organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1397

4-Amino-8-cyclo­pent­yl­oxy-7-meth­­oxy-2H-chromen-2-one monohydrate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: dingxiaolove@163.com

(Received 15 March 2012; accepted 3 April 2012; online 18 April 2012)

The asymmetric unit of the title compound, C15H17NO4·H2O, contains two organic mol­ecules with marginal differences between them and two water molecules. The chromine rings in both mol­ecules are essentially planar, with maximum deviations of 0.012 (2) and 0.060 (2) Å. The five-membered cyclo­pentane rings adopt envelope conformations in both mol­ecules. In the crystal, the components are linked by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, resulting in a three-dimensional network.

Related literature

For applications of the title compound in the treatment or prevention of disease, see: Scherlach et al. (2011[Scherlach, K., Nuetzmann, H. W., Schroeckh, V., Dahse, H. M., Brakhage, A. A. & Hertweck, C. (2011). Angew. Chem. Int. Ed. 50, 9843-9847.]); Luan et al. (2011[Luan, Y., Sun, H. & Schaus, S. E. (2011). Org. Lett. 13, 6480-6483.]); Yang et al. (2011[Yang, J., Liu, G. Y., Dai, F., Cao, X. Y., Kang, Y. F., Hu, L. M., Tang, J. J., Li, X. Z., Li, Y., Jin, X. L. & Zhou, B. (2011). Bioorg. Med. Chem. Lett. 21, 6420-6425.]). For a related structure, see: Doriguetto et al. (2006[Doriguetto, A. C., Ellena, J., Dos Santos, M. H., Moreira, M. E. C. & Nagem, T. J. (2006). Acta Cryst. C62, o350-o352.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO4·H2O

  • Mr = 293.31

  • Monoclinic, P 21 /c

  • a = 20.3651 (4) Å

  • b = 7.43162 (16) Å

  • c = 19.4049 (4) Å

  • β = 91.0792 (18)°

  • V = 2936.32 (11) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 153 K

  • 0.36 × 0.31 × 0.20 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2006[Agilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.754, Tmax = 0.851

  • 13804 measured reflections

  • 5167 independent reflections

  • 4701 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.193

  • S = 1.08

  • 5167 reflections

  • 394 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.88 1.99 2.861 (3) 172
N1—H1B⋯O2Wii 0.88 2.00 2.816 (3) 153
N2—H2A⋯O1iii 0.88 2.03 2.888 (3) 166
N2—H2B⋯O1Wi 0.88 2.08 2.838 (3) 144
O1W—H1AA⋯O5iv 0.84 1.94 2.769 (3) 170
O2W—H2AB⋯O1v 0.84 1.94 2.767 (3) 168
O1W—H1AB⋯O7 0.84 2.17 2.956 (3) 156
O1W—H1AB⋯O8 0.84 2.39 2.994 (3) 130
O2W—H2AA⋯O3 0.84 2.00 2.833 (3) 171
C7—H7⋯O2Wii 0.95 2.60 3.493 (3) 158
C15—H15B⋯O2Wvi 0.99 2.56 3.309 (4) 133
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z; (vi) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2006[Agilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound belongs to a class of important medicinal intermediates which may be useful for the treatment or prevention of inflammatory and other diseases (Scherlach et al., 2011; Luan et al., 2011; Yang et al., 2011).

There are two crystallographically independent molecules of the title compound in an asymmetric unit labeled as molecule I (Fig. 1) and molecule II (Fig. 2) containing chromine rings (O2/C1–C9) and (O6/C16–C24), respectively. There are only marginal differences between the two molecules. The chromine rings (O2/C1–C9) and (O6/C16–C24) in both molecules are essentially planar with maximum deviations for atoms C9 and C16 being 0.012 (2) and 0.060 (2) Å, respectively. The five-membered cyclopentane rings adopt C14- and C29- envelope conformations with these atoms lying 0.581 (5) and 0.604 (5) Å, respectively, out of the planes formed by the remaining reings atoms. In the crystal, a three-dimensional network is established through the N—H···O, O—H···O and C—H···O hydrogen bonds which stabilizes the crystal structure (Fig. 3, Tab. 1).

Related literature top

For applications of the title compound in the treatment or prevention of disease, see: Scherlach et al. (2011); Luan et al. (2011); Yang et al. (2011). For a related structure, see: Doriguetto et al. (2006).

Experimental top

To a solution of 8-(cyclopentyloxy)-4-hydroxy-7-methoxy -2H-chromen-2-one (0.292 g) in toluene (10 ml) were added ammonium acetate (1.63 g) and acetic acid (1.26 g). The resulting mixture was stirred at reflux for 2 h. The water formed was removed azeotropically using a Dean-Stark apparatus, then toluene was also removed. The resulting solution was stirred for an additional 3 h at reflux. The reaction mixture was quenched with ice water (20 ml). A filtration was performed. The filter cake was washed three times with H2O (20 ml). The solid was dried in an oven under reduced pressure and the product was recrystallized from ethyl acetate to afford yellow crystals of the title compound.

Refinement top

H atoms bonded to N and O atoms were located from a difference Fourier map and included in the refinement with distance restraints of O—H = 0.84 and N—H = 0.88 Å, and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2006); cell refinement: CrysAlis PRO (Agilent, 2006); data reduction: CrysAlis PRO (Agilent, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (molecule I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular structure of the title compound (molecule II) with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A view of the intermolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
4-Amino-8-cyclopentyloxy-7-methoxy-2H-chromen-2-one monohydrate top
Crystal data top
C15H17NO4·H2OF(000) = 1248
Mr = 293.31Dx = 1.327 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 13804 reflections
a = 20.3651 (4) Åθ = 4.6–67.0°
b = 7.43162 (16) ŵ = 0.83 mm1
c = 19.4049 (4) ÅT = 153 K
β = 91.0792 (18)°Block, yellow
V = 2936.32 (11) Å30.36 × 0.31 × 0.20 mm
Z = 8
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5167 independent reflections
Radiation source: fine-focus sealed tube4701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 67.0°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2006)
h = 2124
Tmin = 0.754, Tmax = 0.851k = 88
13804 measured reflectionsl = 2123
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.103P)2 + 4.5099P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5167 reflectionsΔρmax = 0.38 e Å3
394 parametersΔρmin = 0.30 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C15H17NO4·H2OV = 2936.32 (11) Å3
Mr = 293.31Z = 8
Monoclinic, P21/cCu Kα radiation
a = 20.3651 (4) ŵ = 0.83 mm1
b = 7.43162 (16) ÅT = 153 K
c = 19.4049 (4) Å0.36 × 0.31 × 0.20 mm
β = 91.0792 (18)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
5167 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2006)
4701 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.851Rint = 0.026
13804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
5167 reflectionsΔρmin = 0.30 e Å3
394 parameters
Special details top

Experimental. Absorption correction: empirical absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm (Agilent, 2006)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31349 (9)0.6751 (3)0.05051 (9)0.0277 (5)
O20.40956 (8)0.6823 (3)0.10419 (9)0.0196 (4)
O30.53980 (8)0.6560 (2)0.08977 (8)0.0189 (4)
O40.62167 (8)0.6828 (3)0.19846 (9)0.0251 (5)
N10.32021 (10)0.7551 (3)0.29237 (11)0.0239 (5)
H1A0.27710.76010.29440.029*
H1B0.34430.76500.33030.029*
C10.34144 (12)0.6908 (4)0.10708 (13)0.0214 (6)
C20.31268 (12)0.7164 (4)0.17122 (14)0.0227 (6)
H20.26620.72300.17320.027*
C30.34885 (12)0.7326 (4)0.23200 (13)0.0194 (5)
C40.42038 (12)0.7240 (3)0.22795 (13)0.0183 (5)
C50.44727 (12)0.6996 (3)0.16325 (13)0.0174 (5)
C60.51502 (12)0.6893 (3)0.15391 (12)0.0180 (5)
C70.46357 (12)0.7384 (4)0.28460 (13)0.0203 (6)
H70.44640.75610.32930.024*
C80.53058 (13)0.7274 (4)0.27689 (13)0.0212 (6)
H80.55900.73770.31600.025*
C90.55674 (12)0.7012 (3)0.21161 (13)0.0195 (5)
C100.66766 (13)0.7058 (4)0.25445 (14)0.0281 (6)
H10A0.71240.68930.23780.042*
H10B0.65890.61660.29030.042*
H10C0.66320.82710.27360.042*
C110.54069 (13)0.8129 (4)0.04407 (13)0.0215 (6)
H110.49690.87370.04230.026*
C120.55964 (14)0.7436 (4)0.02734 (13)0.0262 (6)
H12A0.52950.79270.06330.031*
H12B0.55750.61060.02890.031*
C130.63040 (16)0.8087 (5)0.03896 (17)0.0371 (8)
H13A0.65770.71010.05730.044*
H13B0.63080.91050.07180.044*
C140.65589 (14)0.8678 (4)0.03183 (16)0.0317 (7)
H14A0.69040.96090.02780.038*
H14B0.67380.76450.05830.038*
C150.59466 (12)0.9438 (4)0.06545 (14)0.0246 (6)
H15A0.60020.94770.11620.030*
H15B0.58491.06650.04830.030*
O50.18130 (8)0.1918 (3)0.70123 (9)0.0248 (5)
O60.08754 (8)0.2503 (3)0.65200 (9)0.0200 (4)
O70.04038 (8)0.3412 (2)0.67260 (9)0.0199 (4)
O80.12364 (8)0.3338 (3)0.56941 (9)0.0251 (5)
N20.17177 (11)0.1820 (3)0.45783 (11)0.0255 (5)
H2A0.21410.15980.45320.031*
H2B0.14750.19400.42110.031*
C160.15351 (12)0.2038 (4)0.64569 (13)0.0201 (6)
C170.18055 (12)0.1794 (4)0.57953 (13)0.0217 (6)
H170.22580.14920.57510.026*
C180.14447 (12)0.1972 (4)0.52039 (13)0.0200 (6)
C190.07400 (12)0.2311 (4)0.52828 (13)0.0193 (5)
C200.04892 (12)0.2580 (4)0.59489 (13)0.0183 (5)
C210.01742 (12)0.2956 (4)0.60801 (13)0.0189 (5)
C220.03026 (13)0.2365 (4)0.47378 (13)0.0219 (6)
H220.04620.21820.42800.026*
C230.03603 (13)0.2680 (4)0.48542 (13)0.0224 (6)
H230.06530.26910.44780.027*
C240.05997 (12)0.2983 (4)0.55240 (14)0.0207 (6)
C250.17107 (13)0.3265 (4)0.51606 (15)0.0283 (6)
H25A0.21490.34960.53580.043*
H25B0.16060.41780.48110.043*
H25C0.17020.20690.49470.043*
C260.04488 (13)0.1944 (4)0.72309 (13)0.0241 (6)
H260.00120.13550.72920.029*
C270.06993 (14)0.2795 (5)0.79080 (14)0.0333 (7)
H27A0.07070.41230.78680.040*
H27B0.04110.24600.82930.040*
C280.13955 (14)0.2063 (4)0.80336 (16)0.0319 (7)
H28A0.16950.30280.81980.038*
H28B0.13950.10830.83790.038*
C290.16034 (14)0.1360 (4)0.73356 (16)0.0325 (7)
H29A0.19450.04200.73850.039*
H29B0.17700.23440.70430.039*
C300.09641 (14)0.0582 (4)0.70385 (14)0.0291 (6)
H30A0.09870.04500.65320.035*
H30B0.08690.06070.72440.035*
O1W0.13246 (12)0.6480 (3)0.66569 (10)0.0392 (6)
H1AA0.14270.66010.70760.059*
H1AB0.11540.54560.66120.059*
O2W0.63303 (11)0.3753 (3)0.07811 (10)0.0325 (5)
H2AA0.60770.46460.07840.049*
H2AB0.64370.35890.03700.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (9)0.0481 (13)0.0185 (9)0.0032 (8)0.0009 (7)0.0048 (8)
O20.0114 (8)0.0306 (10)0.0168 (9)0.0015 (7)0.0012 (6)0.0020 (7)
O30.0168 (8)0.0235 (10)0.0165 (9)0.0023 (7)0.0044 (6)0.0003 (7)
O40.0110 (8)0.0421 (12)0.0222 (10)0.0022 (8)0.0008 (7)0.0008 (8)
N10.0139 (10)0.0391 (14)0.0188 (11)0.0010 (9)0.0034 (8)0.0013 (10)
C10.0152 (12)0.0268 (14)0.0222 (13)0.0013 (10)0.0007 (10)0.0015 (10)
C20.0139 (12)0.0306 (15)0.0237 (13)0.0003 (10)0.0034 (10)0.0012 (11)
C30.0176 (12)0.0194 (13)0.0214 (13)0.0000 (10)0.0037 (10)0.0003 (10)
C40.0169 (12)0.0179 (13)0.0201 (13)0.0005 (9)0.0028 (10)0.0004 (10)
C50.0180 (12)0.0168 (12)0.0173 (12)0.0001 (9)0.0003 (9)0.0003 (9)
C60.0167 (12)0.0207 (13)0.0168 (12)0.0016 (10)0.0034 (9)0.0000 (10)
C70.0202 (13)0.0224 (14)0.0184 (12)0.0010 (10)0.0031 (10)0.0001 (10)
C80.0190 (12)0.0273 (14)0.0173 (13)0.0003 (10)0.0005 (10)0.0005 (10)
C90.0136 (12)0.0213 (13)0.0238 (13)0.0014 (10)0.0021 (10)0.0009 (10)
C100.0152 (13)0.0407 (17)0.0281 (15)0.0001 (11)0.0034 (11)0.0030 (12)
C110.0188 (13)0.0265 (14)0.0193 (13)0.0039 (10)0.0034 (10)0.0032 (10)
C120.0288 (14)0.0318 (15)0.0181 (13)0.0018 (12)0.0038 (11)0.0003 (11)
C130.0357 (17)0.0392 (18)0.0371 (17)0.0026 (14)0.0202 (13)0.0049 (14)
C140.0206 (14)0.0311 (16)0.0436 (17)0.0031 (12)0.0088 (12)0.0001 (13)
C150.0232 (13)0.0258 (14)0.0250 (13)0.0000 (11)0.0049 (10)0.0001 (11)
O50.0157 (9)0.0397 (12)0.0191 (9)0.0004 (8)0.0029 (7)0.0009 (8)
O60.0131 (8)0.0313 (10)0.0158 (9)0.0018 (7)0.0012 (6)0.0015 (7)
O70.0166 (8)0.0252 (10)0.0177 (9)0.0024 (7)0.0007 (7)0.0008 (7)
O80.0128 (9)0.0396 (12)0.0231 (10)0.0041 (8)0.0028 (7)0.0010 (8)
N20.0145 (10)0.0433 (15)0.0186 (11)0.0029 (10)0.0007 (8)0.0006 (10)
C160.0140 (12)0.0244 (14)0.0220 (13)0.0031 (10)0.0026 (10)0.0007 (10)
C170.0123 (12)0.0291 (15)0.0238 (13)0.0007 (10)0.0006 (10)0.0001 (11)
C180.0179 (13)0.0223 (13)0.0199 (13)0.0016 (10)0.0009 (10)0.0006 (10)
C190.0173 (13)0.0201 (13)0.0203 (13)0.0005 (10)0.0001 (10)0.0005 (10)
C200.0174 (12)0.0204 (13)0.0173 (12)0.0028 (10)0.0029 (9)0.0010 (10)
C210.0172 (12)0.0219 (13)0.0174 (12)0.0012 (10)0.0012 (9)0.0001 (10)
C220.0197 (13)0.0295 (15)0.0163 (12)0.0008 (11)0.0000 (10)0.0010 (10)
C230.0194 (13)0.0294 (15)0.0184 (13)0.0003 (11)0.0055 (10)0.0013 (10)
C240.0160 (12)0.0215 (13)0.0247 (13)0.0017 (10)0.0010 (10)0.0013 (10)
C250.0157 (12)0.0407 (17)0.0289 (15)0.0029 (12)0.0073 (10)0.0013 (12)
C260.0179 (13)0.0349 (16)0.0196 (13)0.0031 (11)0.0010 (10)0.0068 (11)
C270.0278 (15)0.054 (2)0.0178 (13)0.0073 (14)0.0013 (11)0.0015 (13)
C280.0281 (15)0.0321 (16)0.0352 (16)0.0000 (12)0.0121 (12)0.0022 (12)
C290.0224 (14)0.0341 (17)0.0409 (17)0.0075 (12)0.0003 (12)0.0044 (13)
C300.0345 (15)0.0259 (15)0.0266 (14)0.0012 (12)0.0040 (11)0.0003 (11)
O1W0.0633 (15)0.0337 (12)0.0203 (10)0.0172 (11)0.0063 (10)0.0017 (9)
O2W0.0448 (12)0.0328 (12)0.0201 (10)0.0148 (10)0.0079 (8)0.0028 (8)
Geometric parameters (Å, º) top
O1—C11.233 (3)O6—C161.390 (3)
O2—C51.374 (3)O7—C211.372 (3)
O2—C11.391 (3)O7—C261.468 (3)
O3—C61.374 (3)O8—C241.358 (3)
O3—C111.465 (3)O8—C251.430 (3)
O4—C91.358 (3)N2—C181.331 (3)
O4—C101.431 (3)N2—H2A0.8800
N1—C31.329 (3)N2—H2B0.8800
N1—H1A0.8800C16—C171.399 (4)
N1—H1B0.8800C17—C181.381 (4)
C1—C21.398 (4)C17—H170.9500
C2—C31.384 (4)C18—C191.462 (3)
C2—H20.9500C19—C201.395 (4)
C3—C41.462 (3)C19—C221.396 (4)
C4—C51.391 (3)C20—C211.398 (4)
C4—C71.399 (4)C21—C241.397 (4)
C5—C61.397 (3)C22—C231.385 (4)
C6—C91.395 (4)C22—H220.9500
C7—C81.378 (4)C23—C241.398 (4)
C7—H70.9500C23—H230.9500
C8—C91.397 (4)C25—H25A0.9800
C8—H80.9500C25—H25B0.9800
C10—H10A0.9800C25—H25C0.9800
C10—H10B0.9800C26—C301.510 (4)
C10—H10C0.9800C26—C271.537 (4)
C11—C151.520 (4)C26—H261.0000
C11—C121.534 (4)C27—C281.534 (4)
C11—H111.0000C27—H27A0.9900
C12—C131.541 (4)C27—H27B0.9900
C12—H12A0.9900C28—C291.519 (4)
C12—H12B0.9900C28—H28A0.9900
C13—C141.524 (4)C28—H28B0.9900
C13—H13A0.9900C29—C301.528 (4)
C13—H13B0.9900C29—H29A0.9900
C14—C151.526 (4)C29—H29B0.9900
C14—H14A0.9900C30—H30A0.9900
C14—H14B0.9900C30—H30B0.9900
C15—H15A0.9900O1W—H1AA0.8400
C15—H15B0.9900O1W—H1AB0.8400
O5—C161.230 (3)O2W—H2AA0.8400
O6—C201.372 (3)O2W—H2AB0.8400
C5—O2—C1120.30 (19)C21—O7—C26116.2 (2)
C6—O3—C11114.45 (19)C24—O8—C25118.1 (2)
C9—O4—C10118.1 (2)C18—N2—H2A120.0
C3—N1—H1A120.0C18—N2—H2B120.0
C3—N1—H1B120.0H2A—N2—H2B120.0
H1A—N1—H1B120.0O5—C16—O6113.6 (2)
O1—C1—O2113.8 (2)O5—C16—C17127.9 (2)
O1—C1—C2127.7 (2)O6—C16—C17118.4 (2)
O2—C1—C2118.5 (2)C18—C17—C16122.9 (2)
C3—C2—C1123.0 (2)C18—C17—H17118.5
C3—C2—H2118.5C16—C17—H17118.5
C1—C2—H2118.5N2—C18—C17122.0 (2)
N1—C3—C2121.8 (2)N2—C18—C19120.2 (2)
N1—C3—C4120.5 (2)C17—C18—C19117.8 (2)
C2—C3—C4117.7 (2)C20—C19—C22118.0 (2)
C5—C4—C7117.8 (2)C20—C19—C18117.6 (2)
C5—C4—C3117.6 (2)C22—C19—C18124.4 (2)
C7—C4—C3124.5 (2)O6—C20—C19122.5 (2)
O2—C5—C4122.8 (2)O6—C20—C21115.3 (2)
O2—C5—C6115.1 (2)C19—C20—C21122.2 (2)
C4—C5—C6122.1 (2)O7—C21—C24119.8 (2)
O3—C6—C9120.6 (2)O7—C21—C20121.8 (2)
O3—C6—C5120.5 (2)C24—C21—C20118.3 (2)
C9—C6—C5118.7 (2)C23—C22—C19121.0 (2)
C8—C7—C4121.3 (2)C23—C22—H22119.5
C8—C7—H7119.4C19—C22—H22119.5
C4—C7—H7119.4C22—C23—C24120.1 (2)
C7—C8—C9120.1 (2)C22—C23—H23120.0
C7—C8—H8119.9C24—C23—H23120.0
C9—C8—H8119.9O8—C24—C21114.7 (2)
O4—C9—C6115.0 (2)O8—C24—C23124.9 (2)
O4—C9—C8125.0 (2)C21—C24—C23120.4 (2)
C6—C9—C8120.0 (2)O8—C25—H25A109.5
O4—C10—H10A109.5O8—C25—H25B109.5
O4—C10—H10B109.5H25A—C25—H25B109.5
H10A—C10—H10B109.5O8—C25—H25C109.5
O4—C10—H10C109.5H25A—C25—H25C109.5
H10A—C10—H10C109.5H25B—C25—H25C109.5
H10B—C10—H10C109.5O7—C26—C30111.6 (2)
O3—C11—C15111.2 (2)O7—C26—C27106.3 (2)
O3—C11—C12106.6 (2)C30—C26—C27105.4 (2)
C15—C11—C12105.6 (2)O7—C26—H26111.1
O3—C11—H11111.1C30—C26—H26111.1
C15—C11—H11111.1C27—C26—H26111.1
C12—C11—H11111.1C28—C27—C26106.3 (2)
C11—C12—C13106.2 (2)C28—C27—H27A110.5
C11—C12—H12A110.5C26—C27—H27A110.5
C13—C12—H12A110.5C28—C27—H27B110.5
C11—C12—H12B110.5C26—C27—H27B110.5
C13—C12—H12B110.5H27A—C27—H27B108.7
H12A—C12—H12B108.7C29—C28—C27104.6 (2)
C14—C13—C12105.2 (2)C29—C28—H28A110.8
C14—C13—H13A110.7C27—C28—H28A110.8
C12—C13—H13A110.7C29—C28—H28B110.8
C14—C13—H13B110.7C27—C28—H28B110.8
C12—C13—H13B110.7H28A—C28—H28B108.9
H13A—C13—H13B108.8C28—C29—C30102.5 (2)
C13—C14—C15103.0 (2)C28—C29—H29A111.3
C13—C14—H14A111.2C30—C29—H29A111.3
C15—C14—H14A111.2C28—C29—H29B111.3
C13—C14—H14B111.2C30—C29—H29B111.3
C15—C14—H14B111.2H29A—C29—H29B109.2
H14A—C14—H14B109.1C26—C30—C29104.1 (2)
C11—C15—C14103.8 (2)C26—C30—H30A110.9
C11—C15—H15A111.0C29—C30—H30A110.9
C14—C15—H15A111.0C26—C30—H30B110.9
C11—C15—H15B111.0C29—C30—H30B110.9
C14—C15—H15B111.0H30A—C30—H30B108.9
H15A—C15—H15B109.0H1AA—O1W—H1AB106.9
C20—O6—C16120.44 (19)H2AA—O2W—H2AB106.9
C5—O2—C1—O1179.3 (2)C20—O6—C16—O5175.9 (2)
C5—O2—C1—C20.3 (4)C20—O6—C16—C175.0 (4)
O1—C1—C2—C3179.9 (3)O5—C16—C17—C18179.7 (3)
O2—C1—C2—C30.4 (4)O6—C16—C17—C180.8 (4)
C1—C2—C3—N1179.3 (3)C16—C17—C18—N2176.7 (3)
C1—C2—C3—C40.6 (4)C16—C17—C18—C194.2 (4)
N1—C3—C4—C5179.8 (2)N2—C18—C19—C20175.8 (3)
C2—C3—C4—C50.2 (4)C17—C18—C19—C205.2 (4)
N1—C3—C4—C70.1 (4)N2—C18—C19—C224.9 (4)
C2—C3—C4—C7179.9 (3)C17—C18—C19—C22174.1 (3)
C1—O2—C5—C40.7 (4)C16—O6—C20—C194.0 (4)
C1—O2—C5—C6179.8 (2)C16—O6—C20—C21176.3 (2)
C7—C4—C5—O2179.5 (2)C22—C19—C20—O6178.2 (2)
C3—C4—C5—O20.5 (4)C18—C19—C20—O61.2 (4)
C7—C4—C5—C60.0 (4)C22—C19—C20—C212.2 (4)
C3—C4—C5—C6179.9 (2)C18—C19—C20—C21178.4 (2)
C11—O3—C6—C9105.6 (3)C26—O7—C21—C24110.7 (3)
C11—O3—C6—C578.9 (3)C26—O7—C21—C2073.9 (3)
O2—C5—C6—O32.8 (3)O6—C20—C21—O76.9 (4)
C4—C5—C6—O3176.7 (2)C19—C20—C21—O7172.7 (2)
O2—C5—C6—C9178.4 (2)O6—C20—C21—C24177.5 (2)
C4—C5—C6—C91.1 (4)C19—C20—C21—C242.8 (4)
C5—C4—C7—C80.5 (4)C20—C19—C22—C230.2 (4)
C3—C4—C7—C8179.4 (3)C18—C19—C22—C23179.5 (3)
C4—C7—C8—C90.1 (4)C19—C22—C23—C241.1 (4)
C10—O4—C9—C6175.8 (2)C25—O8—C24—C21175.7 (2)
C10—O4—C9—C85.2 (4)C25—O8—C24—C235.1 (4)
O3—C6—C9—O41.8 (4)O7—C21—C24—O85.1 (4)
C5—C6—C9—O4177.5 (2)C20—C21—C24—O8179.3 (2)
O3—C6—C9—C8177.3 (2)O7—C21—C24—C23174.2 (2)
C5—C6—C9—C81.6 (4)C20—C21—C24—C231.4 (4)
C7—C8—C9—O4177.8 (3)C22—C23—C24—O8178.7 (3)
C7—C8—C9—C61.2 (4)C22—C23—C24—C210.5 (4)
C6—O3—C11—C1573.9 (3)C21—O7—C26—C3066.9 (3)
C6—O3—C11—C12171.6 (2)C21—O7—C26—C27178.7 (2)
O3—C11—C12—C13107.8 (2)O7—C26—C27—C28111.5 (3)
C15—C11—C12—C1310.6 (3)C30—C26—C27—C287.1 (3)
C11—C12—C13—C1414.6 (3)C26—C27—C28—C2918.4 (3)
C12—C13—C14—C1534.0 (3)C27—C28—C29—C3036.6 (3)
O3—C11—C15—C1483.5 (2)O7—C26—C30—C2985.1 (3)
C12—C11—C15—C1431.7 (3)C27—C26—C30—C2929.9 (3)
C13—C14—C15—C1140.8 (3)C28—C29—C30—C2641.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.881.992.861 (3)172
N1—H1B···O2Wii0.882.002.816 (3)153
N2—H2A···O1iii0.882.032.888 (3)166
N2—H2B···O1Wi0.882.082.838 (3)144
O1W—H1AA···O5iv0.841.942.769 (3)170
O2W—H2AB···O1v0.841.942.767 (3)168
O1W—H1AB···O70.842.172.956 (3)156
O1W—H1AB···O80.842.392.994 (3)130
O2W—H2AA···O30.842.002.833 (3)171
C7—H7···O2Wii0.952.603.493 (3)158
C15—H15B···O2Wvi0.992.563.309 (4)133
C11—H11···O21.002.593.091 (3)111
C15—H15A···O40.992.573.267 (3)128
C26—H26···O61.002.483.035 (3)115
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+3/2; (v) x+1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H17NO4·H2O
Mr293.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)20.3651 (4), 7.43162 (16), 19.4049 (4)
β (°) 91.0792 (18)
V3)2936.32 (11)
Z8
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.36 × 0.31 × 0.20
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2006)
Tmin, Tmax0.754, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
13804, 5167, 4701
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.193, 1.08
No. of reflections5167
No. of parameters394
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: CrysAlis PRO (Agilent, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.881.992.861 (3)172
N1—H1B···O2Wii0.882.002.816 (3)153
N2—H2A···O1iii0.882.032.888 (3)166
N2—H2B···O1Wi0.882.082.838 (3)144
O1W—H1AA···O5iv0.841.942.769 (3)170
O2W—H2AB···O1v0.841.942.767 (3)168
O1W—H1AB···O70.842.172.956 (3)156
O1W—H1AB···O80.842.392.994 (3)130
O2W—H2AA···O30.842.002.833 (3)171
C7—H7···O2Wii0.952.603.493 (3)158
C15—H15B···O2Wvi0.992.563.309 (4)133
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+3/2; (v) x+1, y+1, z; (vi) x, y+1, z.
 

Acknowledgements

The authors thank the Scientific Research Fund of Hunan Provincial Education Department (10B039, 09B037, 11C0596) for financial support.

References

First citationAgilent (2006). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDoriguetto, A. C., Ellena, J., Dos Santos, M. H., Moreira, M. E. C. & Nagem, T. J. (2006). Acta Cryst. C62, o350–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuan, Y., Sun, H. & Schaus, S. E. (2011). Org. Lett. 13, 6480–6483.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationScherlach, K., Nuetzmann, H. W., Schroeckh, V., Dahse, H. M., Brakhage, A. A. & Hertweck, C. (2011). Angew. Chem. Int. Ed. 50, 9843–9847.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Liu, G. Y., Dai, F., Cao, X. Y., Kang, Y. F., Hu, L. M., Tang, J. J., Li, X. Z., Li, Y., Jin, X. L. & Zhou, B. (2011). Bioorg. Med. Chem. Lett. 21, 6420–6425.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1397
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds