—H47F109.5
N5—C21—H21117.9N16'—C48'—H48D109.5
C22—C21—H21117.9N16'—C48'—H48E109.5
C21—C22—C23120.0 (4)H48D—C48'—H48E109.5
C21—C22—H22120.0N16'—C48'—H48F109.5
C23—C22—H22120.0H48D—C48'—H48F109.5
C24—C23—C22116.0 (3)H48E—C48'—H48F109.5
C24—C23—C28122.9 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z+1; (iii) x+2, y+1/2, z+1; (iv) x, y, z1; (v) x+2, y1/2, z+1; (vi) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O150.951.912.823 (11)159
O1W—H1B···O10ii0.902.483.182 (8)136
N7—H7A···O3i0.922.543.066 (4)117
N7—H7B···O180.922.032.940 (9)167
N7—H7B···O180.922.323.215 (17)163
N8—H8A···O17vii0.911.862.755 (7)166
N8—H8B···O8vii0.912.042.842 (6)147
N8—H8B···O9vii0.912.393.057 (6)130
N8—H8C···O5vii0.912.002.907 (7)172
N9—H9A···O1iii0.922.442.999 (4)119
N9—H9B···O100.922.163.075 (4)174
N10—H10A···O140.912.002.869 (6)160
N10—H10A···O160.912.443.183 (8)139
N10—H10B···O11viii0.912.002.844 (5)154
N10—H10B···O12viii0.912.483.066 (6)123
N10—H10C···O7ii0.912.042.914 (7)161
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z+1; (iii) x+2, y+1/2, z+1; (vii) x, y1, z; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C6H14N2O2)2(C10H8N2)3](NO3)4·0.6H2O·2C3H7NO
Mr1296.76
Crystal system, space groupMonoclinic, P21
Temperature (K)187
a, b, c (Å)10.3039 (4), 24.9425 (10), 11.5740 (4)
β (°) 93.197 (1)
V3)2970.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.26 × 0.23 × 0.13
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
16802, 11087, 10039
Rint0.019
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.00
No. of reflections11087
No. of parameters820
No. of restraints63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.33
Absolute structureFlack (1983), 5102 Friedel pairs
Absolute structure parameter0.003 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O150.951.912.823 (11)159
O1W—H1B···O10i0.902.483.182 (8)136
N7—H7A···O3ii0.922.543.066 (4)117
N7—H7B···O180.922.032.940 (9)167
N7—H7B···O18'0.922.323.215 (17)163
N8—H8A···O17iii0.911.862.755 (7)166
N8—H8B···O8iii0.912.042.842 (6)147
N8—H8B···O9iii0.912.393.057 (6)130
N8—H8C···O5iii0.912.002.907 (7)172
N9—H9A···O1iv0.922.442.999 (4)119
N9—H9B···O100.922.163.075 (4)174
N10—H10A···O140.912.002.869 (6)160
N10—H10A···O160.912.443.183 (8)139
N10—H10B···O11v0.912.002.844 (5)154
N10—H10B···O12v0.912.483.066 (6)123
N10—H10C···O7i0.912.042.914 (7)161
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z+1; (iii) x, y1, z; (iv) x+2, y+1/2, z+1; (v) x, y+1, z.
 

Acknowledgements

This work was supported by Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y.-M., Ma, E., Tang, E., Zhang, J., Li, Z.-J., Huang, X.-D. & Yao, Y.-G. (2005). Cryst. Growth Des. 5, 1313–1315.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKesanli, B. & Lin, W. (2003). Coord. Chem. Rev. 246, 305–326.  Web of Science CrossRef CAS Google Scholar
First citationLi, S.-Q. & Hu, N.-H. (2011). Acta Cryst. E67, m884–m885.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLou, B.-Y. & Hong, M.-C. (2008). Acta Cryst. E64, m405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLou, B.-Y., Huang, X.-D. & Lin, X.-C. (2007). Z. Anorg. Allg. Chem. 633, 372–374.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. (2006). Angew. Chem. Int. Ed. 45, 6495–6499.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaworotko, M. J. (2001). Chem. Commun. pp. 1–9.  Web of Science CrossRef Google Scholar
First citationZhang, S. & Hu, N.-H. (2009). Acta Cryst. C65, m7–m9.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m633-m634
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds