organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1570-o1571

(1S,2E,6R,7aR)-1,6-Dihy­dr­oxy-2-(4-nitro­benzyl­­idene)-2,3,5,6,7,7a-hexa­hydro-1H-pyrrolizin-3-one

aLaboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, CP6154, CEP13083-970, Campinas, SP, Brazil, and bLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, CP6154, CEP13083-970, Campinas, SP, Brazil
*Correspondence e-mail: aparicio@iqm.unicamp.br

(Received 17 March 2012; accepted 23 April 2012; online 28 April 2012)

The crystal structure of the title compound, C14H14N2O5, contains two distinct conformers in the asymmetric unit. The compound has three defined stereocenters, two of them contiguous, and a C=C double bond with an E conformation. The stereocenters exhibit the same chirality in both conformers, with significant differences in the conformation of the five-membered rings of the pyrrolizine unit (both either in a twist or in an envelope form) and in the dihedral angles between the corresponding mean planes and the benzene rings. A prominent feature is a change from almost coplanar rings in one conformer to a new conformation in the second conformer, in which the mean plane of a five-membered ring is almost perpendicular to the benzene ring, with a dihedral angle 87.19 (8)°; the corresponding angle in the first conformer is 14.02 (10)°. In the crystal, molecules are linked by O—H⋯O and C—H⋯O hydrogen bonds. Crystallographic data were essential to confirm the configuration of the double bond, which was unclear from the available two-dimensional NMR data. In addition, reliable Flack and Hooft parameters were obtained, allowing for the correct absolute structure to be determined.

Related literature

For the preparation of the title compound, see: Freire et al. (2011[Freire, K. R. L., Tormena, C. F. & Coelho, F. (2011). Synlett, 14, 2059-2063.]). For the use of this type of compound as LFA-1 (Lymphocyte Function-Associated Anti­gen-1) inhibitors, see: Baumann (2007[Baumann, K. O. (2007). WO Patent 2007039286; Chem. Abstr. 146, 421836.]). For related structures, see: Oliveira et al. (2012a[Oliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012a). Acta Cryst. E68, o586.],b[Oliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012b). Acta Cryst. E68, o587.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O5

  • Mr = 290.27

  • Monoclinic, P 21

  • a = 6.8289 (6) Å

  • b = 7.0433 (6) Å

  • c = 26.618 (3) Å

  • β = 92.335 (4)°

  • V = 1279.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.39 × 0.23 × 0.06 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 1.000

  • 41060 measured reflections

  • 4038 independent reflections

  • 3986 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.01

  • 4038 reflections

  • 383 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) and Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]); Hooft parameter = 0.04(4), 1539 Bijvoet pairs

  • Flack parameter: 0.03 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1′i 0.82 1.93 2.7303 (14) 166
O1—H1A⋯O2ii 0.82 1.89 2.6993 (15) 169
O3′—H3′⋯O3iii 0.82 1.95 2.7585 (15) 171
O1′—H1A′⋯O3′iv 0.82 1.93 2.7451 (15) 174
C1′—H1′⋯O2′ii 0.98 2.52 3.3655 (17) 144
C1′—H1′⋯O5′v 0.98 2.55 3.3242 (19) 136
C10—H10⋯O1vi 0.93 2.54 3.126 (2) 121
C12′—H12′⋯O3′vii 0.93 2.57 3.5014 (18) 174
C13—H13⋯O4i 0.93 2.51 3.2644 (19) 138
C13′—H13′⋯O5′i 0.93 2.51 3.1160 (18) 123
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) x, y+1, z; (v) [-x, y-{\script{1\over 2}}, -z+1]; (vi) [-x+1, y+{\script{1\over 2}}, -z+2]; (vii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, a new asymmetric benzyl-pyrrolizidinone, has been prepared from a Morita-Baylis-Hillman adduct using a straight forward synthetic sequence developed in our laboratory (Freire et al., 2011). It can be used as a prototype to design new mediators of the activity of LFA-1 (lymphocyte function-associated antigen 1), with potential applications in the treatment of autoimmune diseases and as anti-inflammatory drugs (Baumann, 2007). The title compound has three defined stereocenters, two of them contiguous, and a double bond with E configuration, an information which was not clear from two-dimensional-NOESY NMR studies. A crystal structure determination of the titlte compound has allowed us to establish its correct configuration, which is reported in this article.

In the crystal structure of the title compound, an asymmetric unit contains two distinct conformers, molecule 1 (Fig. 1) and molecule 2 (Fig. 2), whose stereocenters exhibit the same chirality. In molecule 1, the five membered rings N1/C3/C2/C1/C7A and N1/C5/C6/C7/C7A of the pyrrolizine moiety exhibit C1- and C7-envelope conformations, respectively, with C1 and C7 atoms displaced from the mean-planes formed by the remaining rings atoms by 0.3194 (14) and 0.592 (2) Å, respectively. The mean planes of these rings have a dihedral angle of 23.47 (10)°, and are almost coplanar to the benzene ring, with which they form dihedral angles of 24.52 (9)° and 14.02 (10)°, respectively. The molecule 2 exhibits the rings N1'/C7A'/C1'/C2'/C3' and N1'/C7A'/C7'/C6'/C5' in a twisted conformation on C7A'-C1' and N1'-C7A', respectively, with a dihedral angle between their mean planes equal to 58.07 (8)°. The dihedral angle between the mean planes of the ring N1'/C7A'/C1'/C2'/C3' and the benzene ring is 34.75 (7)°. The ring N1'/C7A'/C7'/C6'/C5' is almost perpendicular to the latter with a corresponding angle equal to 87.19 (8)°. The atom C1' lies 0.3200 (14) Å out of the plane formed by the rest of the ring atoms (N1'/C7A'/C2'/C3'). The corresponding measurement for the atom C7A' in relation to the mean plane formed by the other atoms in the ring (N1'/C7'/C6'/C5') is 0.4771 (13) Å. In the crystal, the molecules are held together by intermolecular hydrogen bonds (Tab. 1 and Fig. 3).

Related literature top

For the preparation of the title compound, see: Freire et al. (2011). For the use of this type of compound as LFA-1 (Lymphocyte Function-Associated Antigen-1) inhibitors, see: Baumann (2007). For related structures, see: Oliveira et al. (2012a,b).

Experimental top

The title compound was prepared by a synthetic sequence recently described in the literature (Freire et al., 2011) and purified by flash silica gel column chromatography (CH2Cl2 : MeOH – solvent gradient: 100:0 to 95:05) to afford 0.07 g (as a white solid) in 83% yield. It was then recrystallized using the liquid-vapor saturation method, dissolved in ethanol and crystallized subject to the vapor pressure of a second less polar liquid (ethyl ether), in a closed camera, providing the slow formation of crystals.

Refinement top

The calculated Flack parameter was F = 0.03 (11) (Flack, 1983). Analysis of the absolute structure was also performed using likelihood methods (Hooft et al., 2008) as implemented in PLATON (Spek, 2009). The resulting value for the Hooft parameter was y = 0.04 (4), with a calculated probability for an inverted structure equal to 1x10-109. These results unequivocally indicate that the absolute structure has been correctly assigned. All H atoms were placed in calculated positions with O—H = 0.82 Å and C—H = 0.93, 0.97 and 0.98 Å for aryl, methylene and methyne H-atoms, respectively, and refined in the riding model approximation with Uiso(H) = 1.5 Ueq(O) or 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of molecule 1 with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of molecule 2 with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 3] Fig. 3. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
(1S,2E,6R,7aR)-1,6-Dihydroxy-2- (4-nitrobenzylidene)-2,3,5,6,7,7a-hexahydro-1H-pyrrolizin-3-one top
Crystal data top
C14H14N2O5F(000) = 608
Mr = 290.27Dx = 1.507 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 6.8289 (6) ÅCell parameters from 4038 reflections
b = 7.0433 (6) Åθ = 1.7–67.8°
c = 26.618 (3) ŵ = 0.98 mm1
β = 92.335 (4)°T = 100 K
V = 1279.2 (2) Å3Plate, orange
Z = 40.39 × 0.23 × 0.06 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4038 independent reflections
Radiation source: fine-focus sealed tube3986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Bruker APEX CCD area–detector scansθmax = 67.8°, θmin = 1.7°
Absorption correction: numerical
(SADABS; Bruker, 2010)
h = 88
Tmin = 0.844, Tmax = 1.000k = 86
41060 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3034P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4038 reflectionsΔρmax = 0.15 e Å3
383 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983) and Hooft et al. (2008); Hooft parameter = 0.04(4), 1539 Bijvoet pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (11)
Crystal data top
C14H14N2O5V = 1279.2 (2) Å3
Mr = 290.27Z = 4
Monoclinic, P21Cu Kα radiation
a = 6.8289 (6) ŵ = 0.98 mm1
b = 7.0433 (6) ÅT = 100 K
c = 26.618 (3) Å0.39 × 0.23 × 0.06 mm
β = 92.335 (4)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
4038 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2010)
3986 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 1.000Rint = 0.037
41060 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.15 e Å3
S = 1.01Δρmin = 0.16 e Å3
4038 reflectionsAbsolute structure: Flack (1983) and Hooft et al. (2008); Hooft parameter = 0.04(4), 1539 Bijvoet pairs
383 parametersAbsolute structure parameter: 0.03 (11)
1 restraint
Special details top

Experimental. [α]D20 + 28° (c 2, MeOH); IR (Film, νmax): 3308, 2974, 2924, 2864, 1699, 1671, 1644, 1596, 1523, 1513, 1435, 1381, 1346, 1314, 1264, 1244, 1220, 1202, 1133, 1104, 1075, 1055 cm-1; 1H NMR (400 MHz, CD3OD) δ 1.49 (ddd, J = 13.2, 8.3, 5.1 Hz, 1H, H-7 A); 2.49 (ddd, J = 13.3, 7.4, 6.2 Hz, 1H, H-7B); 3.38 (dd, J = 12.4, 5.8 Hz, 1H, H-5 A); 3.68 (dd, J = 12.4, 3.0 Hz, 1H, H-5B); 3.80 (td, J = 8.1, 2.4 Hz, 1H, H-7 C); 4.56 (qd, J = 5.8, 3.3 Hz 1H, H-6); 5.01 (t, J = 2.4 Hz, 1H, H-1); 7.45 (d, J = 2.3 Hz, 1H, H-4); 8.01 (d, J = 8.8 Hz, 2H, Ar); 8.26 (d, J = 8.9 Hz, 2H, Ar); 13C NMR (62.5 MHz, CD3CN) 39.2; 53.3; 68.4; 71.5; 72.5; 124.3; 132.4; 133.2; 140.5; 141.8; 148.6; 170.9; HRMS (ESI-TOF) m/z Calc. for C14H15N2O5 [M + H]+: 291.0981. Found 291.0989.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.39324 (16)0.4194 (2)1.13861 (4)0.0321 (3)
O31.01737 (15)0.58119 (18)0.71964 (4)0.0225 (2)
H31.10380.55640.70020.034*
O50.64579 (19)0.4992 (2)1.18584 (4)0.0403 (3)
O21.35576 (15)0.51910 (18)0.90371 (4)0.0242 (3)
O10.69151 (14)0.31660 (18)0.90951 (4)0.0229 (2)
H1A0.58210.36450.90710.034*
O4'0.02923 (16)0.27989 (18)0.37824 (4)0.0276 (3)
O3'0.64995 (14)0.31144 (17)0.68320 (4)0.0213 (2)
H3'0.75900.35230.69140.032*
O5'0.20844 (14)0.44237 (19)0.42810 (4)0.0253 (2)
O2'0.89538 (14)0.19376 (18)0.63315 (4)0.0246 (2)
O1'0.32974 (14)0.45702 (17)0.66785 (4)0.0208 (2)
H1A'0.43020.51970.67220.031*
N11.11842 (16)0.4299 (2)0.84513 (4)0.0190 (3)
N2'0.05497 (17)0.3612 (2)0.41818 (5)0.0200 (3)
C8'0.3952 (2)0.3245 (2)0.53145 (5)0.0186 (3)
N1'0.67054 (17)0.15506 (19)0.69496 (5)0.0182 (3)
N20.5662 (2)0.4640 (2)1.14448 (5)0.0268 (3)
C110.6877 (2)0.4734 (2)1.10041 (6)0.0230 (3)
C100.6000 (2)0.5089 (3)1.05377 (6)0.0243 (3)
H100.46570.53031.05040.029*
C90.7149 (2)0.5122 (3)1.01205 (6)0.0231 (3)
H90.65770.53910.98050.028*
C80.9165 (2)0.4754 (2)1.01693 (5)0.0204 (3)
C41.0493 (2)0.4734 (2)0.97498 (5)0.0203 (3)
H41.18130.48200.98480.024*
C21.0161 (2)0.4615 (2)0.92537 (5)0.0182 (3)
C10.83077 (19)0.4455 (2)0.89178 (5)0.0181 (3)
H10.77060.57120.88770.022*
C7A0.9103 (2)0.3801 (2)0.84114 (5)0.0184 (3)
H7C0.89630.24210.83790.022*
C70.84455 (19)0.4745 (3)0.79203 (5)0.0200 (3)
H7A0.81570.60790.79700.024*
H7B0.72980.41220.77700.024*
C61.0236 (2)0.4485 (3)0.75953 (5)0.0197 (3)
H61.02510.31910.74600.024*
C120.8871 (2)0.4445 (3)1.10728 (6)0.0242 (3)
H120.94400.42521.13920.029*
C130.9999 (2)0.4452 (3)1.06502 (6)0.0224 (3)
H131.13430.42511.06890.027*
C51.2005 (2)0.4771 (3)0.79686 (5)0.0219 (3)
H5A1.30750.39270.78930.026*
H5B1.24680.60730.79640.026*
C31.1863 (2)0.4727 (2)0.89175 (5)0.0187 (3)
C11'0.1040 (2)0.3571 (2)0.45687 (6)0.0184 (3)
C10'0.0645 (2)0.4121 (2)0.50562 (5)0.0185 (3)
H10'0.05800.45980.51300.022*
C9'0.2104 (2)0.3945 (2)0.54290 (6)0.0193 (3)
H9'0.18570.42940.57570.023*
C4'0.5558 (2)0.2916 (2)0.56866 (5)0.0193 (3)
H4'0.68040.28680.55580.023*
C2'0.5490 (2)0.2677 (2)0.61826 (5)0.0179 (3)
C3'0.7287 (2)0.2047 (2)0.64785 (5)0.0186 (3)
C5'0.7559 (2)0.0070 (2)0.72222 (6)0.0220 (3)
H5A'0.78350.02470.75730.026*
H5B'0.87650.04750.70740.026*
C6'0.5976 (2)0.1640 (2)0.71715 (5)0.0190 (3)
H6'0.57170.21750.75020.023*
C7'0.4137 (2)0.0660 (3)0.69485 (5)0.0200 (3)
H7A'0.38790.10590.66030.024*
H7B'0.30060.09680.71420.024*
C7A'0.4561 (2)0.1466 (2)0.69725 (5)0.0176 (3)
H7C'0.41380.19980.72910.021*
C1'0.3793 (2)0.2681 (2)0.65274 (5)0.0169 (3)
H1'0.26510.20690.63620.020*
C13'0.4305 (2)0.2780 (2)0.48130 (6)0.0199 (3)
H13'0.55480.23710.47320.024*
C12'0.2860 (2)0.2915 (2)0.44377 (5)0.0198 (3)
H12'0.31000.25770.41080.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0276 (6)0.0393 (8)0.0296 (6)0.0024 (6)0.0041 (4)0.0055 (6)
O30.0216 (5)0.0263 (6)0.0200 (5)0.0046 (5)0.0061 (4)0.0038 (5)
O50.0488 (7)0.0514 (9)0.0208 (6)0.0125 (7)0.0030 (5)0.0045 (6)
O20.0145 (5)0.0288 (7)0.0290 (6)0.0000 (5)0.0015 (4)0.0011 (5)
O10.0162 (5)0.0249 (6)0.0280 (5)0.0014 (5)0.0051 (4)0.0020 (5)
O4'0.0290 (6)0.0305 (7)0.0233 (5)0.0010 (5)0.0004 (4)0.0059 (5)
O3'0.0184 (5)0.0207 (6)0.0247 (5)0.0009 (5)0.0004 (4)0.0056 (5)
O5'0.0194 (5)0.0293 (7)0.0272 (5)0.0044 (5)0.0025 (4)0.0036 (5)
O2'0.0146 (5)0.0271 (6)0.0322 (5)0.0012 (5)0.0031 (4)0.0004 (5)
O1'0.0176 (5)0.0155 (6)0.0296 (5)0.0005 (4)0.0043 (4)0.0030 (5)
N10.0135 (5)0.0232 (7)0.0204 (6)0.0020 (6)0.0018 (4)0.0001 (6)
N2'0.0218 (6)0.0180 (7)0.0205 (6)0.0023 (6)0.0027 (5)0.0034 (5)
C8'0.0214 (7)0.0141 (8)0.0205 (7)0.0017 (6)0.0036 (6)0.0026 (6)
N1'0.0153 (6)0.0176 (7)0.0215 (6)0.0003 (5)0.0026 (5)0.0014 (5)
N20.0366 (7)0.0233 (8)0.0206 (6)0.0000 (7)0.0035 (5)0.0014 (6)
C110.0309 (8)0.0168 (9)0.0216 (7)0.0010 (7)0.0046 (6)0.0016 (7)
C100.0246 (7)0.0254 (9)0.0229 (7)0.0033 (7)0.0010 (6)0.0015 (7)
C90.0272 (8)0.0226 (9)0.0192 (7)0.0040 (7)0.0011 (6)0.0010 (7)
C80.0243 (7)0.0162 (8)0.0206 (7)0.0016 (7)0.0000 (5)0.0024 (6)
C40.0184 (7)0.0185 (9)0.0238 (7)0.0003 (6)0.0015 (5)0.0004 (7)
C20.0170 (7)0.0159 (8)0.0217 (7)0.0015 (6)0.0007 (5)0.0016 (6)
C10.0160 (6)0.0182 (8)0.0201 (7)0.0005 (6)0.0013 (5)0.0007 (7)
C7A0.0146 (6)0.0179 (8)0.0228 (7)0.0010 (6)0.0003 (5)0.0001 (6)
C70.0146 (6)0.0249 (9)0.0204 (7)0.0008 (6)0.0005 (5)0.0005 (7)
C60.0190 (7)0.0207 (8)0.0194 (7)0.0010 (7)0.0018 (5)0.0003 (7)
C120.0326 (8)0.0200 (9)0.0195 (7)0.0045 (7)0.0043 (6)0.0007 (7)
C130.0231 (7)0.0187 (8)0.0251 (7)0.0019 (7)0.0023 (6)0.0003 (7)
C50.0169 (7)0.0283 (9)0.0210 (7)0.0003 (7)0.0047 (5)0.0013 (7)
C30.0187 (7)0.0145 (8)0.0228 (7)0.0034 (6)0.0004 (5)0.0008 (6)
C11'0.0200 (7)0.0140 (8)0.0214 (7)0.0016 (6)0.0014 (5)0.0032 (6)
C10'0.0181 (6)0.0151 (8)0.0226 (7)0.0013 (6)0.0057 (5)0.0012 (6)
C9'0.0226 (7)0.0166 (8)0.0192 (7)0.0001 (6)0.0048 (6)0.0009 (6)
C4'0.0176 (6)0.0158 (8)0.0248 (7)0.0009 (6)0.0056 (6)0.0001 (6)
C2'0.0164 (7)0.0134 (8)0.0239 (7)0.0001 (6)0.0012 (5)0.0005 (6)
C3'0.0173 (7)0.0147 (8)0.0238 (7)0.0008 (6)0.0002 (5)0.0035 (7)
C5'0.0217 (7)0.0198 (9)0.0240 (7)0.0001 (7)0.0054 (5)0.0009 (7)
C6'0.0202 (7)0.0197 (9)0.0172 (6)0.0013 (7)0.0014 (5)0.0003 (6)
C7'0.0181 (6)0.0197 (8)0.0222 (7)0.0012 (7)0.0014 (5)0.0009 (7)
C7A'0.0150 (6)0.0200 (9)0.0179 (7)0.0002 (6)0.0008 (5)0.0025 (6)
C1'0.0169 (7)0.0149 (8)0.0190 (6)0.0007 (6)0.0006 (5)0.0032 (6)
C13'0.0191 (7)0.0171 (8)0.0240 (7)0.0018 (6)0.0080 (6)0.0031 (7)
C12'0.0233 (7)0.0181 (8)0.0182 (6)0.0003 (7)0.0052 (6)0.0004 (6)
Geometric parameters (Å, º) top
O4—N21.2262 (18)C1—C7A1.5439 (19)
O3—C61.414 (2)C1—H10.9800
O3—H30.8200C7A—C71.518 (2)
O5—N21.2328 (18)C7A—H7C0.9800
O2—C31.2321 (19)C7—C61.5374 (18)
O1—C11.4100 (19)C7—H7A0.9700
O1—H1A0.8200C7—H7B0.9700
O4'—N2'1.2266 (18)C6—C51.5455 (19)
O3'—C6'1.4316 (19)C6—H60.9800
O3'—H3'0.8200C12—C131.389 (2)
O5'—N2'1.2319 (17)C12—H120.9300
O2'—C3'1.2209 (18)C13—H130.9300
O1'—C1'1.434 (2)C5—H5A0.9700
O1'—H1A'0.8200C5—H5B0.9700
N1—C31.3409 (19)C11'—C12'1.384 (2)
N1—C51.4608 (18)C11'—C10'1.391 (2)
N1—C7A1.4637 (17)C10'—C9'1.383 (2)
N2'—C11'1.4657 (19)C10'—H10'0.9300
C8'—C9'1.400 (2)C9'—H9'0.9300
C8'—C13'1.405 (2)C4'—C2'1.334 (2)
C8'—C4'1.466 (2)C4'—H4'0.9300
N1'—C3'1.3760 (19)C2'—C3'1.498 (2)
N1'—C5'1.461 (2)C2'—C1'1.5073 (19)
N1'—C7A'1.4696 (17)C5'—C6'1.549 (2)
N2—C111.4655 (19)C5'—H5A'0.9700
C11—C101.379 (2)C5'—H5B'0.9700
C11—C121.381 (2)C6'—C7'1.531 (2)
C10—C91.386 (2)C6'—H6'0.9800
C10—H100.9300C7'—C7A'1.526 (2)
C9—C81.402 (2)C7'—H7A'0.9700
C9—H90.9300C7'—H7B'0.9700
C8—C131.396 (2)C7A'—C1'1.537 (2)
C8—C41.467 (2)C7A'—H7C'0.9800
C4—C21.333 (2)C1'—H1'0.9800
C4—H40.9300C13'—C12'1.379 (2)
C2—C31.497 (2)C13'—H13'0.9300
C2—C11.5236 (19)C12'—H12'0.9300
C6—O3—H3109.5C12—C13—H13119.2
C1—O1—H1A109.5C8—C13—H13119.2
C6'—O3'—H3'109.5N1—C5—C6102.60 (11)
C1'—O1'—H1A'109.5N1—C5—H5A111.2
C3—N1—C5129.22 (13)C6—C5—H5A111.2
C3—N1—C7A114.76 (11)N1—C5—H5B111.2
C5—N1—C7A113.38 (11)C6—C5—H5B111.2
O4'—N2'—O5'123.76 (13)H5A—C5—H5B109.2
O4'—N2'—C11'118.14 (12)O2—C3—N1125.74 (13)
O5'—N2'—C11'118.08 (12)O2—C3—C2127.10 (13)
C9'—C8'—C13'118.70 (13)N1—C3—C2107.10 (12)
C9'—C8'—C4'124.39 (13)C12'—C11'—C10'122.56 (14)
C13'—C8'—C4'116.89 (13)C12'—C11'—N2'118.47 (13)
C3'—N1'—C5'121.79 (13)C10'—C11'—N2'118.92 (13)
C3'—N1'—C7A'111.93 (11)C9'—C10'—C11'118.88 (13)
C5'—N1'—C7A'109.02 (12)C9'—C10'—H10'120.6
O4—N2—O5123.54 (13)C11'—C10'—H10'120.6
O4—N2—C11118.90 (12)C10'—C9'—C8'120.32 (14)
O5—N2—C11117.55 (13)C10'—C9'—H9'119.8
C10—C11—C12122.37 (14)C8'—C9'—H9'119.8
C10—C11—N2119.32 (14)C2'—C4'—C8'129.29 (14)
C12—C11—N2118.31 (13)C2'—C4'—H4'115.4
C11—C10—C9119.04 (15)C8'—C4'—H4'115.4
C11—C10—H10120.5C4'—C2'—C3'119.78 (13)
C9—C10—H10120.5C4'—C2'—C1'131.40 (13)
C10—C9—C8120.56 (14)C3'—C2'—C1'108.31 (12)
C10—C9—H9119.7O2'—C3'—N1'125.71 (13)
C8—C9—H9119.7O2'—C3'—C2'127.20 (13)
C13—C8—C9118.40 (14)N1'—C3'—C2'107.07 (12)
C13—C8—C4117.06 (13)N1'—C5'—C6'104.55 (11)
C9—C8—C4124.50 (13)N1'—C5'—H5A'110.8
C2—C4—C8131.99 (14)C6'—C5'—H5A'110.8
C2—C4—H4114.0N1'—C5'—H5B'110.8
C8—C4—H4114.0C6'—C5'—H5B'110.8
C4—C2—C3118.93 (13)H5A'—C5'—H5B'108.9
C4—C2—C1133.59 (13)O3'—C6'—C7'107.72 (12)
C3—C2—C1107.43 (11)O3'—C6'—C5'112.42 (12)
O1—C1—C2114.00 (12)C7'—C6'—C5'105.71 (13)
O1—C1—C7A111.46 (13)O3'—C6'—H6'110.3
C2—C1—C7A102.77 (11)C7'—C6'—H6'110.3
O1—C1—H1109.5C5'—C6'—H6'110.3
C2—C1—H1109.5C7A'—C7'—C6'105.95 (12)
C7A—C1—H1109.5C7A'—C7'—H7A'110.5
N1—C7A—C7102.11 (11)C6'—C7'—H7A'110.5
N1—C7A—C1103.90 (11)C7A'—C7'—H7B'110.5
C7—C7A—C1121.27 (13)C6'—C7'—H7B'110.5
N1—C7A—H7C109.6H7A'—C7'—H7B'108.7
C7—C7A—H7C109.6N1'—C7A'—C7'103.06 (12)
C1—C7A—H7C109.6N1'—C7A'—C1'104.75 (11)
C7A—C7—C6102.61 (11)C7'—C7A'—C1'117.14 (12)
C7A—C7—H7A111.2N1'—C7A'—H7C'110.5
C6—C7—H7A111.2C7'—C7A'—H7C'110.5
C7A—C7—H7B111.2C1'—C7A'—H7C'110.5
C6—C7—H7B111.2O1'—C1'—C2'111.62 (12)
H7A—C7—H7B109.2O1'—C1'—C7A'112.18 (11)
O3—C6—C5113.29 (13)C2'—C1'—C7A'102.81 (11)
O3—C6—C7110.09 (12)O1'—C1'—H1'110.0
C5—C6—C7103.96 (11)C2'—C1'—H1'110.0
O3—C6—H6109.8C7A'—C1'—H1'110.0
C5—C6—H6109.8C12'—C13'—C8'121.81 (13)
C7—C6—H6109.8C12'—C13'—H13'119.1
C11—C12—C13117.93 (14)C8'—C13'—H13'119.1
C11—C12—H12121.0C13'—C12'—C11'117.65 (13)
C13—C12—H12121.0C13'—C12'—H12'121.2
C12—C13—C8121.61 (14)C11'—C12'—H12'121.2
O4—N2—C11—C1026.1 (2)O4'—N2'—C11'—C12'11.0 (2)
O5—N2—C11—C10154.96 (17)O5'—N2'—C11'—C12'170.61 (15)
O4—N2—C11—C12153.41 (17)O4'—N2'—C11'—C10'166.52 (15)
O5—N2—C11—C1225.5 (2)O5'—N2'—C11'—C10'11.9 (2)
C12—C11—C10—C91.3 (3)C12'—C11'—C10'—C9'2.3 (2)
N2—C11—C10—C9178.18 (16)N2'—C11'—C10'—C9'175.13 (14)
C11—C10—C9—C81.6 (3)C11'—C10'—C9'—C8'0.7 (2)
C10—C9—C8—C133.3 (3)C13'—C8'—C9'—C10'1.8 (2)
C10—C9—C8—C4179.20 (16)C4'—C8'—C9'—C10'176.78 (15)
C13—C8—C4—C2165.53 (19)C9'—C8'—C4'—C2'20.8 (3)
C9—C8—C4—C216.9 (3)C13'—C8'—C4'—C2'157.82 (17)
C8—C4—C2—C3177.05 (17)C8'—C4'—C2'—C3'170.07 (16)
C8—C4—C2—C10.0 (3)C8'—C4'—C2'—C1'0.8 (3)
C4—C2—C1—O143.3 (3)C5'—N1'—C3'—O2'36.3 (2)
C3—C2—C1—O1139.45 (13)C7A'—N1'—C3'—O2'167.84 (16)
C4—C2—C1—C7A164.06 (19)C5'—N1'—C3'—C2'141.93 (13)
C3—C2—C1—C7A18.68 (16)C7A'—N1'—C3'—C2'10.41 (17)
C3—N1—C7A—C7140.96 (14)C4'—C2'—C3'—O2'10.2 (3)
C5—N1—C7A—C722.39 (18)C1'—C2'—C3'—O2'177.00 (16)
C3—N1—C7A—C114.10 (18)C4'—C2'—C3'—N1'168.00 (15)
C5—N1—C7A—C1149.25 (14)C1'—C2'—C3'—N1'4.77 (17)
O1—C1—C7A—N1141.64 (12)C3'—N1'—C5'—C6'103.79 (15)
C2—C1—C7A—N119.14 (16)C7A'—N1'—C5'—C6'28.93 (15)
O1—C1—C7A—C7104.60 (16)N1'—C5'—C6'—O3'107.05 (14)
C2—C1—C7A—C7132.91 (14)N1'—C5'—C6'—C7'10.21 (15)
N1—C7A—C7—C636.32 (15)O3'—C6'—C7'—C7A'131.16 (13)
C1—C7A—C7—C6151.00 (14)C5'—C6'—C7'—C7A'10.78 (15)
C7A—C7—C6—O3159.78 (13)C3'—N1'—C7A'—C7'102.01 (14)
C7A—C7—C6—C538.13 (16)C5'—N1'—C7A'—C7'35.68 (14)
C10—C11—C12—C132.3 (3)C3'—N1'—C7A'—C1'21.04 (17)
N2—C11—C12—C13177.18 (16)C5'—N1'—C7A'—C1'158.73 (12)
C11—C12—C13—C80.5 (3)C6'—C7'—C7A'—N1'27.53 (14)
C9—C8—C13—C122.2 (3)C6'—C7'—C7A'—C1'141.91 (12)
C4—C8—C13—C12179.95 (16)C4'—C2'—C1'—O1'84.7 (2)
C3—N1—C5—C6161.69 (16)C3'—C2'—C1'—O1'103.71 (14)
C7A—N1—C5—C61.32 (18)C4'—C2'—C1'—C7A'154.90 (17)
O3—C6—C5—N1143.86 (13)C3'—C2'—C1'—C7A'16.73 (15)
C7—C6—C5—N124.36 (16)N1'—C7A'—C1'—O1'97.99 (13)
C5—N1—C3—O219.5 (3)C7'—C7A'—C1'—O1'148.58 (12)
C7A—N1—C3—O2179.69 (15)N1'—C7A'—C1'—C2'22.06 (15)
C5—N1—C3—C2157.98 (16)C7'—C7A'—C1'—C2'91.37 (14)
C7A—N1—C3—C22.17 (18)C9'—C8'—C13'—C12'3.0 (2)
C4—C2—C3—O211.3 (3)C4'—C8'—C13'—C12'175.74 (15)
C1—C2—C3—O2166.43 (16)C8'—C13'—C12'—C11'1.5 (2)
C4—C2—C3—N1171.22 (16)C10'—C11'—C12'—C13'1.2 (2)
C1—C2—C3—N111.05 (17)N2'—C11'—C12'—C13'176.23 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.932.7303 (14)166
O1—H1A···O2ii0.821.892.6993 (15)169
O3—H3···O3iii0.821.952.7585 (15)171
O1—H1A···O3iv0.821.932.7451 (15)174
C1—H1···O2ii0.982.523.3655 (17)144
C1—H1···O5v0.982.553.3242 (19)136
C10—H10···O1vi0.932.543.126 (2)121
C12—H12···O3vii0.932.573.5014 (18)174
C13—H13···O4i0.932.513.2644 (19)138
C13—H13···O5i0.932.513.1160 (18)123
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y1/2, z+1; (vi) x+1, y+1/2, z+2; (vii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H14N2O5
Mr290.27
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.8289 (6), 7.0433 (6), 26.618 (3)
β (°) 92.335 (4)
V3)1279.2 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.98
Crystal size (mm)0.39 × 0.23 × 0.06
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2010)
Tmin, Tmax0.844, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41060, 4038, 3986
Rint0.037
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.01
No. of reflections4038
No. of parameters383
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack (1983) and Hooft et al. (2008); Hooft parameter = 0.04(4), 1539 Bijvoet pairs
Absolute structure parameter0.03 (11)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1'i0.821.932.7303 (14)165.7
O1—H1A···O2ii0.821.892.6993 (15)169.0
O3'—H3'···O3iii0.821.952.7585 (15)170.7
O1'—H1A'···O3'iv0.821.932.7451 (15)174.4
C1'—H1'···O2'ii0.982.523.3655 (17)144.0
C1'—H1'···O5'v0.982.553.3242 (19)136.0
C10—H10···O1vi0.932.543.126 (2)121.0
C12'—H12'···O3'vii0.932.573.5014 (18)174.0
C13—H13···O4i0.932.513.2644 (19)138.0
C13'—H13'···O5'i0.932.513.1160 (18)123.0
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y1/2, z+1; (vi) x+1, y+1/2, z+2; (vii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. FLO and KRLF were supported by bursaries from CAPES and CNPq, respectively. KRLF is currently a FAPESP post-doctoral fellow. RA and FC are recipients of research grants from CNPq.

References

First citationBaumann, K. O. (2007). WO Patent 2007039286; Chem. Abstr. 146, 421836.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreire, K. R. L., Tormena, C. F. & Coelho, F. (2011). Synlett, 14, 2059–2063.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012a). Acta Cryst. E68, o586.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, F. L., Freire, K. R. L., Aparicio, R. & Coelho, F. (2012b). Acta Cryst. E68, o587.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1570-o1571
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds