organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1525-o1526

Ethyl 7-oxo-3,5-di­phenyl-1,4-diazepane-2-carboxyl­ate

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 21 March 2012; accepted 18 April 2012; online 25 April 2012)

The title compound, C20H22N2O3, crystallizes with two independent mol­ecules in the asymmetric unit. In both mol­ecules, the diazepane rings adopt chair conformations. The mean planes of the diazepane rings in the two molecules form dihedral angles of 71.6 (4)/40.3 (5) and 75.9 (5)/58.6 (7)° with the neighbouring benzene rings. The carbonyl-group O atoms deviate significantly from the diazepane rings, by 0.685 (14) and 0.498 (13) Å. The eth­oxy­carbonyl groups show conformational difference between two mol­ecules, as reflected in the orientation of the carbonyl O atoms and the C—C—O—C torsion angle of −179.0 (2)° in one mol­ecule and 73.2 (2)° in the other. In one molecule there is a short N—H⋯O contact that generates an S(5) ring motif. In the crystal, N—H⋯O inter­actions generate R22(8) graph-set motifs and C—H⋯O inter­actions generate R22(10) and R22(14) graph-set motifs. C—H⋯π inter­actions also occur.

Related literature

For the biological importance of diazepanes, see: Wlodarczyk et al. (2005[Wlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J.-F., Lemoine, A., Pommery, N., Wei, M. X. & Henichart, J.-P. (2005). Oncol. Res. 16, 107-118.]); Gopalakrishnan et al. (2007[Gopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem. 22, 709-715.]). For a related structure, see: Kumar et al. (2009[Kumar, S. S., Kavitha, H. P., Vennila, J. P., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o3211.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O3

  • Mr = 338.40

  • Triclinic, [P \overline 1]

  • a = 9.5352 (3) Å

  • b = 14.8809 (4) Å

  • c = 15.0800 (4) Å

  • α = 61.650 (1)°

  • β = 82.153 (2)°

  • γ = 71.344 (2)°

  • V = 1783.86 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.979

  • 39936 measured reflections

  • 9437 independent reflections

  • 6221 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.181

  • S = 1.15

  • 9437 reflections

  • 465 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C33–C38 and C26–C31 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.85 (2) 2.45 (2) 2.776 (2) 104 (2)
N2—H2⋯O6i 0.85 (2) 2.26 (2) 3.091 (1) 170 (2)
N4—H4A⋯O3ii 0.85 (2) 2.14 (2) 2.983 (1) 169 (2)
C2—H2B⋯O2iii 0.97 2.53 3.233 (2) 130
C39—H39A⋯O5iv 0.97 2.48 3.355 (2) 150
C9—H9⋯Cg1v 0.93 2.89 3.735 (3) 152
C16—H16⋯Cg2vi 0.93 2.91 3.712 (1) 146
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) -x+1, -y, -z; (iv) -x, -y+1, -z+2; (v) -x+1, -y, -z+1; (vi) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound belongs to an important class of heterocyclic compounds that have widespread applications from pharmaceuticals (Wlodarczyk et al., 2005) to biology (Gopalakrishnan et al., 2007).

In the title structure there are two crystallographically independent molecules (1 and 2) in an asymmetric unit (Fig. 1 and Fig. 2, respectively). The central diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4) in the molecule 1 and 2 form dihedral angles of 71.6 (4)°, 40.3 (5)° and 75.9 (5)°, 58.6 (7)° with the neighbouring benzene rings (C6–C11), (C13–C18) and (C26–C31), (C33–C38), respectively. The dihedral angles between the pairs of benzene rings (C6–C11), (C13–C18) and (C26–C31), (C33–C38) are 54.8 (7)° and 58.4 (6)°, respectively. The sum of the bond angles around the atoms N2 (362°) and N4 (359.8°) of the diazepane rings indicate sp2 hybridization, whereas the other N atoms, [N1 (328.6°) and N3 (331.2°)] indicate sp3 hybridization.

The atoms O3 and O6 deviate by 0.685 (14) Å and 0.498 (13) Å from the least square plane of the diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4), respectively. The ethyl carboxylate groups exhibit significant conformational difference between the two molecules as reflected by the orientation of the carbonyl O-atoms and the torsion angles of C1—C2—O1—C3 is -179.0 (2)° for molecule 1 and C21—C22—O4—C23 is 73.2 (2)° in molecule 2. The conformational differences in the two molecules of the asymmetric unit of the title compound are evident in Fig. 3.

The diazepane rings (C4/C5/C12/C19/C20/N1/N2) and (C24/C25/C32/C39/C40/N3/N4) adopt chair conformations with puckering parameters (Cremer & Pople, 1975) Q2 = 0.382 (2) Å, Q3 = 0.678 (2) Å, ϕ2 = 180.4 (2)°, ϕ3 = 359.71 (14)° and Q2 = 0.333 (2) Å, Q3 = 0.670 (2) Å, ϕ2 = 182.9 (3)°, ϕ3 = 2.44 (14)°, respectively. The title compound exhibits structural similarities with another reported structure (Kumar et al., 2009).

The crystal packing is stabilized by intramolecular N–H···O, intermolecular N–H···O, C–H···O and C–H···π interactions (Table 1). The N2–H2···O2, N2–H2···O6i, N2–H4A···O3ii, C2–H2B···O2iii and C39–H39B···O5iv hydrogen bonds generates S(5) ring motif, dimers R22(8), R22(10) and R22(14) graphset motifs, respectively (Bernstein, et al., 1995). The crystal packing is further stabilized by C9—H9···Cg1v and C16—H16···Cg2vi interactions where Cg1 is center of gravity of (C33–C38) ring and Cg2 is center of gravity of (C26–C31) ring (Fig. 4; symmetry codes are given in Table 1)

Related literature top

For the biological importance of diazepanes, see: Wlodarczyk et al. (2005); Gopalakrishnan et al. (2007). For a related structure, see: Kumar et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

In a typical reaction, powdered ethyl 4-oxo-2,6-diphenyl piperidine- 3-carboxylate hydrochloride (2 g) was dissolved in an ice cold conc. H2SO4 (10 ml) in chloroform (5 ml) placed in a conical flask equipped with a magnetic stirrer. After the complete dissolution, the temperature of the solution was brought to 298 K. Sodium azide (600 mg) was added in portions over a period of 20 minutes with vigorous stirring. After the addition was over, the solution was poured slowly on to crushed ice with vigorous stirring, and the PH was adjusted to 8.0 using 4 N sodium hydroxide and extracted with chloroform. The combined organic layer was dried over sodium sulfate and evaporated to get the crude product which was purified by recrystallization from benzene and ethanol (1:1) to afford colourless prisms of the title compound.

Refinement top

The Hydrogen atoms were placed in calculated positions with C–H = 0.93 to 0.97 Å and N–H = 0.83 (2) to 0.85 (2) Å refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C/N) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecule 1 of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecule 2 of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Molecule 1(Black) and Molecule 2 (Red) of the title compound overlapping each other, H atoms are shown as spheres of arbitrary radius.
[Figure 4] Fig. 4. The crystal packing of the title compound viewed down the c axis, showing hydrogen bonds resulting in S(5) ring motif, dimers R22(8), R22(10) and R22(14) graphset motifs; H-atoms not involved in hydrogen bonds have been excluded for clarity.
Ethyl 7-oxo-3,5-diphenyl-1,4-diazepane-2-carboxylate top
Crystal data top
C20H22N2O3Z = 4
Mr = 338.40F(000) = 720
Triclinic, P1Dx = 1.260 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5352 (3) ÅCell parameters from 9437 reflections
b = 14.8809 (4) Åθ = 1.5–29.1°
c = 15.0800 (4) ŵ = 0.09 mm1
α = 61.650 (1)°T = 293 K
β = 82.153 (2)°Block, colourless
γ = 71.344 (2)°0.30 × 0.30 × 0.25 mm
V = 1783.86 (9) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9437 independent reflections
Radiation source: fine-focus sealed tube6221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 29.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.975, Tmax = 0.979k = 2020
39936 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
9437 reflections(Δ/σ)max = 0.001
465 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H22N2O3γ = 71.344 (2)°
Mr = 338.40V = 1783.86 (9) Å3
Triclinic, P1Z = 4
a = 9.5352 (3) ÅMo Kα radiation
b = 14.8809 (4) ŵ = 0.09 mm1
c = 15.0800 (4) ÅT = 293 K
α = 61.650 (1)°0.30 × 0.30 × 0.25 mm
β = 82.153 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
9437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6221 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.032
39936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.30 e Å3
9437 reflectionsΔρmin = 0.29 e Å3
465 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47991 (14)0.06939 (10)0.20798 (8)0.0525 (3)
O20.59115 (16)0.04761 (10)0.09211 (8)0.0624 (4)
O30.49513 (15)0.29409 (9)0.22928 (9)0.0569 (3)
N10.74551 (15)0.04002 (10)0.39917 (9)0.0407 (3)
H10.833 (2)0.0769 (15)0.4161 (13)0.049*
N20.53465 (15)0.14336 (10)0.21778 (9)0.0409 (3)
H20.5204 (19)0.1802 (14)0.1547 (14)0.049*
C10.3938 (4)0.1898 (2)0.1853 (2)0.1086 (10)
H1A0.43980.24410.24910.163*
H1B0.39600.22160.14250.163*
H1C0.29300.15640.19540.163*
C20.4739 (3)0.10988 (17)0.13802 (15)0.0668 (6)
H2A0.57340.14170.12200.080*
H2B0.42370.05190.07600.080*
C30.54711 (18)0.00514 (12)0.17573 (11)0.0422 (4)
C40.56892 (16)0.02807 (11)0.25989 (10)0.0365 (3)
H40.50060.00250.31440.044*
C50.73055 (17)0.03196 (11)0.30013 (10)0.0375 (3)
H50.79640.00740.25310.045*
C60.77658 (17)0.14315 (12)0.31021 (11)0.0416 (4)
C70.7214 (2)0.22217 (14)0.38552 (13)0.0564 (5)
H70.65970.20830.43370.068*
C80.7573 (3)0.32131 (15)0.38941 (15)0.0744 (6)
H80.72050.37410.44080.089*
C90.8465 (3)0.34294 (16)0.31860 (17)0.0778 (7)
H90.86870.40970.32100.093*
C100.9023 (2)0.26639 (17)0.24476 (16)0.0714 (6)
H100.96360.28110.19680.086*
C110.8689 (2)0.16731 (15)0.24034 (13)0.0552 (5)
H110.90880.11590.18980.066*
C120.73176 (16)0.05855 (11)0.40290 (10)0.0364 (3)
H120.79620.09610.35220.044*
C130.78172 (16)0.03114 (12)0.50683 (10)0.0373 (3)
C140.79566 (18)0.06809 (13)0.58854 (11)0.0456 (4)
H140.77320.12040.58090.055*
C150.8426 (2)0.09052 (15)0.68171 (12)0.0549 (5)
H150.85180.15780.73600.066*
C160.8757 (2)0.01420 (16)0.69434 (12)0.0571 (5)
H160.90760.02950.75690.069*
C170.8614 (2)0.08413 (16)0.61463 (13)0.0594 (5)
H170.88250.13640.62310.071*
C180.8156 (2)0.10706 (14)0.52086 (12)0.0516 (4)
H180.80750.17430.46680.062*
C190.57133 (17)0.13165 (12)0.38076 (10)0.0397 (3)
H19A0.50490.08810.41440.048*
H19B0.55670.18030.40920.048*
C200.53007 (16)0.19611 (12)0.26997 (10)0.0386 (3)
O40.31252 (12)0.53774 (10)1.14341 (8)0.0493 (3)
O50.07097 (13)0.55078 (10)1.15916 (8)0.0552 (3)
O60.46013 (13)0.30348 (9)0.99326 (8)0.0525 (3)
N30.16447 (14)0.63277 (10)0.83956 (9)0.0405 (3)
H30.1599 (19)0.6944 (15)0.7926 (14)0.049*
N40.32947 (14)0.43294 (10)1.03308 (9)0.0411 (3)
H4A0.3836 (19)0.3987 (14)1.0864 (13)0.049*
C210.2862 (3)0.4781 (2)1.32355 (16)0.0918 (8)
H21A0.35430.41171.33020.138*
H21B0.18670.47421.32850.138*
H21C0.30550.49171.37620.138*
C220.3050 (2)0.56515 (18)1.22498 (14)0.0647 (5)
H22A0.22270.62871.21210.078*
H22B0.39520.58131.22670.078*
C230.18582 (17)0.53656 (12)1.11706 (11)0.0395 (3)
C240.20218 (16)0.52322 (11)1.02292 (10)0.0355 (3)
H240.11370.50731.01540.043*
C250.20763 (16)0.63003 (11)0.93032 (10)0.0356 (3)
H250.30830.63620.92320.043*
C260.10097 (16)0.72316 (11)0.94280 (10)0.0365 (3)
C270.15310 (19)0.78986 (13)0.96197 (11)0.0451 (4)
H270.25440.77970.96350.054*
C280.0547 (2)0.87075 (14)0.97860 (13)0.0557 (5)
H280.09020.91560.99030.067*
C290.0951 (2)0.88640 (14)0.97817 (13)0.0571 (5)
H290.16020.94090.99040.069*
C300.14881 (19)0.82081 (14)0.95948 (12)0.0506 (4)
H300.25010.83070.95910.061*
C310.05059 (17)0.74068 (12)0.94139 (11)0.0421 (4)
H310.08690.69730.92790.050*
C320.26852 (17)0.56031 (12)0.80412 (10)0.0378 (3)
H320.36780.56780.80090.045*
C330.21848 (18)0.59202 (12)0.69885 (10)0.0417 (4)
C340.0713 (2)0.63035 (13)0.67137 (12)0.0505 (4)
H340.00050.63970.71710.061*
C350.0286 (2)0.65530 (15)0.57568 (14)0.0651 (6)
H350.07140.68140.55820.078*
C360.1311 (3)0.64200 (16)0.50766 (15)0.0734 (6)
H360.10190.65880.44390.088*
C370.2760 (3)0.6040 (2)0.53387 (15)0.0824 (7)
H370.34720.59450.48790.099*
C380.3196 (2)0.57900 (18)0.62977 (14)0.0691 (6)
H380.41990.55290.64670.083*
C390.27301 (17)0.44403 (11)0.87378 (10)0.0390 (3)
H39A0.17200.44140.89050.047*
H39B0.31310.40360.83650.047*
C400.36168 (16)0.38832 (11)0.97132 (11)0.0378 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0665 (8)0.0548 (7)0.0509 (6)0.0214 (6)0.0054 (5)0.0318 (6)
O20.1019 (10)0.0526 (8)0.0345 (6)0.0243 (7)0.0070 (6)0.0182 (5)
O30.0821 (9)0.0307 (6)0.0520 (6)0.0023 (6)0.0264 (6)0.0162 (5)
N10.0499 (8)0.0327 (7)0.0367 (6)0.0007 (6)0.0144 (5)0.0178 (5)
N20.0556 (8)0.0297 (6)0.0313 (6)0.0030 (6)0.0119 (5)0.0119 (5)
C10.164 (3)0.109 (2)0.107 (2)0.079 (2)0.0090 (19)0.0683 (18)
C20.0872 (14)0.0718 (13)0.0651 (11)0.0244 (11)0.0112 (10)0.0460 (11)
C30.0520 (9)0.0344 (8)0.0383 (8)0.0021 (7)0.0133 (7)0.0182 (6)
C40.0466 (8)0.0300 (7)0.0321 (6)0.0068 (6)0.0058 (6)0.0148 (6)
C50.0448 (8)0.0333 (8)0.0322 (6)0.0049 (6)0.0059 (6)0.0158 (6)
C60.0503 (9)0.0333 (8)0.0366 (7)0.0014 (7)0.0124 (6)0.0177 (6)
C70.0824 (13)0.0420 (10)0.0433 (8)0.0139 (9)0.0050 (8)0.0195 (8)
C80.1198 (19)0.0369 (10)0.0579 (11)0.0176 (11)0.0180 (12)0.0135 (9)
C90.1173 (19)0.0424 (11)0.0682 (13)0.0069 (12)0.0304 (13)0.0318 (11)
C100.0825 (14)0.0554 (13)0.0681 (12)0.0154 (11)0.0139 (11)0.0404 (11)
C110.0606 (11)0.0472 (10)0.0508 (9)0.0030 (8)0.0065 (8)0.0270 (8)
C120.0437 (8)0.0336 (8)0.0296 (6)0.0073 (6)0.0062 (6)0.0133 (6)
C130.0389 (8)0.0399 (8)0.0318 (6)0.0070 (6)0.0048 (5)0.0169 (6)
C140.0535 (9)0.0424 (9)0.0381 (7)0.0110 (7)0.0083 (7)0.0159 (7)
C150.0673 (11)0.0535 (11)0.0351 (7)0.0152 (9)0.0103 (7)0.0121 (7)
C160.0647 (11)0.0714 (12)0.0373 (8)0.0169 (9)0.0089 (7)0.0259 (8)
C170.0796 (13)0.0655 (12)0.0489 (9)0.0297 (10)0.0047 (9)0.0319 (9)
C180.0729 (11)0.0462 (10)0.0401 (8)0.0219 (9)0.0068 (7)0.0185 (7)
C190.0473 (8)0.0349 (8)0.0345 (7)0.0031 (6)0.0063 (6)0.0178 (6)
C200.0433 (8)0.0310 (8)0.0377 (7)0.0040 (6)0.0089 (6)0.0147 (6)
O40.0457 (6)0.0578 (7)0.0484 (6)0.0068 (5)0.0069 (5)0.0307 (5)
O50.0463 (7)0.0703 (9)0.0469 (6)0.0138 (6)0.0031 (5)0.0278 (6)
O60.0574 (7)0.0369 (6)0.0519 (6)0.0084 (5)0.0180 (5)0.0208 (5)
N30.0532 (8)0.0281 (6)0.0330 (6)0.0011 (6)0.0095 (5)0.0127 (5)
N40.0457 (7)0.0334 (7)0.0376 (6)0.0016 (5)0.0151 (5)0.0153 (5)
C210.0918 (17)0.138 (2)0.0565 (12)0.0486 (17)0.0013 (11)0.0430 (14)
C220.0572 (11)0.0839 (15)0.0658 (11)0.0121 (10)0.0084 (9)0.0473 (11)
C230.0407 (8)0.0339 (8)0.0371 (7)0.0056 (6)0.0057 (6)0.0125 (6)
C240.0371 (7)0.0298 (7)0.0365 (7)0.0056 (6)0.0067 (6)0.0135 (6)
C250.0392 (8)0.0317 (7)0.0345 (7)0.0078 (6)0.0035 (6)0.0147 (6)
C260.0438 (8)0.0291 (7)0.0308 (6)0.0078 (6)0.0028 (6)0.0102 (5)
C270.0544 (9)0.0379 (9)0.0448 (8)0.0139 (7)0.0019 (7)0.0195 (7)
C280.0743 (12)0.0413 (10)0.0583 (10)0.0139 (9)0.0057 (9)0.0283 (8)
C290.0729 (13)0.0411 (10)0.0493 (9)0.0018 (9)0.0049 (8)0.0246 (8)
C300.0484 (9)0.0466 (10)0.0437 (8)0.0005 (8)0.0059 (7)0.0172 (7)
C310.0480 (9)0.0337 (8)0.0390 (7)0.0067 (7)0.0072 (6)0.0136 (6)
C320.0421 (8)0.0361 (8)0.0343 (7)0.0079 (6)0.0061 (6)0.0159 (6)
C330.0562 (9)0.0323 (8)0.0337 (7)0.0094 (7)0.0066 (6)0.0132 (6)
C340.0594 (10)0.0439 (9)0.0428 (8)0.0152 (8)0.0127 (7)0.0122 (7)
C350.0842 (14)0.0527 (11)0.0542 (10)0.0224 (10)0.0298 (10)0.0119 (9)
C360.1207 (19)0.0562 (12)0.0440 (9)0.0227 (12)0.0246 (11)0.0188 (9)
C370.1040 (18)0.0973 (18)0.0479 (10)0.0151 (14)0.0004 (11)0.0434 (11)
C380.0660 (12)0.0847 (15)0.0489 (10)0.0016 (10)0.0067 (9)0.0354 (10)
C390.0456 (8)0.0322 (8)0.0383 (7)0.0038 (6)0.0110 (6)0.0172 (6)
C400.0409 (8)0.0299 (7)0.0386 (7)0.0064 (6)0.0070 (6)0.0131 (6)
Geometric parameters (Å, º) top
O1—C31.317 (2)O4—C231.3300 (18)
O1—C21.4566 (19)O4—C221.456 (2)
O2—C31.1976 (19)O5—C231.1986 (19)
O3—C201.2283 (18)O6—C401.2306 (17)
N1—C121.4578 (19)N3—C251.4609 (17)
N1—C51.4637 (16)N3—C321.467 (2)
N1—H10.83 (2)N3—H30.84 (2)
N2—C201.3389 (19)N4—C401.3347 (19)
N2—C41.4550 (18)N4—C241.4538 (18)
N2—H20.85 (2)N4—H4A0.85 (2)
C1—C21.461 (3)C21—C221.472 (3)
C1—H1A0.9600C21—H21A0.9600
C1—H1B0.9600C21—H21B0.9600
C1—H1C0.9600C21—H21C0.9600
C2—H2A0.9700C22—H22A0.9700
C2—H2B0.9700C22—H22B0.9700
C3—C41.5163 (19)C23—C241.506 (2)
C4—C51.5496 (19)C24—C251.551 (2)
C4—H40.9800C24—H240.9800
C5—C61.506 (2)C25—C261.511 (2)
C5—H50.9800C25—H250.9800
C6—C71.384 (2)C26—C311.385 (2)
C6—C111.385 (2)C26—C271.394 (2)
C7—C81.377 (3)C27—C281.376 (2)
C7—H70.9300C27—H270.9300
C8—C91.368 (3)C28—C291.372 (3)
C8—H80.9300C28—H280.9300
C9—C101.357 (3)C29—C301.384 (3)
C9—H90.9300C29—H290.9300
C10—C111.375 (3)C30—C311.378 (2)
C10—H100.9300C30—H300.9300
C11—H110.9300C31—H310.9300
C12—C131.5239 (17)C32—C331.5236 (18)
C12—C191.538 (2)C32—C391.529 (2)
C12—H120.9800C32—H320.9800
C13—C181.380 (2)C33—C381.360 (3)
C13—C141.381 (2)C33—C341.375 (2)
C14—C151.3845 (19)C34—C351.393 (2)
C14—H140.9300C34—H340.9300
C15—C161.370 (3)C35—C361.357 (3)
C15—H150.9300C35—H350.9300
C16—C171.361 (3)C36—C371.350 (3)
C16—H160.9300C36—H360.9300
C17—C181.386 (2)C37—C381.399 (2)
C17—H170.9300C37—H370.9300
C18—H180.9300C38—H380.9300
C19—C201.5107 (18)C39—C401.5162 (17)
C19—H19A0.9700C39—H39A0.9700
C19—H19B0.9700C39—H39B0.9700
C3—O1—C2115.98 (14)C23—O4—C22116.14 (13)
C12—N1—C5117.12 (11)C25—N3—C32116.90 (11)
C12—N1—H1105.4 (12)C25—N3—H3106.1 (12)
C5—N1—H1103.2 (12)C32—N3—H3104.6 (12)
C20—N2—C4125.40 (12)C40—N4—C24125.62 (11)
C20—N2—H2116.9 (12)C40—N4—H4A114.4 (12)
C4—N2—H2117.7 (12)C24—N4—H4A119.4 (12)
C2—C1—H1A109.5C22—C21—H21A109.5
C2—C1—H1B109.5C22—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
C2—C1—H1C109.5C22—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
O1—C2—C1108.45 (18)O4—C22—C21112.10 (18)
O1—C2—H2A110.0O4—C22—H22A109.2
C1—C2—H2A110.0C21—C22—H22A109.2
O1—C2—H2B110.0O4—C22—H22B109.2
C1—C2—H2B110.0C21—C22—H22B109.2
H2A—C2—H2B108.4H22A—C22—H22B107.9
O2—C3—O1125.40 (14)O5—C23—O4124.41 (14)
O2—C3—C4123.26 (15)O5—C23—C24124.07 (13)
O1—C3—C4111.28 (13)O4—C23—C24111.37 (13)
N2—C4—C3107.04 (11)N4—C24—C23110.14 (11)
N2—C4—C5112.95 (12)N4—C24—C25113.96 (12)
C3—C4—C5108.33 (12)C23—C24—C25109.29 (12)
N2—C4—H4109.5N4—C24—H24107.7
C3—C4—H4109.5C23—C24—H24107.7
C5—C4—H4109.5C25—C24—H24107.7
N1—C5—C6108.35 (11)N3—C25—C26108.37 (11)
N1—C5—C4110.42 (12)N3—C25—C24109.46 (11)
C6—C5—C4110.90 (12)C26—C25—C24110.26 (12)
N1—C5—H5109.0N3—C25—H25109.6
C6—C5—H5109.0C26—C25—H25109.6
C4—C5—H5109.0C24—C25—H25109.6
C7—C6—C11118.05 (16)C31—C26—C27118.31 (14)
C7—C6—C5121.24 (15)C31—C26—C25120.95 (13)
C11—C6—C5120.60 (15)C27—C26—C25120.63 (13)
C8—C7—C6120.29 (19)C28—C27—C26119.95 (16)
C8—C7—H7119.9C28—C27—H27120.0
C6—C7—H7119.9C26—C27—H27120.0
C9—C8—C7120.7 (2)C29—C28—C27121.13 (17)
C9—C8—H8119.6C29—C28—H28119.4
C7—C8—H8119.6C27—C28—H28119.4
C10—C9—C8119.57 (19)C28—C29—C30119.71 (16)
C10—C9—H9120.2C28—C29—H29120.1
C8—C9—H9120.2C30—C29—H29120.1
C9—C10—C11120.5 (2)C31—C30—C29119.30 (16)
C9—C10—H10119.8C31—C30—H30120.4
C11—C10—H10119.8C29—C30—H30120.4
C10—C11—C6120.86 (19)C30—C31—C26121.60 (15)
C10—C11—H11119.6C30—C31—H31119.2
C6—C11—H11119.6C26—C31—H31119.2
N1—C12—C13109.03 (11)N3—C32—C33108.08 (11)
N1—C12—C19111.03 (12)N3—C32—C39111.54 (13)
C13—C12—C19110.09 (11)C33—C32—C39109.35 (11)
N1—C12—H12108.9N3—C32—H32109.3
C13—C12—H12108.9C33—C32—H32109.3
C19—C12—H12108.9C39—C32—H32109.3
C18—C13—C14118.12 (13)C38—C33—C34117.67 (14)
C18—C13—C12119.56 (13)C38—C33—C32120.40 (14)
C14—C13—C12122.33 (13)C34—C33—C32121.88 (14)
C13—C14—C15120.77 (15)C33—C34—C35120.62 (18)
C13—C14—H14119.6C33—C34—H34119.7
C15—C14—H14119.6C35—C34—H34119.7
C16—C15—C14120.35 (16)C36—C35—C34120.89 (19)
C16—C15—H15119.8C36—C35—H35119.6
C14—C15—H15119.8C34—C35—H35119.6
C17—C16—C15119.46 (15)C37—C36—C35119.06 (17)
C17—C16—H16120.3C37—C36—H36120.5
C15—C16—H16120.3C35—C36—H36120.5
C16—C17—C18120.59 (16)C36—C37—C38120.3 (2)
C16—C17—H17119.7C36—C37—H37119.8
C18—C17—H17119.7C38—C37—H37119.8
C13—C18—C17120.70 (15)C33—C38—C37121.42 (19)
C13—C18—H18119.7C33—C38—H38119.3
C17—C18—H18119.7C37—C38—H38119.3
C20—C19—C12114.10 (12)C40—C39—C32116.77 (12)
C20—C19—H19A108.7C40—C39—H39A108.1
C12—C19—H19A108.7C32—C39—H39A108.1
C20—C19—H19B108.7C40—C39—H39B108.1
C12—C19—H19B108.7C32—C39—H39B108.1
H19A—C19—H19B107.6H39A—C39—H39B107.3
O3—C20—N2121.37 (13)O6—C40—N4120.90 (12)
O3—C20—C19120.51 (13)O6—C40—C39120.65 (13)
N2—C20—C19118.12 (13)N4—C40—C39118.44 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C33–C38 and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.85 (2)2.45 (2)2.776 (2)104
N2—H2···O6i0.85 (2)2.26 (2)3.091 (1)170
N4—H4A···O3ii0.85 (2)2.14 (2)2.983 (1)169
C2—H2B···O2iii0.972.533.233 (2)130
C39—H39A···O5iv0.972.483.355 (2)150
C9—H9···Cg1v0.932.893.735 (3)152
C16—H16···Cg2vi0.932.913.712 (1)146
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z+2; (v) x+1, y, z+1; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC20H22N2O3
Mr338.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5352 (3), 14.8809 (4), 15.0800 (4)
α, β, γ (°)61.650 (1), 82.153 (2), 71.344 (2)
V3)1783.86 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
39936, 9437, 6221
Rint0.032
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.181, 1.15
No. of reflections9437
No. of parameters465
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C33–C38 and C26–C31 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.85 (2)2.45 (2)2.776 (2)104
N2—H2···O6i0.85 (2)2.26 (2)3.091 (1)170
N4—H4A···O3ii0.85 (2)2.14 (2)2.983 (1)169
C2—H2B···O2iii0.972.533.233 (2)130
C39—H39A···O5iv0.972.483.355 (2)150
C9—H9···Cg1v0.932.893.735 (3)152
C16—H16···Cg2vi0.932.913.712 (1)146
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y+1, z+2; (v) x+1, y, z+1; (vi) x+1, y1, z.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem. 22, 709–715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, S. S., Kavitha, H. P., Vennila, J. P., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o3211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J.-F., Lemoine, A., Pommery, N., Wei, M. X. & Henichart, J.-P. (2005). Oncol. Res. 16, 107–118.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1525-o1526
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds