organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1447

2-[(2-Meth­­oxy­benzyl­­idene)amino]­phenol

aPharmaceutical Research Centre, PCSIR Laboratories Complex, Karachi, Pakistan and Department of Chemistry, University of Karachi, Karachi, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi, Pakistan, cDepartment of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 23 March 2012; accepted 14 April 2012; online 21 April 2012)

In the title compound, C14H13NO2, the azomethine double bond adopts an E conformation and the benzene rings form a dihedral angle of 77.70 (7)°. In the crystal, mol­ecules are linked by O—H⋯N and C—H⋯O hydrogen bonds and arranged in a zigzag fashion, forming infinite chains parallel to the c axis, resulting in a graph-set R22(9) motif.

Related literature

For the biological activity of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]); Gerdemann et al. (2002[Gerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183-191.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]). For a related structure, see: Liang et al. (2009[Liang, Z.-P., Jian, L., Yang, C.-Y. & Tai, X.-S. (2009). J. Chem. Crystallogr. 39, 708-710.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Monoclinic, P 21 /c

  • a = 9.8709 (5) Å

  • b = 6.6606 (3) Å

  • c = 18.6128 (9) Å

  • β = 105.249 (1)°

  • V = 1180.63 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.49 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.986

  • 6660 measured reflections

  • 2186 independent reflections

  • 1680 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.04

  • 2186 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.88 (2) 1.94 (2) 2.796 (2) 163 (2)
C10—H10A⋯O2i 0.93 2.56 3.269 (2) 133
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands have remained an imperative part of research due to their used as intermediates and precursors for the synthesis of a variety of organic compounds having a broad range of biological activities (Khan et al., 2009; Gerdemann et al., 2002; Samadhiya & Halve, 2001). The title compound was prepared as a part of our ongoing research on bioactive compounds.

In the title molecule (Fig. 1), the azomethine (CN, 1.2729 (18) Å) double bond adopts an E configuration. The bond lengths and angles in the title compound are similar to the corresponding bond lenghts and bond angles reported in a closely related compound, 2-(2,3,4-trimethoxy-6-methylbenzylideneamino)phenol (Liang et al., 2009). The crystal structure is stabilized by O2—H2A···N1 and C1—H1B···O1 intermolecular hydrogen bonds resulting in chains of molecules lying parallel to the c-axis in a zig zag fashion (Fig. 2 and Tab. 1). The molecules lying about screw axis parallel to the c-axis form 9-membered rings due to hydrogen bonds in a motif with graph set R22(9) (Bernstein et al., 1995).

Related literature top

For the biological activity of Schiff bases, see: Khan et al. (2009); Gerdemann et al. (2002); Samadhiya & Halve (2001). For a related structure, see: Liang et al. (2009). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 2-methoxybenzaldehyde (0.01 mol, 1.36 g) and 2-aminophenol (0.01 mol, 1.09 g) in ethanol (50 ml) along with 3–4 drops of conc. H2SO4 was refluxed for 3 h at 343 K. After cooling, the mixture was concentrated to one third of its volume under reduced pressure. The concentrated reaction mixture was kept at room temperature and light yellow crystals were obtained after five days. The crystalline product was collected, washed with methanol and dried to afford the title compound in 79% yield. Slow evaporation of a methanol solution afforded light yellow crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(aryl-C) or 1.5Ueq(methyl-C). The H atom on the oxygen was located from a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···N and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
2-[(2-Methoxybenzylidene)amino]phenol top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.279 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1522 reflections
a = 9.8709 (5) Åθ = 2.7–24.5°
b = 6.6606 (3) ŵ = 0.09 mm1
c = 18.6128 (9) ÅT = 273 K
β = 105.249 (1)°Block, colorless
V = 1180.63 (10) Å30.49 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2186 independent reflections
Radiation source: fine-focus sealed tube1680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scanθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.959, Tmax = 0.986k = 88
6660 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 0.0868P]
where P = (Fo2 + 2Fc2)/3
2186 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C14H13NO2V = 1180.63 (10) Å3
Mr = 227.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8709 (5) ŵ = 0.09 mm1
b = 6.6606 (3) ÅT = 273 K
c = 18.6128 (9) Å0.49 × 0.17 × 0.16 mm
β = 105.249 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2186 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1680 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.986Rint = 0.025
6660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.16 e Å3
2186 reflectionsΔρmin = 0.14 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93139 (12)0.87882 (18)0.09546 (8)0.0651 (4)
O20.51633 (11)0.57038 (17)0.23910 (6)0.0461 (3)
H2A0.479 (2)0.490 (3)0.2663 (11)0.073 (6)*
N10.57240 (12)0.86217 (17)0.15101 (6)0.0371 (3)
C10.90429 (16)1.0512 (2)0.12897 (9)0.0452 (4)
C20.99740 (17)1.2103 (3)0.14871 (9)0.0564 (5)
H2B1.08491.20440.13890.068*
C30.9600 (2)1.3766 (3)0.18280 (10)0.0590 (5)
H3A1.02321.48240.19620.071*
C40.83070 (19)1.3892 (3)0.19753 (9)0.0546 (4)
H4A0.80621.50280.22030.066*
C50.73841 (17)1.2319 (2)0.17814 (8)0.0446 (4)
H5A0.65111.23990.18820.054*
C60.77264 (15)1.0608 (2)0.14376 (8)0.0384 (4)
C70.67269 (15)0.8955 (2)0.12140 (8)0.0381 (4)
H7A0.68300.81040.08360.046*
C80.47548 (14)0.7082 (2)0.11917 (8)0.0351 (3)
C90.44428 (14)0.5617 (2)0.16613 (7)0.0354 (3)
C100.34863 (16)0.4124 (2)0.13671 (9)0.0443 (4)
H10A0.32880.31320.16760.053*
C110.28226 (16)0.4101 (2)0.06126 (9)0.0482 (4)
H11A0.21820.30900.04180.058*
C120.31018 (17)0.5557 (2)0.01490 (8)0.0484 (4)
H12A0.26430.55460.03560.058*
C130.40674 (16)0.7036 (2)0.04392 (8)0.0441 (4)
H13A0.42610.80180.01250.053*
C141.0695 (2)0.8464 (3)0.08734 (13)0.0799 (6)
H14A1.07440.71620.06610.120*
H14B1.13610.85380.13530.120*
H14C1.09100.94740.05520.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (7)0.0655 (8)0.0875 (9)0.0003 (6)0.0376 (7)0.0084 (7)
O20.0529 (7)0.0528 (7)0.0330 (6)0.0114 (5)0.0120 (5)0.0027 (5)
N10.0413 (7)0.0361 (7)0.0367 (7)0.0026 (5)0.0154 (6)0.0003 (5)
C10.0434 (9)0.0507 (10)0.0437 (9)0.0014 (8)0.0152 (7)0.0060 (7)
C20.0411 (9)0.0726 (12)0.0549 (10)0.0129 (9)0.0116 (8)0.0120 (9)
C30.0628 (12)0.0566 (11)0.0502 (10)0.0233 (9)0.0018 (9)0.0037 (8)
C40.0654 (12)0.0471 (10)0.0487 (10)0.0101 (9)0.0104 (9)0.0033 (8)
C50.0466 (9)0.0450 (9)0.0427 (9)0.0023 (8)0.0126 (7)0.0014 (7)
C60.0400 (8)0.0394 (8)0.0360 (8)0.0035 (7)0.0100 (6)0.0045 (6)
C70.0438 (9)0.0369 (8)0.0364 (8)0.0000 (7)0.0153 (7)0.0015 (6)
C80.0365 (8)0.0357 (8)0.0366 (8)0.0002 (6)0.0159 (6)0.0022 (6)
C90.0345 (8)0.0402 (8)0.0337 (8)0.0009 (6)0.0129 (6)0.0000 (6)
C100.0432 (9)0.0440 (9)0.0473 (9)0.0070 (7)0.0145 (7)0.0054 (7)
C110.0424 (9)0.0505 (9)0.0496 (9)0.0110 (7)0.0084 (7)0.0063 (8)
C120.0485 (9)0.0600 (10)0.0346 (8)0.0048 (8)0.0069 (7)0.0029 (7)
C130.0488 (9)0.0484 (9)0.0371 (8)0.0032 (8)0.0149 (7)0.0059 (7)
C140.0624 (12)0.0986 (16)0.0913 (15)0.0195 (12)0.0422 (11)0.0109 (12)
Geometric parameters (Å, º) top
O1—C11.3665 (19)C6—C71.464 (2)
O1—C141.427 (2)C7—H7A0.9300
O2—C91.3586 (16)C8—C131.387 (2)
O2—H2A0.88 (2)C8—C91.3972 (19)
N1—C71.2729 (18)C9—C101.382 (2)
N1—C81.4211 (18)C10—C111.385 (2)
C1—C21.387 (2)C10—H10A0.9300
C1—C61.399 (2)C11—C121.373 (2)
C2—C31.374 (3)C11—H11A0.9300
C2—H2B0.9300C12—C131.378 (2)
C3—C41.377 (3)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.373 (2)C14—H14A0.9600
C4—H4A0.9300C14—H14B0.9600
C5—C61.391 (2)C14—H14C0.9600
C5—H5A0.9300
C1—O1—C14118.86 (15)C13—C8—C9119.10 (13)
C9—O2—H2A111.2 (13)C13—C8—N1122.29 (12)
C7—N1—C8117.39 (12)C9—C8—N1118.55 (12)
O1—C1—C2124.55 (15)O2—C9—C10123.38 (13)
O1—C1—C6115.58 (13)O2—C9—C8116.88 (12)
C2—C1—C6119.88 (15)C10—C9—C8119.67 (13)
C3—C2—C1119.88 (16)C9—C10—C11120.10 (14)
C3—C2—H2B120.1C9—C10—H10A120.0
C1—C2—H2B120.1C11—C10—H10A120.0
C2—C3—C4121.09 (16)C12—C11—C10120.64 (14)
C2—C3—H3A119.5C12—C11—H11A119.7
C4—C3—H3A119.5C10—C11—H11A119.7
C5—C4—C3119.15 (16)C11—C12—C13119.40 (14)
C5—C4—H4A120.4C11—C12—H12A120.3
C3—C4—H4A120.4C13—C12—H12A120.3
C4—C5—C6121.41 (15)C12—C13—C8121.07 (14)
C4—C5—H5A119.3C12—C13—H13A119.5
C6—C5—H5A119.3C8—C13—H13A119.5
C5—C6—C1118.58 (14)O1—C14—H14A109.5
C5—C6—C7121.32 (13)O1—C14—H14B109.5
C1—C6—C7120.08 (13)H14A—C14—H14B109.5
N1—C7—C6123.41 (13)O1—C14—H14C109.5
N1—C7—H7A118.3H14A—C14—H14C109.5
C6—C7—H7A118.3H14B—C14—H14C109.5
C14—O1—C1—C27.6 (2)C1—C6—C7—N1158.03 (14)
C14—O1—C1—C6171.95 (16)C7—N1—C8—C1353.20 (19)
O1—C1—C2—C3179.47 (14)C7—N1—C8—C9129.61 (14)
C6—C1—C2—C30.1 (2)C13—C8—C9—O2178.76 (13)
C1—C2—C3—C40.4 (3)N1—C8—C9—O23.95 (19)
C2—C3—C4—C50.4 (2)C13—C8—C9—C101.6 (2)
C3—C4—C5—C60.2 (2)N1—C8—C9—C10178.92 (13)
C4—C5—C6—C10.1 (2)O2—C9—C10—C11178.05 (14)
C4—C5—C6—C7178.40 (14)C8—C9—C10—C111.1 (2)
O1—C1—C6—C5179.72 (13)C9—C10—C11—C120.2 (2)
C2—C1—C6—C50.1 (2)C10—C11—C12—C130.9 (2)
O1—C1—C6—C71.9 (2)C11—C12—C13—C80.4 (2)
C2—C1—C6—C7178.50 (14)C9—C8—C13—C120.9 (2)
C8—N1—C7—C6174.21 (12)N1—C8—C13—C12178.09 (14)
C5—C6—C7—N123.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.88 (2)1.94 (2)2.796 (2)163 (2)
C10—H10A···O2i0.932.563.269 (2)133
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.8709 (5), 6.6606 (3), 18.6128 (9)
β (°) 105.249 (1)
V3)1180.63 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6660, 2186, 1680
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.04
No. of reflections2186
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.88 (2)1.94 (2)2.796 (2)163 (2)
C10—H10A···O2i0.932.563.269 (2)133
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: maslamchemist@hotmail.com.

Acknowledgements

MA express his gratitude to the Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, the Department of Chemistry, University of Karachi and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing financial support, research facilities and X-ray diffraction facilities, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGerdemann, C., Eicken, C. & Krebs, B. (2002). Acc. Chem. Res. 35, 183–191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, Z.-P., Jian, L., Yang, C.-Y. & Tai, X.-S. (2009). J. Chem. Crystallogr. 39, 708–710.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1447
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds