organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1364

2-[1,1-Dioxo-2-(2,4,5-tri­fluoro­benz­yl)-2H-1,2-benzo­thia­zin-4-yl]acetic acid

aDepartment of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, People's Republic of China, and bDepartment of Chemistry and Environmental Engineering, Anyang Institute of Technology, Henan 455000, People's Republic of China
*Correspondence e-mail: zcj@bit.edu.cn

(Received 13 March 2012; accepted 3 April 2012; online 13 April 2012)

In the title compound, C17H12F3NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and the N atoms displaced by −0.608 (3) and 0.105 (3) Å, respectively, from the mean plane formed by the remaining ring atoms. The dihedral angle between the two benzene rings is 36.63 (8)° and the acetic acid group is inclined at right angles [89.78 (8) °] to the mean plane formed by the C atoms of the thia­zine ring. The crystal structure features O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For pharmaceuticals properties of benzothia­zines, see: Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]). For synthetic details of the title compound, see: Chen et al. (2011[Chen, X., Zhang, S., Yang, Y., Hussain, S., He, M., Gui, D., Ma, B., Jing, C., Qiao, Z., Zhu, C. & Yu, Q. (2011). Bioorg. Med. Chem. 19, 7262-7269.]). For related structures, see: Ahmad et al. (2008[Ahmad, M., Latif Siddiqui, H., Zia-ur-Rehman, M., Tizzard, G. J. & Ahmad, S. (2008). Acta Cryst. E64, o1392.]); Zia-ur-Rehman et al. (2008[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Akbar, N. & Latif Siddiqui, H. (2008). Acta Cryst. E64, o1508.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12F3NO4S

  • Mr = 383.34

  • Monoclinic, P 21 /n

  • a = 8.3290 (17) Å

  • b = 23.141 (5) Å

  • c = 8.6692 (17) Å

  • β = 90.93 (3)°

  • V = 1670.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 22476 measured reflections

  • 4158 independent reflections

  • 3646 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.03

  • 4158 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 (3) 1.83 (3) 2.675 (2) 179 (3)
C8—H8⋯O3ii 0.93 2.55 3.211 (2) 129
C9—H9A⋯O3ii 0.97 2.30 3.207 (2) 155
C11—H11B⋯O4iii 0.97 2.40 3.162 (2) 135
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazine moiety is present as the skeletal structure in several pharmaceuticals such as antibacterial, diuretic, hypoglycemic, antithyroid, and antitumor drugs (Zia-ur-Rehman et al., 2006). In this article, we report the crystal structure of the title compound which has been used as aldose reductase inhibitor (Chen et al., 2011).

In the title compound (Fig. 1), the heterocyclic thiazine ring adopts a half chair conformation with the S1 and the N1 atoms displaced by -0.608 (3) and 0.105 (3) Å, respectively, from the mean plane formed by the remaining ring atoms (C1/C6/C7/C8). The dihedral angle between the two benze rings (C1–C6) and (C12–C17) is 36.63 (8)° and the acetate group (O1/O2/C9/C10) is inclined at right angles (89.78 (8) °) to the mean plane formed by the C-atoms of the thiazine ring. The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds forming a three-dimensional network (Fig. 2).

Related literature top

For pharmaceuticals properties of benzothiazines, see: Zia-ur-Rehman et al. (2006). For synthetic details of the title compound, see: Chen et al. (2011). For related structures, see: Ahmad et al. (2008); Zia-ur-Rehman et al. (2008).

Experimental top

A mixture of methyl 2-(1,1-dioxido-2-(2,4,5-trifluorobenzyl)-2H-benzo[e][1,2] thiazin-4-yl)acetate (0.5 mmol), 1,4-dioxane (5 ml) and saturated aqueous sodium hydroxide (8 ml) was stirred at room temperature for 12 h. The alkaline suspension was adjusted to be acidic with 0.1 M HCl and extracted with ethyl acetate (3 x 30 ml). The combined organic layers were dried over MgSO4 and filtered. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol (yield = 69%).

Refinement top

H atom bonded to O1 was located from a different Fourier map and refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···O and C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound.
2-[1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-2H-1,2-benzothiazin-4-yl]acetic acid top
Crystal data top
C17H12F3NO4SF(000) = 784
Mr = 383.34Dx = 1.524 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9975 reflections
a = 8.3290 (17) Åθ = 2.5–28.4°
b = 23.141 (5) ŵ = 0.25 mm1
c = 8.6692 (17) ÅT = 293 K
β = 90.93 (3)°Block, colorless
V = 1670.7 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.4°, θmin = 2.5°
ϕ and ω scansh = 1111
22476 measured reflectionsk = 2730
4158 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.5773P]
where P = (Fo2 + 2Fc2)/3
4158 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H12F3NO4SV = 1670.7 (6) Å3
Mr = 383.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3290 (17) ŵ = 0.25 mm1
b = 23.141 (5) ÅT = 293 K
c = 8.6692 (17) Å0.20 × 0.20 × 0.20 mm
β = 90.93 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3646 reflections with I > 2σ(I)
22476 measured reflectionsRint = 0.023
4158 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
4158 reflectionsΔρmin = 0.40 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11950 (4)0.232698 (14)0.97865 (4)0.03556 (11)
F10.69758 (14)0.21289 (5)0.89004 (16)0.0722 (3)
F20.6328 (2)0.02123 (6)0.73067 (19)0.0989 (5)
F30.3601 (2)0.01403 (5)0.8862 (2)0.0997 (5)
O10.4665 (2)0.48147 (7)0.79699 (18)0.0807 (5)
H10.504 (4)0.5074 (14)0.855 (3)0.107 (10)*
O20.41807 (19)0.43626 (6)1.01497 (15)0.0686 (4)
O30.08188 (15)0.19719 (5)1.10801 (14)0.0526 (3)
O40.08941 (14)0.20919 (5)0.82864 (12)0.0463 (3)
N10.30918 (15)0.25127 (5)0.99625 (14)0.0389 (3)
C10.02950 (17)0.30051 (6)0.99039 (15)0.0348 (3)
C20.11807 (18)0.30537 (7)1.06150 (18)0.0419 (3)
H20.16160.27411.11360.050*
C30.19919 (19)0.35725 (8)1.0537 (2)0.0504 (4)
H30.29770.36141.10140.060*
C40.1331 (2)0.40320 (7)0.9744 (2)0.0525 (4)
H40.19010.43760.96580.063*
C50.0162 (2)0.39876 (7)0.90794 (19)0.0453 (3)
H50.05890.43040.85680.054*
C60.10414 (17)0.34714 (6)0.91652 (15)0.0354 (3)
C70.26885 (18)0.34231 (6)0.86404 (16)0.0379 (3)
C80.36224 (18)0.29773 (6)0.90869 (17)0.0387 (3)
H80.46910.29800.87920.046*
C90.3439 (2)0.39103 (6)0.77500 (19)0.0448 (3)
H9A0.42960.37550.71280.054*
H9B0.26360.40740.70540.054*
C100.41079 (18)0.43834 (6)0.87590 (19)0.0433 (3)
C110.4227 (2)0.21175 (7)1.07534 (18)0.0448 (3)
H11A0.37280.19721.16790.054*
H11B0.51700.23361.10710.054*
C120.47589 (19)0.16095 (7)0.97972 (17)0.0419 (3)
C130.6136 (2)0.16311 (7)0.8936 (2)0.0480 (4)
C140.6717 (2)0.11724 (9)0.8094 (2)0.0594 (4)
H140.76670.12000.75490.071*
C150.5833 (3)0.06758 (8)0.8099 (2)0.0636 (5)
C160.4443 (3)0.06386 (8)0.8907 (3)0.0635 (5)
C170.3901 (2)0.10940 (7)0.9768 (2)0.0532 (4)
H170.29640.10581.03290.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.04325 (19)0.02765 (17)0.03590 (18)0.00299 (12)0.00411 (13)0.00177 (12)
F10.0606 (7)0.0529 (6)0.1035 (9)0.0118 (5)0.0109 (6)0.0096 (6)
F20.1302 (13)0.0558 (8)0.1110 (11)0.0240 (8)0.0069 (9)0.0322 (7)
F30.1114 (11)0.0384 (7)0.1489 (14)0.0155 (7)0.0099 (10)0.0094 (7)
O10.1217 (14)0.0547 (9)0.0655 (9)0.0464 (9)0.0027 (9)0.0112 (7)
O20.0991 (11)0.0490 (8)0.0580 (8)0.0326 (7)0.0064 (7)0.0001 (6)
O30.0639 (7)0.0421 (6)0.0523 (6)0.0011 (5)0.0144 (5)0.0156 (5)
O40.0566 (6)0.0365 (6)0.0457 (6)0.0028 (5)0.0032 (5)0.0089 (4)
N10.0412 (6)0.0332 (6)0.0424 (6)0.0001 (5)0.0004 (5)0.0018 (5)
C10.0411 (7)0.0302 (6)0.0331 (6)0.0014 (5)0.0012 (5)0.0017 (5)
C20.0420 (7)0.0416 (8)0.0423 (7)0.0052 (6)0.0048 (6)0.0002 (6)
C30.0416 (8)0.0525 (9)0.0573 (9)0.0042 (7)0.0078 (7)0.0013 (7)
C40.0495 (9)0.0419 (9)0.0662 (10)0.0100 (7)0.0044 (7)0.0025 (7)
C50.0517 (8)0.0329 (7)0.0514 (8)0.0015 (6)0.0044 (7)0.0037 (6)
C60.0423 (7)0.0295 (7)0.0344 (6)0.0023 (5)0.0020 (5)0.0015 (5)
C70.0459 (7)0.0279 (6)0.0402 (7)0.0049 (5)0.0085 (6)0.0032 (5)
C80.0403 (7)0.0327 (7)0.0434 (7)0.0047 (5)0.0063 (6)0.0041 (5)
C90.0538 (8)0.0320 (7)0.0491 (8)0.0048 (6)0.0167 (7)0.0006 (6)
C100.0424 (7)0.0308 (7)0.0572 (9)0.0036 (6)0.0103 (6)0.0024 (6)
C110.0513 (8)0.0433 (8)0.0394 (7)0.0062 (7)0.0103 (6)0.0030 (6)
C120.0484 (8)0.0356 (7)0.0413 (7)0.0047 (6)0.0097 (6)0.0019 (6)
C130.0512 (8)0.0382 (8)0.0543 (9)0.0021 (6)0.0063 (7)0.0013 (7)
C140.0631 (11)0.0552 (11)0.0601 (11)0.0133 (9)0.0033 (8)0.0029 (8)
C150.0838 (13)0.0409 (9)0.0659 (11)0.0163 (9)0.0075 (10)0.0110 (8)
C160.0782 (13)0.0320 (8)0.0796 (13)0.0022 (8)0.0153 (10)0.0013 (8)
C170.0579 (10)0.0395 (8)0.0621 (10)0.0000 (7)0.0032 (8)0.0049 (7)
Geometric parameters (Å, º) top
S1—O41.4281 (11)C5—C61.403 (2)
S1—O31.4292 (11)C5—H50.9300
S1—N11.6420 (13)C6—C71.457 (2)
S1—C11.7427 (14)C7—C81.345 (2)
F1—C131.348 (2)C7—C91.5076 (19)
F2—C151.342 (2)C8—H80.9300
F3—C161.350 (2)C9—C101.503 (2)
O1—C101.2998 (19)C9—H9A0.9700
O1—H10.84 (3)C9—H9B0.9700
O2—C101.207 (2)C11—C121.509 (2)
N1—C81.3923 (18)C11—H11A0.9700
N1—C111.4765 (19)C11—H11B0.9700
C1—C21.388 (2)C12—C131.379 (2)
C1—C61.4049 (19)C12—C171.391 (2)
C2—C31.379 (2)C13—C141.380 (2)
C2—H20.9300C14—C151.365 (3)
C3—C41.385 (2)C14—H140.9300
C3—H30.9300C15—C161.366 (3)
C4—C51.383 (2)C16—C171.372 (3)
C4—H40.9300C17—H170.9300
O4—S1—O3117.26 (8)C10—C9—C7113.55 (13)
O4—S1—N1109.80 (7)C10—C9—H9A108.9
O3—S1—N1107.48 (8)C7—C9—H9A108.9
O4—S1—C1109.08 (7)C10—C9—H9B108.9
O3—S1—C1111.83 (7)C7—C9—H9B108.9
N1—S1—C199.97 (7)H9A—C9—H9B107.7
C10—O1—H1111 (2)O2—C10—O1122.93 (16)
C8—N1—C11121.67 (13)O2—C10—C9124.36 (14)
C8—N1—S1117.70 (10)O1—C10—C9112.65 (15)
C11—N1—S1119.28 (11)N1—C11—C12114.76 (12)
C2—C1—C6122.78 (13)N1—C11—H11A108.6
C2—C1—S1118.92 (11)C12—C11—H11A108.6
C6—C1—S1118.10 (10)N1—C11—H11B108.6
C3—C2—C1119.04 (14)C12—C11—H11B108.6
C3—C2—H2120.5H11A—C11—H11B107.6
C1—C2—H2120.5C13—C12—C17116.91 (15)
C2—C3—C4119.63 (15)C13—C12—C11121.54 (14)
C2—C3—H3120.2C17—C12—C11121.54 (15)
C4—C3—H3120.2F1—C13—C12118.65 (15)
C5—C4—C3121.14 (15)F1—C13—C14117.28 (16)
C5—C4—H4119.4C12—C13—C14124.07 (16)
C3—C4—H4119.4C15—C14—C13116.87 (18)
C4—C5—C6120.89 (14)C15—C14—H14121.6
C4—C5—H5119.6C13—C14—H14121.6
C6—C5—H5119.6F2—C15—C14120.1 (2)
C5—C6—C1116.36 (13)F2—C15—C16118.81 (19)
C5—C6—C7122.84 (13)C14—C15—C16121.11 (17)
C1—C6—C7120.62 (13)F3—C16—C15118.92 (19)
C8—C7—C6120.81 (13)F3—C16—C17119.8 (2)
C8—C7—C9118.58 (13)C15—C16—C17121.31 (17)
C6—C7—C9120.18 (13)C16—C17—C12119.69 (18)
C7—C8—N1124.19 (13)C16—C17—H17120.2
C7—C8—H8117.9C12—C17—H17120.2
N1—C8—H8117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.84 (3)1.83 (3)2.675 (2)179 (3)
C8—H8···O3ii0.932.553.211 (2)129
C9—H9A···O3ii0.972.303.207 (2)155
C11—H11A···O30.972.472.877 (2)105
C11—H11B···F10.972.472.818 (2)101
C11—H11B···O4iii0.972.403.162 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H12F3NO4S
Mr383.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3290 (17), 23.141 (5), 8.6692 (17)
β (°) 90.93 (3)
V3)1670.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22476, 4158, 3646
Rint0.023
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.03
No. of reflections4158
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.84 (3)1.83 (3)2.675 (2)179 (3)
C8—H8···O3ii0.932.553.211 (2)129
C9—H9A···O3ii0.972.303.207 (2)155
C11—H11B···O4iii0.972.403.162 (2)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. 7102091) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20111101110042).

References

First citationAhmad, M., Latif Siddiqui, H., Zia-ur-Rehman, M., Tizzard, G. J. & Ahmad, S. (2008). Acta Cryst. E64, o1392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Zhang, S., Yang, Y., Hussain, S., He, M., Gui, D., Ma, B., Jing, C., Qiao, Z., Zhu, C. & Yu, Q. (2011). Bioorg. Med. Chem. 19, 7262–7269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Akbar, N. & Latif Siddiqui, H. (2008). Acta Cryst. E64, o1508.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1364
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds