metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[2-(1-hydrazinylideneeth­yl)pyrazine-κN1]zinc

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@nwnu.edu.cn

(Received 30 March 2012; accepted 16 April 2012; online 28 April 2012)

In the structure of the title complex, [ZnCl2(C6H8N4)2], the ZnII atom has a distorted octa­hedral geometry. Two cis Cl ions and four N atoms belonging to two different 2-(1-hydrazinylideneeth­yl)pyrazine ligands coordinate the ZnII atom, forming two five-membered Zn—N—C—C—N rings. The dihedral angle between the planes of these metallocycles is 88.13 (4)°. The organic ligands are essentially planar (r.m.s. deviations from planarity = 0.072 and 0.040 Å). Inter­molecular N—H⋯N and N—H⋯Cl inter­actions join the mol­ecules into a three-dimensional framework.

Related literature

For the biochemical applications of complexes based on ligands containing pyrazine, see: Ha et al. (1999[Ha, T. G., Jang, J. J. & Kim, S. G. (1999). Chem. Biol. Interact. 121, 209-222.]); Blackstock et al. (2000[Blackstock, A. W., Acostamadiedo, J. & Lesser, G. (2000). Clin. Lung Cancer, 2, 62-66.]); Adams et al. (2002[Adams, T. B., Doull, J. & Feron, V. J. (2002). Food Chem. Toxicol. 40, 429-451.]); Lee et al. (2012[Lee, S. E., Chung, H. & Kim, Y. S. (2012). Food Chem. 131, 1248-1254.]). For the preparation of the ligand, see: Stadler et al. (2010[Stadler, A. M., Puntoriero, F., Nastasi, F., Campagna, S. & Lehn, J. M. (2010). Chem. Eur. J. 16, 5645-5660.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C6H8N4)2]

  • Mr = 408.60

  • Monoclinic, P 21 /n

  • a = 8.4289 (8) Å

  • b = 15.1128 (14) Å

  • c = 13.4196 (13) Å

  • β = 104.077 (1)°

  • V = 1658.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.713, Tmax = 0.773

  • 11576 measured reflections

  • 4132 independent reflections

  • 3456 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.078

  • S = 1.03

  • 4132 reflections

  • 223 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H2N8⋯Cl1 0.86 (2) 2.73 (2) 3.400 (2) 137 (2)
N8—H2N8⋯N1i 0.86 (2) 2.60 (2) 3.165 (3) 124 (2)
N4—H2N4⋯Cl2 0.83 (2) 2.60 (2) 3.250 (2) 137 (2)
N4—H1N4⋯Cl1ii 0.81 (2) 2.66 (2) 3.4429 (19) 165 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazine and its derivatives have received considerable attention and interest in the field of biochemistry. Such research has been focused on drugs (Ha et al., 1999; Blackstock et al., 2000), flavor ingredients (Adams et al., 2002), and enzymatic modification (Lee et al., 2012). In this paper, a new ZnII complex, dicholorido-bis[2-(1-hydrazonethyl) pyrazine]zinc(II), is described.

The crystal of the title compound, [ZnCl2(C6H8N4)2], consists of two Cl- ions, two N atoms from two different pyrazines (N2, N6) and other two imine N atoms (N3, N7), forming a distorted octahedron (Fig. 1). The equatorial plane of the octahedron is occupied by Cl1, N2, N6 and Cl2, the four atoms are almost coplanar, with the dihedral angle of 13.28 (1)°. Atoms N3, N7 are in the axial positions of the octahedron. The distances between N3, N7 and ZnII (2.158 (1) Å, 2.164 (1) Å) are shorter than those of N2, N6 of the equatorial plane with ZnII (2.244 (1) Å, 2.258 (2) Å).

As shown in the packing diagram (Fig. 2), a three-dimensional framework is formed by intermolecular N—H···N and N—H···Cl interactions.

Related literature top

For the biochemical applications of complexes based on ligands containing pyrazine, see: Ha et al. (1999); Blackstock et al. (2000); Adams et al. (2002); Lee et al. (2012). For the preparation of the ligand, see: Stadler et al. (2010).

Experimental top

2-(1-hydrazinylideneethyl)pyrazine (Stadler et al., 2010) (0.1 mmol, 0.0136 g) was dissolved in 20 ml absolute ethanol, then ZnCl2.2H2O (0.2 mmol, 0.0268 g) was added, and after 0.5 h of stirring at 333 K, the mixture was filtered and held at room temperature to allow slow evaporation of solvent. Shiny pale yellow crystals suitable for X-ray diffraction were collected after one week (Yield = 64%).

Refinement top

H atoms of the pyrazine ring were placed in calculated positions, with C—H = 0.93 Å, and refined using ariding modea, with Uiso(H) = 1.2Ueq(C). H atoms of the methyl group were located in difference Fourier maps and included as part of a rigid rotor, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C methyl). H atoms of the NH2 groups were refined subject to a variable distance restraint that refined to N—H = 0.83 (2) Å and with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title complex. Ellipsoids are drawn at the 50% probability level. Hydrogen atoms are depicted as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title complex, viewed along the a axis. Intermolecular interactions are shown as dashed lines.
Dichloridobis[2-(1-hydrazinylideneethyl)pyrazine-κN1]zinc top
Crystal data top
[ZnCl2(C6H8N4)2]F(000) = 832
Mr = 408.60Dx = 1.637 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4411 reflections
a = 8.4289 (8) Åθ = 2.7–28.2°
b = 15.1128 (14) ŵ = 1.81 mm1
c = 13.4196 (13) ÅT = 296 K
β = 104.077 (1)°Block, colourless
V = 1658.1 (3) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4132 independent reflections
Radiation source: fine-focus sealed tube3456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1011
Tmin = 0.713, Tmax = 0.773k = 1820
11576 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2 + 0.3057P]
where P = (Fo2 + 2Fc2)/3
4132 reflections(Δ/σ)max = 0.009
223 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
[ZnCl2(C6H8N4)2]V = 1658.1 (3) Å3
Mr = 408.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4289 (8) ŵ = 1.81 mm1
b = 15.1128 (14) ÅT = 296 K
c = 13.4196 (13) Å0.20 × 0.18 × 0.15 mm
β = 104.077 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4132 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3456 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.773Rint = 0.026
11576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0294 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
4132 reflectionsΔρmin = 0.21 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.79801 (2)0.074400 (13)0.764996 (15)0.03098 (8)
Cl10.74457 (6)0.17192 (3)0.89354 (4)0.04074 (12)
Cl20.61902 (6)0.03984 (4)0.78802 (4)0.04526 (13)
N11.2922 (2)0.25410 (13)0.75292 (16)0.0535 (5)
N21.00732 (17)0.16076 (10)0.75046 (11)0.0322 (3)
N31.01610 (18)0.01092 (10)0.85368 (11)0.0331 (3)
N41.0037 (3)0.06823 (12)0.89868 (16)0.0478 (5)
H1N41.076 (3)0.0850 (16)0.9461 (18)0.057*
H2N40.909 (3)0.0860 (17)0.892 (2)0.057*
N50.8091 (3)0.09261 (13)0.44379 (15)0.0533 (5)
N60.82991 (18)0.00119 (10)0.62587 (11)0.0327 (3)
N70.65102 (18)0.14165 (10)0.63190 (12)0.0330 (3)
N80.5788 (2)0.22084 (12)0.64252 (16)0.0473 (4)
H1N80.493 (3)0.2340 (17)0.5969 (17)0.057*
H2N80.568 (3)0.2228 (17)0.7042 (15)0.057*
C11.1478 (3)0.28105 (15)0.69904 (19)0.0508 (5)
H11.14140.33280.66070.061*
C21.0057 (2)0.23502 (12)0.69773 (16)0.0405 (4)
H20.90650.25670.65890.049*
C31.1533 (2)0.13197 (12)0.80650 (14)0.0329 (4)
C41.2941 (2)0.18004 (14)0.80619 (18)0.0459 (5)
H41.39390.15930.84510.055*
C51.1551 (2)0.05001 (13)0.86525 (14)0.0333 (4)
C61.3119 (2)0.01689 (16)0.93253 (16)0.0478 (5)
H6A1.29220.03760.96430.072*
H6B1.35460.06000.98470.072*
H6C1.38940.00700.89190.072*
C70.9003 (3)0.12098 (14)0.53299 (17)0.0476 (5)
H70.95940.17310.53440.057*
C80.9103 (3)0.07594 (12)0.62350 (17)0.0405 (4)
H80.97520.09860.68430.049*
C90.7363 (2)0.02954 (12)0.53650 (14)0.0321 (4)
C100.7270 (3)0.01761 (14)0.44637 (15)0.0433 (5)
H100.66080.00400.38540.052*
C110.6464 (2)0.11247 (12)0.54143 (14)0.0332 (4)
C120.5611 (3)0.15970 (16)0.44551 (17)0.0542 (6)
H12A0.44860.16890.44590.081*
H12B0.56710.12470.38680.081*
H12C0.61280.21590.44220.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02815 (12)0.03323 (12)0.02997 (12)0.00097 (8)0.00402 (8)0.00062 (8)
Cl10.0421 (2)0.0393 (3)0.0413 (3)0.00117 (19)0.01106 (19)0.00545 (19)
Cl20.0444 (3)0.0473 (3)0.0443 (3)0.0159 (2)0.0113 (2)0.0026 (2)
N10.0427 (10)0.0487 (11)0.0738 (14)0.0098 (8)0.0232 (10)0.0013 (9)
N20.0295 (7)0.0318 (7)0.0353 (8)0.0001 (6)0.0078 (6)0.0032 (6)
N30.0339 (8)0.0326 (8)0.0309 (8)0.0006 (6)0.0044 (6)0.0015 (6)
N40.0466 (11)0.0423 (10)0.0485 (11)0.0012 (8)0.0003 (9)0.0142 (8)
N50.0660 (13)0.0522 (11)0.0441 (11)0.0055 (9)0.0181 (9)0.0093 (8)
N60.0328 (8)0.0319 (8)0.0326 (8)0.0006 (6)0.0064 (6)0.0008 (6)
N70.0286 (7)0.0313 (7)0.0390 (9)0.0020 (6)0.0081 (6)0.0001 (6)
N80.0458 (10)0.0413 (10)0.0545 (11)0.0136 (8)0.0115 (9)0.0010 (8)
C10.0531 (13)0.0376 (11)0.0671 (15)0.0016 (9)0.0250 (11)0.0061 (10)
C20.0400 (10)0.0351 (10)0.0466 (11)0.0033 (8)0.0110 (8)0.0030 (8)
C30.0275 (8)0.0381 (10)0.0334 (9)0.0009 (7)0.0084 (7)0.0060 (7)
C40.0317 (10)0.0515 (12)0.0557 (13)0.0047 (9)0.0130 (9)0.0018 (10)
C50.0290 (9)0.0412 (10)0.0284 (9)0.0034 (7)0.0047 (7)0.0043 (7)
C60.0331 (10)0.0616 (14)0.0448 (12)0.0089 (9)0.0018 (9)0.0065 (10)
C70.0530 (13)0.0399 (11)0.0527 (13)0.0083 (9)0.0185 (10)0.0033 (9)
C80.0412 (11)0.0369 (10)0.0432 (11)0.0056 (8)0.0098 (9)0.0018 (8)
C90.0300 (8)0.0349 (9)0.0319 (9)0.0030 (7)0.0083 (7)0.0019 (7)
C100.0498 (12)0.0462 (11)0.0330 (10)0.0011 (9)0.0079 (9)0.0016 (8)
C110.0293 (9)0.0340 (9)0.0343 (9)0.0004 (7)0.0042 (7)0.0054 (7)
C120.0656 (15)0.0501 (13)0.0408 (12)0.0119 (11)0.0011 (10)0.0117 (9)
Geometric parameters (Å, º) top
Zn1—N32.1568 (15)N8—H2N80.857 (18)
Zn1—N72.1637 (15)C1—C21.382 (3)
Zn1—N22.2408 (15)C1—H10.9300
Zn1—N62.2600 (15)C2—H20.9300
Zn1—Cl22.3620 (5)C3—C41.392 (3)
Zn1—Cl12.3934 (5)C3—C51.466 (3)
N1—C11.320 (3)C4—H40.9300
N1—C41.326 (3)C5—C61.493 (3)
N2—C21.325 (2)C6—H6A0.9600
N2—C31.349 (2)C6—H6B0.9600
N3—C51.288 (2)C6—H6C0.9600
N3—N41.355 (2)C7—C81.377 (3)
N4—H1N40.806 (19)C7—H70.9300
N4—H2N40.827 (19)C8—H80.9300
N5—C71.326 (3)C9—C101.389 (3)
N5—C101.333 (3)C9—C111.474 (3)
N6—C81.322 (2)C10—H100.9300
N6—C91.348 (2)C11—C121.494 (3)
N7—C111.283 (2)C12—H12A0.9600
N7—N81.366 (2)C12—H12B0.9600
N8—H1N80.850 (19)C12—H12C0.9600
N3—Zn1—N7154.76 (6)N2—C2—H2119.2
N3—Zn1—N273.96 (6)C1—C2—H2119.2
N7—Zn1—N287.67 (5)N2—C3—C4119.51 (18)
N3—Zn1—N688.53 (6)N2—C3—C5117.46 (16)
N7—Zn1—N673.43 (6)C4—C3—C5123.03 (17)
N2—Zn1—N688.17 (5)N1—C4—C3122.96 (19)
N3—Zn1—Cl295.08 (4)N1—C4—H4118.5
N7—Zn1—Cl2101.28 (4)C3—C4—H4118.5
N2—Zn1—Cl2168.11 (4)N3—C5—C3115.63 (15)
N6—Zn1—Cl286.94 (4)N3—C5—C6124.36 (18)
N3—Zn1—Cl199.25 (4)C3—C5—C6120.01 (17)
N7—Zn1—Cl197.78 (4)C5—C6—H6A109.5
N2—Zn1—Cl189.67 (4)C5—C6—H6B109.5
N6—Zn1—Cl1171.02 (4)H6A—C6—H6B109.5
Cl2—Zn1—Cl196.76 (2)C5—C6—H6C109.5
C1—N1—C4116.34 (18)H6A—C6—H6C109.5
C2—N2—C3117.43 (16)H6B—C6—H6C109.5
C2—N2—Zn1129.32 (13)N5—C7—C8122.3 (2)
C3—N2—Zn1113.23 (12)N5—C7—H7118.9
C5—N3—N4121.17 (16)C8—C7—H7118.9
C5—N3—Zn1119.41 (12)N6—C8—C7121.45 (19)
N4—N3—Zn1119.40 (13)N6—C8—H8119.3
N3—N4—H1N4120.3 (19)C7—C8—H8119.3
N3—N4—H2N4114.6 (18)N6—C9—C10119.67 (18)
H1N4—N4—H2N4120 (3)N6—C9—C11116.67 (16)
C7—N5—C10116.23 (18)C10—C9—C11123.65 (17)
C8—N6—C9117.76 (17)N5—C10—C9122.61 (19)
C8—N6—Zn1128.07 (13)N5—C10—H10118.7
C9—N6—Zn1113.55 (12)C9—C10—H10118.7
C11—N7—N8119.22 (16)N7—C11—C9115.91 (15)
C11—N7—Zn1119.93 (12)N7—C11—C12123.24 (18)
N8—N7—Zn1120.38 (13)C9—C11—C12120.81 (18)
N7—N8—H1N8117.0 (17)C11—C12—H12A109.5
N7—N8—H2N8106.8 (17)C11—C12—H12B109.5
H1N8—N8—H2N8114 (2)H12A—C12—H12B109.5
N1—C1—C2122.2 (2)C11—C12—H12C109.5
N1—C1—H1118.9H12A—C12—H12C109.5
C2—C1—H1118.9H12B—C12—H12C109.5
N2—C2—C1121.55 (19)
N3—Zn1—N2—C2178.63 (17)C4—N1—C1—C20.0 (3)
N7—Zn1—N2—C216.15 (17)C3—N2—C2—C10.6 (3)
N6—Zn1—N2—C289.63 (17)Zn1—N2—C2—C1178.73 (15)
Cl2—Zn1—N2—C2155.39 (16)N1—C1—C2—N20.3 (3)
Cl1—Zn1—N2—C281.65 (16)C2—N2—C3—C40.5 (3)
N3—Zn1—N2—C33.15 (12)Zn1—N2—C3—C4178.93 (14)
N7—Zn1—N2—C3165.63 (13)C2—N2—C3—C5179.72 (16)
N6—Zn1—N2—C392.15 (13)Zn1—N2—C3—C51.3 (2)
Cl2—Zn1—N2—C326.4 (3)C1—N1—C4—C30.1 (3)
Cl1—Zn1—N2—C396.57 (12)N2—C3—C4—N10.1 (3)
N7—Zn1—N3—C550.1 (2)C5—C3—C4—N1179.9 (2)
N2—Zn1—N3—C55.20 (13)N4—N3—C5—C3175.73 (17)
N6—Zn1—N3—C593.72 (14)Zn1—N3—C5—C36.2 (2)
Cl2—Zn1—N3—C5179.49 (13)N4—N3—C5—C64.0 (3)
Cl1—Zn1—N3—C581.77 (14)Zn1—N3—C5—C6174.13 (15)
N7—Zn1—N3—N4131.82 (16)N2—C3—C5—N33.1 (3)
N2—Zn1—N3—N4176.68 (16)C4—C3—C5—N3176.72 (18)
N6—Zn1—N3—N488.16 (15)N2—C3—C5—C6177.23 (17)
Cl2—Zn1—N3—N41.36 (15)C4—C3—C5—C63.0 (3)
Cl1—Zn1—N3—N496.35 (15)C10—N5—C7—C80.0 (3)
N3—Zn1—N6—C823.01 (17)C9—N6—C8—C70.4 (3)
N7—Zn1—N6—C8174.88 (17)Zn1—N6—C8—C7170.70 (15)
N2—Zn1—N6—C897.01 (17)N5—C7—C8—N60.5 (3)
Cl2—Zn1—N6—C872.15 (16)C8—N6—C9—C100.3 (3)
N3—Zn1—N6—C9166.32 (13)Zn1—N6—C9—C10171.45 (14)
N7—Zn1—N6—C94.21 (12)C8—N6—C9—C11179.32 (17)
N2—Zn1—N6—C992.33 (13)Zn1—N6—C9—C117.6 (2)
Cl2—Zn1—N6—C998.51 (12)C7—N5—C10—C90.7 (3)
N3—Zn1—N7—C1146.0 (2)N6—C9—C10—N50.8 (3)
N2—Zn1—N7—C1188.76 (14)C11—C9—C10—N5179.8 (2)
N6—Zn1—N7—C110.03 (14)N8—N7—C11—C9176.15 (16)
Cl2—Zn1—N7—C1183.36 (14)Zn1—N7—C11—C94.0 (2)
Cl1—Zn1—N7—C11178.11 (14)N8—N7—C11—C121.8 (3)
N3—Zn1—N7—N8126.06 (16)Zn1—N7—C11—C12174.00 (16)
N2—Zn1—N7—N883.33 (14)N6—C9—C11—N77.9 (2)
N6—Zn1—N7—N8172.11 (15)C10—C9—C11—N7171.15 (18)
Cl2—Zn1—N7—N8104.55 (14)N6—C9—C11—C12170.15 (18)
Cl1—Zn1—N7—N86.02 (14)C10—C9—C11—C1210.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H2N8···Cl10.86 (2)2.73 (2)3.400 (2)137 (2)
N8—H2N8···N1i0.86 (2)2.60 (2)3.165 (3)124 (2)
N4—H2N4···Cl20.83 (2)2.60 (2)3.250 (2)137 (2)
N4—H1N4···Cl1ii0.81 (2)2.66 (2)3.4429 (19)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C6H8N4)2]
Mr408.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.4289 (8), 15.1128 (14), 13.4196 (13)
β (°) 104.077 (1)
V3)1658.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.713, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
11576, 4132, 3456
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.03
No. of reflections4132
No. of parameters223
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H2N8···Cl10.857 (18)2.73 (2)3.400 (2)137 (2)
N8—H2N8···N1i0.857 (18)2.60 (2)3.165 (3)124 (2)
N4—H2N4···Cl20.827 (19)2.60 (2)3.250 (2)137 (2)
N4—H1N4···Cl1ii0.806 (19)2.66 (2)3.4429 (19)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+2.
 

Acknowledgements

We are thankful for the support of this study by the National Natural Science Foundation of China (No. 20871099 and J0730425) and Gansu provincial Natural Science Foundation of China (No. 0710RJZA113).

References

First citationAdams, T. B., Doull, J. & Feron, V. J. (2002). Food Chem. Toxicol. 40, 429–451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlackstock, A. W., Acostamadiedo, J. & Lesser, G. (2000). Clin. Lung Cancer, 2, 62–66.  CrossRef PubMed CAS Google Scholar
First citationBruker (2008). SADABS, SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHa, T. G., Jang, J. J. & Kim, S. G. (1999). Chem. Biol. Interact. 121, 209–222.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, S. E., Chung, H. & Kim, Y. S. (2012). Food Chem. 131, 1248–1254.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadler, A. M., Puntoriero, F., Nastasi, F., Campagna, S. & Lehn, J. M. (2010). Chem. Eur. J. 16, 5645–5660.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds