organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1555

Ethyl 3-acetyl-4-(3-meth­­oxy­phen­yl)-6-methyl-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 31 March 2012; accepted 20 April 2012; online 28 April 2012)

In the title compound, C17H20N2O4S, the aryl ring is positioned perpendicular to the dihydro­pyrimidine ring, the dihedral angle between the ring planes being 77.48 (9)°. The carboxyl­ate and methyl groups are in a cis conformation with respect to the C=C bond. The dihydro­pyrimidine ring adopts a twist-boat conformation. The crystal structure is stabilized by N—H⋯O and C—H⋯O inter­actions, the former resulting in mol­ecular chains along the b axis and the latter forming inversion dimers.

Related literature

For the biological activity of dihydro­pyrimidines, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). For a related structure, see: Begum & Vasundhara (2009[Begum, N. S. & Vasundhara, D. E. (2009). J. Chem. Res. 4, 201-204.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O4S

  • Mr = 348.41

  • Monoclinic, P 21 /n

  • a = 11.515 (2) Å

  • b = 7.3687 (16) Å

  • c = 20.049 (4) Å

  • β = 90.960 (4)°

  • V = 1701.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.963, Tmax = 0.967

  • 10054 measured reflections

  • 3707 independent reflections

  • 2545 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.204

  • S = 1.03

  • 3707 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.07 2.907 (3) 164
C3—H3B⋯O1ii 0.96 2.60 3.393 (4) 140
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Dihydropyrimidines have remarkable potency with antiviral, antitumor, antibacterial and anti-inflammatory activities, and are used as antihypertensive agents and calcium channel modulators (Kappe, 2000). In the structure of the title compound, the aryl ring substituted to chiral carbon atom (C4) is positioned axially to the dihydropyrimidine ring, whereas the carboxylate, methyl, acetyl and the thioxo groups are attached on the either sides of the ring. The dihedral angle between the planes of the aryl and dihydropyrimidine rings is 77.48 (9)°. The exocyclic ester at C5 adopts a cis orientation with respect to C5C6 double bond. The central dihydropyrimidine ring is significantly puckered, assuming a conformation of twisted boat with the atoms N1 and C1 displaced from the mean plane of the remaining ring atoms (C4/C5/C6/N2) by 0.806 (4) Å and 0.517 (4) Å, respectively. The crystal structure is stabilized by intermolecular interactions N—H···O resulting in molecular chains along the crystallographic b-axis. The structure is further consolidated by intermolecular C—H···O interactions resulting in the formation of centrosymmetric dimers about inversion centers (Fig 2.) For a crystal structure related to the title compound, see: Begum & Vasundhara (2009).

Related literature top

For the biological activity of dihydropyrimidines, see: Kappe (2000). For a related structure, see: Begum & Vasundhara (2009).

Experimental top

4-(3-Methoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5 carboxylic acid ethyl ester (3.06 g, 10 mmol) was mixed with acetic anhydride (20 ml) and refluxed for about 4 h. The reaction mixture was cooled and diluted by addition of water (20 ml). The solid separated, washed with water, filtered and dried (Yield: 1.92 g, 85% and mp 430-432 K). Pale yellow crystals of the title compound were obtained for diffraction by slow evaporation from a solution in chloroform.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86Å, C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(N/C).

Computing details top

Data collection: SMART (Bruker,1998); cell refinement: SAINT-Plus (Bruker,1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non participating in H-bonding were ommitted for clarity.
Ethyl 3-acetyl-4-(3-methoxyphenyl)-6-methyl-2-sulfanylidene-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C17H20N2O4SF(000) = 736
Mr = 348.41Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3707 reflections
a = 11.515 (2) Åθ = 2.0–27.0°
b = 7.3687 (16) ŵ = 0.21 mm1
c = 20.049 (4) ÅT = 296 K
β = 90.960 (4)°Block, yellow
V = 1701.0 (6) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3707 independent reflections
Radiation source: fine-focus sealed tube2545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1214
Tmin = 0.963, Tmax = 0.967k = 99
10054 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1146P)2 + 0.3834P]
where P = (Fo2 + 2Fc2)/3
3707 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C17H20N2O4SV = 1701.0 (6) Å3
Mr = 348.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.515 (2) ŵ = 0.21 mm1
b = 7.3687 (16) ÅT = 296 K
c = 20.049 (4) Å0.18 × 0.16 × 0.16 mm
β = 90.960 (4)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3707 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2545 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.967Rint = 0.042
10054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
3707 reflectionsΔρmin = 0.43 e Å3
221 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6452 (2)0.0344 (3)0.14742 (12)0.0409 (6)
C20.6628 (2)0.3005 (3)0.13502 (13)0.0425 (6)
C30.7912 (2)0.2995 (4)0.12735 (17)0.0603 (8)
H3A0.82800.27510.16970.090*
H3B0.81230.20720.09600.090*
H3C0.81620.41570.11130.090*
C40.4706 (2)0.1548 (3)0.13863 (12)0.0362 (5)
H40.45070.27650.12240.043*
C50.4207 (2)0.0197 (3)0.08906 (11)0.0377 (5)
C60.4725 (2)0.1430 (3)0.08596 (12)0.0392 (6)
C70.4401 (3)0.3040 (4)0.04509 (14)0.0525 (7)
H7A0.37460.27480.01690.079*
H7B0.50450.33830.01800.079*
H7C0.42040.40290.07400.079*
C80.3207 (2)0.0652 (4)0.04555 (13)0.0485 (7)
C90.1922 (3)0.2962 (5)0.00900 (18)0.0734 (10)
H9A0.19540.42670.00310.088*
H9B0.19980.24020.03450.088*
C100.0772 (3)0.2451 (7)0.0375 (2)0.0975 (14)
H10A0.07130.29450.08170.146*
H10B0.01580.29290.00980.146*
H10C0.07090.11530.03950.146*
C110.4234 (2)0.1375 (3)0.20943 (12)0.0380 (5)
C120.4961 (2)0.1400 (4)0.26504 (13)0.0481 (6)
H120.57630.14220.26030.058*
C130.4480 (3)0.1390 (4)0.32820 (14)0.0586 (8)
H130.49680.14230.36560.070*
C140.3303 (3)0.1334 (4)0.33644 (14)0.0575 (8)
H140.29980.13320.37910.069*
C150.2568 (2)0.1281 (4)0.28122 (14)0.0480 (6)
C160.3032 (2)0.1295 (3)0.21776 (13)0.0428 (6)
H160.25400.12510.18050.051*
C170.0614 (3)0.1270 (5)0.23868 (15)0.0603 (8)
H17A0.07410.02390.21050.090*
H17B0.01680.12480.25440.090*
H17C0.07370.23650.21380.090*
O10.2712 (2)0.0368 (4)0.00752 (12)0.0801 (8)
O20.28828 (17)0.2390 (3)0.05194 (10)0.0567 (5)
O30.60926 (17)0.4423 (3)0.13563 (11)0.0606 (6)
O40.14055 (17)0.1211 (3)0.29420 (10)0.0607 (6)
N10.59906 (16)0.1391 (3)0.13862 (10)0.0368 (5)
N20.57304 (19)0.1684 (3)0.12438 (11)0.0434 (5)
H20.59130.27830.13450.052*
S10.76922 (7)0.08775 (12)0.18297 (5)0.0651 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (13)0.0361 (13)0.0426 (13)0.0028 (10)0.0040 (10)0.0003 (10)
C20.0491 (14)0.0370 (14)0.0413 (13)0.0064 (11)0.0005 (11)0.0020 (10)
C30.0470 (16)0.0604 (19)0.073 (2)0.0127 (14)0.0017 (14)0.0011 (15)
C40.0344 (12)0.0333 (12)0.0408 (13)0.0016 (9)0.0001 (10)0.0020 (9)
C50.0386 (12)0.0397 (13)0.0349 (12)0.0014 (10)0.0043 (10)0.0005 (10)
C60.0426 (13)0.0398 (14)0.0353 (12)0.0066 (10)0.0037 (10)0.0016 (10)
C70.0661 (18)0.0433 (15)0.0484 (16)0.0069 (13)0.0059 (13)0.0105 (12)
C80.0436 (14)0.0605 (18)0.0414 (14)0.0028 (13)0.0010 (11)0.0043 (12)
C90.073 (2)0.080 (2)0.066 (2)0.0215 (18)0.0174 (17)0.0050 (18)
C100.059 (2)0.134 (4)0.099 (3)0.022 (2)0.010 (2)0.016 (3)
C110.0412 (13)0.0338 (13)0.0391 (13)0.0014 (10)0.0008 (10)0.0037 (10)
C120.0457 (14)0.0522 (16)0.0464 (15)0.0006 (12)0.0009 (11)0.0042 (12)
C130.0581 (18)0.077 (2)0.0406 (15)0.0021 (15)0.0058 (12)0.0020 (14)
C140.0617 (18)0.072 (2)0.0388 (15)0.0040 (15)0.0076 (13)0.0009 (13)
C150.0484 (15)0.0483 (16)0.0476 (15)0.0005 (12)0.0083 (12)0.0007 (12)
C160.0445 (14)0.0444 (15)0.0395 (13)0.0005 (11)0.0018 (11)0.0033 (11)
C170.0472 (16)0.075 (2)0.0592 (18)0.0029 (14)0.0061 (13)0.0026 (15)
O10.0780 (16)0.0834 (17)0.0776 (16)0.0116 (13)0.0360 (13)0.0318 (13)
O20.0535 (12)0.0591 (13)0.0570 (12)0.0108 (9)0.0138 (9)0.0023 (9)
O30.0610 (13)0.0308 (10)0.0900 (17)0.0025 (9)0.0015 (11)0.0033 (9)
O40.0478 (11)0.0860 (16)0.0487 (12)0.0003 (10)0.0123 (9)0.0003 (10)
N10.0379 (11)0.0323 (11)0.0403 (11)0.0005 (8)0.0005 (8)0.0009 (8)
N20.0506 (12)0.0293 (11)0.0504 (13)0.0006 (9)0.0024 (10)0.0021 (9)
S10.0572 (5)0.0578 (5)0.0797 (6)0.0096 (4)0.0160 (4)0.0046 (4)
Geometric parameters (Å, º) top
C1—N21.366 (3)C9—C101.500 (6)
C1—N11.395 (3)C9—H9A0.9700
C1—S11.633 (3)C9—H9B0.9700
C2—O31.213 (3)C10—H10A0.9600
C2—N11.400 (3)C10—H10B0.9600
C2—C31.489 (4)C10—H10C0.9600
C3—H3A0.9600C11—C121.383 (4)
C3—H3B0.9600C11—C161.398 (3)
C3—H3C0.9600C12—C131.391 (4)
C4—N11.484 (3)C12—H120.9300
C4—C51.513 (3)C13—C141.369 (4)
C4—C111.534 (3)C13—H130.9300
C4—H40.9800C14—C151.383 (4)
C5—C61.341 (3)C14—H140.9300
C5—C81.471 (3)C15—O41.369 (3)
C6—N21.393 (3)C15—C161.388 (4)
C6—C71.486 (4)C16—H160.9300
C7—H7A0.9600C17—O41.427 (4)
C7—H7B0.9600C17—H17A0.9600
C7—H7C0.9600C17—H17B0.9600
C8—O11.207 (3)C17—H17C0.9600
C8—O21.341 (4)N2—H20.8600
C9—O21.453 (4)
N2—C1—N1113.0 (2)C9—C10—H10A109.5
N2—C1—S1119.74 (19)C9—C10—H10B109.5
N1—C1—S1127.20 (19)H10A—C10—H10B109.5
O3—C2—N1117.6 (2)C9—C10—H10C109.5
O3—C2—C3120.7 (2)H10A—C10—H10C109.5
N1—C2—C3121.6 (2)H10B—C10—H10C109.5
C2—C3—H3A109.5C12—C11—C16119.4 (2)
C2—C3—H3B109.5C12—C11—C4121.7 (2)
H3A—C3—H3B109.5C16—C11—C4118.7 (2)
C2—C3—H3C109.5C11—C12—C13119.3 (3)
H3A—C3—H3C109.5C11—C12—H12120.4
H3B—C3—H3C109.5C13—C12—H12120.4
N1—C4—C5108.44 (18)C14—C13—C12121.4 (3)
N1—C4—C11111.24 (19)C14—C13—H13119.3
C5—C4—C11114.62 (19)C12—C13—H13119.3
N1—C4—H4107.4C13—C14—C15119.9 (3)
C5—C4—H4107.4C13—C14—H14120.1
C11—C4—H4107.4C15—C14—H14120.1
C6—C5—C8121.3 (2)O4—C15—C14115.9 (2)
C6—C5—C4117.0 (2)O4—C15—C16124.6 (3)
C8—C5—C4121.6 (2)C14—C15—C16119.6 (3)
C5—C6—N2117.5 (2)C15—C16—C11120.5 (2)
C5—C6—C7129.2 (2)C15—C16—H16119.8
N2—C6—C7113.3 (2)C11—C16—H16119.8
C6—C7—H7A109.5O4—C17—H17A109.5
C6—C7—H7B109.5O4—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C6—C7—H7C109.5O4—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
O1—C8—O2121.7 (3)C8—O2—C9115.5 (2)
O1—C8—C5126.1 (3)C15—O4—C17117.6 (2)
O2—C8—C5112.2 (2)C1—N1—C2125.9 (2)
O2—C9—C10111.7 (3)C1—N1—C4116.71 (19)
O2—C9—H9A109.3C2—N1—C4117.22 (19)
C10—C9—H9A109.3C1—N2—C6125.8 (2)
O2—C9—H9B109.3C1—N2—H2117.1
C10—C9—H9B109.3C6—N2—H2117.1
H9A—C9—H9B107.9
N1—C4—C5—C638.9 (3)C12—C11—C16—C151.4 (4)
C11—C4—C5—C686.0 (3)C4—C11—C16—C15175.0 (2)
N1—C4—C5—C8140.3 (2)O1—C8—O2—C91.5 (4)
C11—C4—C5—C894.7 (3)C5—C8—O2—C9178.2 (2)
C8—C5—C6—N2174.1 (2)C10—C9—O2—C882.3 (4)
C4—C5—C6—N25.2 (3)C14—C15—O4—C17176.1 (2)
C8—C5—C6—C73.9 (4)C16—C15—O4—C174.1 (4)
C4—C5—C6—C7176.8 (2)N2—C1—N1—C2156.5 (2)
C6—C5—C8—O15.4 (4)S1—C1—N1—C225.5 (4)
C4—C5—C8—O1175.4 (3)N2—C1—N1—C428.8 (3)
C6—C5—C8—O2174.3 (2)S1—C1—N1—C4149.21 (19)
C4—C5—C8—O24.9 (3)O3—C2—N1—C1171.0 (2)
N1—C4—C11—C1210.5 (3)C3—C2—N1—C112.0 (4)
C5—C4—C11—C12134.0 (2)O3—C2—N1—C43.7 (3)
N1—C4—C11—C16173.2 (2)C3—C2—N1—C4173.4 (2)
C5—C4—C11—C1649.7 (3)C5—C4—N1—C152.0 (3)
C16—C11—C12—C131.6 (4)C11—C4—N1—C175.0 (2)
C4—C11—C12—C13174.7 (3)C5—C4—N1—C2132.9 (2)
C11—C12—C13—C140.8 (5)C11—C4—N1—C2100.2 (2)
C12—C13—C14—C150.2 (5)N1—C1—N2—C610.4 (3)
C13—C14—C15—O4179.5 (3)S1—C1—N2—C6171.47 (19)
C13—C14—C15—C160.4 (4)C5—C6—N2—C122.8 (4)
O4—C15—C16—C11179.8 (2)C7—C6—N2—C1155.5 (2)
C14—C15—C16—C110.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.072.907 (3)164
C3—H3B···O1ii0.962.603.393 (4)140
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H20N2O4S
Mr348.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.515 (2), 7.3687 (16), 20.049 (4)
β (°) 90.960 (4)
V3)1701.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.963, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10054, 3707, 2545
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.204, 1.03
No. of reflections3707
No. of parameters221
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.43

Computer programs: SMART (Bruker,1998), SAINT-Plus (Bruker,1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.8602.0702.907 (3)164
C3—H3B···O1ii0.9602.5973.393 (4)140
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance.

References

First citationBegum, N. S. & Vasundhara, D. E. (2009). J. Chem. Res. 4, 201–204.  Web of Science CrossRef Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1555
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds