organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1322

4-(3-Carb­­oxy­phen­yl)pyridinium nitrate

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yadxgncl@126.com

(Received 22 March 2012; accepted 30 March 2012; online 6 April 2012)

In the title salt, C12H10NO2+·NO3, the dihedral angle between the pyridine ring and the benzene ring of the 4-(3-carb­oxy­phen­yl)pyridinium cation is 30.14 (2)°. Inversion-related pairs of cations are linked into dimers by pairs of O—H⋯O hydrogen bonds. Pairs of dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds involving nitrate anions as acceptors, generating supra­molecular chains along the diagonal of the bc plane.

Related literature

For structures of similar compounds, see: Jin et al. (2003[Jin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903-o904.]); Bei et al. (2004[Bei, F. L., Yang, X. J., Lu, L. D. & Wang, X. (2004). J. Mol. Struct. 689, 237-243.]); Rademeyer (2005[Rademeyer, M. (2005). Acta Cryst. E61, o2496-o2498.]); Wang (2006[Wang, D.-Q. (2006). Acta Cryst. E62, o2181-o2182.]); Yu et al. (2006[Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187-o2189.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10NO2+·NO3

  • Mr = 262.22

  • Triclinic, [P \overline 1]

  • a = 5.2545 (11) Å

  • b = 7.0617 (14) Å

  • c = 16.469 (3) Å

  • α = 97.39 (3)°

  • β = 92.96 (5)°

  • γ = 106.05 (3)°

  • V = 580.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.988

  • 4634 measured reflections

  • 2255 independent reflections

  • 1599 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.127

  • S = 1.00

  • 2255 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O4i 0.93 2.42 3.225 (3) 145
C11—H11⋯O5ii 0.93 2.49 3.122 (3) 125
O1—H1⋯O2iii 0.82 1.82 2.624 (2) 167
N2—H2⋯O4ii 0.86 1.89 2.748 (3) 174
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y+1, -z; (iii) -x, -y+3, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound consists of a 3-(pyridin-4-yl)benzoic acid cation and a nitrate anion (Fig. 1). The nitric acid is deprotonated and the pyridine ring accepts the proton to produce the protonated organic cation, namely 3-(pyridin-4-yl)benzoic acid nitrate. The dihedral angle between pyridine ring and the benzene ring of the 3-(pyridin-4-yl)benzoic acid is 30.14 (2)°. The two components are linked by O—H···O [O1—H1···O2, 2.624 (2) Å] hydrogen bonds to form the cation dimers (Fig. 2), and further though N—H···O and C—H···O [N2—H2···O4, 2.748 (3) Å; C10—H10···O4, 3.225 (3) Å; C11—H11···O5, 3.122 (3)Å] hydrogen bonds. The cation dimers are thus connected by the nitrate anions into extended one-dimensional supramolecular chains (Fig. 2).

Related literature top

For structures of similar compounds, see: Jin et al. (2003); Bei et al. (2004); Rademeyer (2005); Wang (2006); Yu et al. (2006).

Experimental top

The title compound was prepared by a hydrothermal method. An aqueous solution (20 mL) containing 3-(pyridin-4-yl)benzoic acid (0.10 mmol) and samarium nitrate hexahydrate (0.10 mmol) was placed in a Parr Teflon-lined stainless steel vessel (25 mL) under autogenous pressure, and then heated to 433 K for 72 h and subsequently cooled to room temperature at a rate of 5 K an hour. The targeted Sm3+ complex was not synthesized. Unintentionally, colorless single crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture.

Refinement top

All H atoms were positioned geometrically (C-H = 0.93Å, O-H = 0.82 Å and N-H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C, N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound (30% probability level), hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded supramolecular chains in the crystal structure. Dashed lines denote hydrogen bonds.
4-(3-Carboxyphenyl)pyridinium nitrate top
Crystal data top
C12H10NO2+·NO3Z = 2
Mr = 262.22F(000) = 272
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2545 (11) ÅCell parameters from 2373 reflections
b = 7.0617 (14) Åθ = 3.0–27.5°
c = 16.469 (3) ŵ = 0.12 mm1
α = 97.39 (3)°T = 293 K
β = 92.96 (5)°Block, colourless
γ = 106.05 (3)°0.15 × 0.13 × 0.10 mm
V = 580.0 (2) Å3
Data collection top
Bruker SMART
diffractometer
2255 independent reflections
Radiation source: fine-focus sealed tube1599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 46
Tmin = 0.982, Tmax = 0.988k = 88
4634 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2255 reflectionsΔρmax = 0.20 e Å3
174 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.039 (7)
Crystal data top
C12H10NO2+·NO3γ = 106.05 (3)°
Mr = 262.22V = 580.0 (2) Å3
Triclinic, P1Z = 2
a = 5.2545 (11) ÅMo Kα radiation
b = 7.0617 (14) ŵ = 0.12 mm1
c = 16.469 (3) ÅT = 293 K
α = 97.39 (3)°0.15 × 0.13 × 0.10 mm
β = 92.96 (5)°
Data collection top
Bruker SMART
diffractometer
2255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1599 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.042
4634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
2255 reflectionsΔρmin = 0.22 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.5337 (3)0.8423 (2)0.07114 (11)0.0357 (4)
H20.62540.83870.02950.043*
O20.1639 (3)1.3909 (2)0.43108 (10)0.0541 (5)
O10.2183 (3)1.2586 (2)0.48279 (11)0.0555 (5)
H10.17651.36850.51130.083*
C40.0785 (4)0.8582 (3)0.27490 (12)0.0316 (5)
C80.2414 (4)0.8503 (3)0.20449 (13)0.0306 (5)
C120.1417 (4)0.7172 (3)0.13261 (13)0.0352 (5)
H120.02750.62840.12920.042*
C100.6380 (4)0.9746 (3)0.13859 (13)0.0370 (5)
H100.80731.06230.14000.044*
C90.4953 (4)0.9804 (3)0.20526 (13)0.0341 (5)
H90.56851.07260.25190.041*
C30.1074 (4)1.0373 (3)0.32576 (12)0.0332 (5)
H30.24081.15010.31850.040*
C10.0351 (4)1.2460 (3)0.43713 (14)0.0394 (5)
C50.1169 (4)0.6893 (3)0.28921 (14)0.0384 (5)
H50.13560.56740.25680.046*
C110.2897 (4)0.7157 (3)0.06729 (14)0.0384 (5)
H110.22080.62600.01960.046*
C70.2581 (4)0.8815 (3)0.39976 (14)0.0410 (5)
H70.37260.88980.44040.049*
C20.0603 (4)1.0497 (3)0.38714 (13)0.0349 (5)
C60.2820 (5)0.7011 (3)0.35072 (14)0.0454 (6)
H60.41080.58720.35950.054*
O30.2280 (3)0.3289 (2)0.18749 (10)0.0466 (4)
O50.5525 (3)0.3893 (2)0.10947 (10)0.0513 (5)
N10.3185 (4)0.3064 (2)0.12032 (11)0.0355 (4)
O40.1696 (3)0.1940 (2)0.05948 (10)0.0479 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0348 (10)0.0396 (9)0.0369 (11)0.0138 (7)0.0154 (8)0.0091 (8)
O20.0551 (11)0.0408 (9)0.0583 (11)0.0013 (7)0.0264 (9)0.0027 (7)
O10.0538 (11)0.0479 (10)0.0593 (12)0.0076 (8)0.0287 (9)0.0062 (8)
C40.0293 (11)0.0351 (11)0.0310 (12)0.0097 (8)0.0049 (9)0.0057 (8)
C80.0289 (11)0.0306 (10)0.0345 (12)0.0104 (8)0.0059 (9)0.0075 (8)
C120.0317 (11)0.0327 (10)0.0390 (13)0.0057 (8)0.0102 (10)0.0017 (9)
C100.0311 (12)0.0372 (11)0.0440 (14)0.0093 (9)0.0066 (10)0.0102 (10)
C90.0304 (11)0.0353 (10)0.0354 (12)0.0077 (8)0.0055 (9)0.0038 (9)
C30.0312 (11)0.0341 (10)0.0318 (12)0.0051 (8)0.0053 (9)0.0047 (9)
C10.0409 (13)0.0431 (12)0.0346 (12)0.0113 (10)0.0125 (10)0.0052 (9)
C50.0415 (13)0.0315 (11)0.0394 (13)0.0054 (9)0.0124 (10)0.0032 (9)
C110.0383 (13)0.0349 (11)0.0398 (13)0.0077 (9)0.0090 (10)0.0015 (9)
C70.0411 (13)0.0458 (12)0.0350 (13)0.0081 (10)0.0160 (10)0.0068 (10)
C20.0353 (12)0.0375 (11)0.0316 (12)0.0097 (9)0.0064 (10)0.0041 (9)
C60.0453 (14)0.0393 (12)0.0457 (14)0.0001 (10)0.0159 (11)0.0071 (10)
O30.0551 (11)0.0481 (9)0.0378 (10)0.0147 (7)0.0171 (8)0.0054 (7)
O50.0345 (10)0.0517 (9)0.0570 (11)0.0034 (7)0.0119 (8)0.0011 (8)
N10.0376 (11)0.0296 (9)0.0397 (11)0.0085 (7)0.0093 (9)0.0061 (8)
O40.0348 (9)0.0587 (10)0.0393 (9)0.0008 (7)0.0076 (7)0.0064 (7)
Geometric parameters (Å, º) top
N2—C111.338 (3)C9—H90.9300
N2—C101.339 (3)C3—C21.385 (3)
N2—H20.8600C3—H30.9300
O2—C11.263 (3)C1—C21.487 (3)
O1—C11.267 (3)C5—C61.377 (3)
O1—H10.8200C5—H50.9300
C4—C31.391 (3)C11—H110.9300
C4—C51.398 (3)C7—C61.388 (3)
C4—C81.481 (3)C7—C21.393 (3)
C8—C121.392 (3)C7—H70.9300
C8—C91.393 (3)C6—H60.9300
C12—C111.360 (3)O3—N11.235 (2)
C12—H120.9300O5—N11.240 (2)
C10—C91.364 (3)N1—O41.272 (2)
C10—H100.9300
C11—N2—C10121.3 (2)O2—C1—O1123.68 (19)
C11—N2—H2119.4O2—C1—C2118.7 (2)
C10—N2—H2119.4O1—C1—C2117.61 (19)
C1—O1—H1109.5C6—C5—C4120.80 (19)
C3—C4—C5118.4 (2)C6—C5—H5119.6
C3—C4—C8120.40 (18)C4—C5—H5119.6
C5—C4—C8121.07 (17)N2—C11—C12120.49 (19)
C12—C8—C9116.8 (2)N2—C11—H11119.8
C12—C8—C4121.07 (18)C12—C11—H11119.8
C9—C8—C4122.08 (18)C6—C7—C2119.0 (2)
C11—C12—C8120.60 (19)C6—C7—H7120.5
C11—C12—H12119.7C2—C7—H7120.5
C8—C12—H12119.7C3—C2—C7120.33 (18)
N2—C10—C9119.82 (19)C3—C2—C1119.46 (18)
N2—C10—H10120.1C7—C2—C1120.2 (2)
C9—C10—H10120.1C5—C6—C7120.6 (2)
C10—C9—C8121.00 (19)C5—C6—H6119.7
C10—C9—H9119.5C7—C6—H6119.7
C8—C9—H9119.5O3—N1—O5122.40 (18)
C2—C3—C4120.76 (18)O3—N1—O4119.71 (18)
C2—C3—H3119.6O5—N1—O4117.89 (19)
C4—C3—H3119.6
C3—C4—C8—C12147.6 (2)C8—C4—C5—C6174.7 (2)
C5—C4—C8—C1228.9 (3)C10—N2—C11—C120.6 (3)
C3—C4—C8—C929.6 (3)C8—C12—C11—N20.0 (3)
C5—C4—C8—C9154.0 (2)C4—C3—C2—C71.1 (3)
C9—C8—C12—C110.5 (3)C4—C3—C2—C1176.26 (19)
C4—C8—C12—C11177.82 (19)C6—C7—C2—C30.9 (3)
C11—N2—C10—C90.6 (3)C6—C7—C2—C1178.2 (2)
N2—C10—C9—C80.0 (3)O2—C1—C2—C310.7 (3)
C12—C8—C9—C100.6 (3)O1—C1—C2—C3168.3 (2)
C4—C8—C9—C10177.83 (18)O2—C1—C2—C7172.0 (2)
C5—C4—C3—C22.4 (3)O1—C1—C2—C79.0 (3)
C8—C4—C3—C2174.15 (18)C4—C5—C6—C70.1 (4)
C3—C4—C5—C61.8 (3)C2—C7—C6—C51.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.932.423.225 (3)145
C11—H11···O5ii0.932.493.122 (3)125
O1—H1···O2iii0.821.822.624 (2)167
N2—H2···O4ii0.861.892.748 (3)174
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC12H10NO2+·NO3
Mr262.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.2545 (11), 7.0617 (14), 16.469 (3)
α, β, γ (°)97.39 (3), 92.96 (5), 106.05 (3)
V3)580.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.15 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4634, 2255, 1599
Rint0.042
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.127, 1.00
No. of reflections2255
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.932.423.225 (3)145.2
C11—H11···O5ii0.932.493.122 (3)124.9
O1—H1···O2iii0.821.822.624 (2)166.8
N2—H2···O4ii0.861.892.748 (3)174.2
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x, y+3, z+1.
 

Acknowledgements

This project was supported by the Natural Scientific Research Foundation of Shaanxi Provincial Education Office of China (Nos. 2010 JK905, 2010JK903).

References

First citationBei, F. L., Yang, X. J., Lu, L. D. & Wang, X. (2004). J. Mol. Struct. 689, 237–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJin, Z. M., Li, Z. G., Li, M. C., Hu, M. L. & Shen, L. (2003). Acta Cryst. E59, o903–o904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRademeyer, M. (2005). Acta Cryst. E61, o2496–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-Q. (2006). Acta Cryst. E62, o2181–o2182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187–o2189.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1322
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds