metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridocadmate(II)

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: yizhang1980@yahoo.com.cn

(Received 5 April 2012; accepted 21 April 2012; online 28 April 2012)

In the title salt, (C8H15N3)[CdCl4], four Cl atoms coordinate the CdII atom in a slightly distorted tetra­hedral geometry. In the crystal, each [CdCl4]2− anion is connected to the 1-cyano­methyl-1,4-diazo­niabicyclo­[2.2.2]octane dications by N—H⋯Cl hydrogen bonds, forming chains parallel to [001]. C—H⋯Cl inter­actions also occur.

Related literature

For the use of 1,4-diaza­bicyclo­[2.2.2]octane (DABCO) and its derivatives, see: Basaviah et al. (2003[Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Zhang, Cheng et al. (2009[Zhang, W., Cheng, L.-Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For ferroelectric properties of DABCO derivatives, see: Zhang, Ye et al. (2009[Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980-2997.], 2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For related structures, see: Cai (2010[Cai, Y. (2010). Acta Cryst. E66, m830.]); Wei (2010[Wei, B. (2010). Acta Cryst. E66, m1672.]). For the isotypic cobaltate(II) analogue, see: Zhang & Zhu (2012[Zhang, Y. & Zhu, B.-H. (2012). Acta Cryst. E68, m665.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[CdCl4]

  • Mr = 407.43

  • Monoclinic, P 21 /c

  • a = 8.3747 (17) Å

  • b = 13.772 (3) Å

  • c = 12.153 (2) Å

  • β = 93.89 (3)°

  • V = 1398.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.441, Tmax = 0.525

  • 14246 measured reflections

  • 3200 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.15

  • 3200 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯Cl2i 0.79 (3) 2.54 (3) 3.193 (2) 141 (3)
N3—H1⋯Cl3ii 0.79 (3) 2.76 (3) 3.285 (2) 126 (3)
C1—H1A⋯Cl3iii 0.97 2.70 3.507 (3) 141 (2)
C3—H3B⋯Cl4iv 0.97 2.67 3.599 (3) 160 (2)
C4—H4A⋯Cl1i 0.97 2.81 3.704 (3) 153 (2)
C7—H7A⋯Cl2iv 0.97 2.61 3.514 (3) 155 (2)
C7—H7B⋯Cl4v 0.97 2.79 3.489 (3) 129 (2)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a effective organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of it's derivatives are ferroelectrics (Zhang, Cheng et al., 2009). As part of a systematic investigation of dielectric-ferroelectric materials (Zhang, Ye et al., 2009; 2010), we report the crystal structure of the title compound in this article.

The asymmetric unit of the title compound is composed of cationic (C8H15N3)2+ and anionic (CdCl4)2- ions (Fig. 1). The Cd atoms are coordinated by four Cl atoms with very similar distances in the range of 2.2749 (12) to 2.2910 (12) Å. The Cl—Cd—Cl bond angles are between 103.21 (4) and 113.85 (5) ° which shows that the coordination polyhedron can be described as a slightly distorted tetrahedron. The ammonium groups of the organic cations are engaged in bifurcated hydrogen bonds to chlorine atoms of two (CdCl4)2- anions. These weak N—H···Cl interactions cause the formation of a one-dimensional chain along the [0 0 1] (Fig. 2).

The crystal structures of a few related DABCO derivatives have been reported earlier (Cai, 2010; Wei, 2010).

Related literature top

For the use of 1,4-diazabicyclo[2.2.2]octane (DABCO) and its derivatives, see: Basaviah et al. (2003); Zhang, Cheng et al. (2009). For ferroelectric properties of DABCO derivatives, see: Zhang, Ye et al. (2009, 2010). For related structures, see: Cai (2010); Wei (2010). For the isotypic cobaltate(II) analogue, see: Zhang & Zhu (2012).

Experimental top

Chloroacetonitrile (0.1 mol, 7.55 g) was added to a CH3CN (25 ml) solution of 1,4-diaza-bicyclo[2.2.2]octane (DABCO) (0.1 mol, 11.2 g) with stirring for 1 h at room temperature. 1-(Cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride quickly formed as white solid was filtered, washed with acetonitrile and dried (yield: 80%). CdCl2.2.5H2O (0.01 mol, 2.28 g) and 1 g 36% HCl were dissolved in H2O (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane chloride (0.01 mol, 1.875 g) in H2O (20 ml) was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, colourless needle crystals of the title compound suitable for X-ray analysis were obtained in about 60% yield. The title compound has no dielectric disuniform from 80 K to 373 K, (m.p. > 373 K).

Refinement top

The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). The H1 bonded to N3 was located from a difference Fourier map and freely refined.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···Cl hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridocadmate(II) top
Crystal data top
(C8H15N3)[CdCl4]F(000) = 800
Mr = 407.43Dx = 1.935 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2622 reflections
a = 8.3747 (17) Åθ = 3.1–27.5°
b = 13.772 (3) ŵ = 2.30 mm1
c = 12.153 (2) ÅT = 298 K
β = 93.89 (3)°Needle, colourless
V = 1398.4 (5) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.441, Tmax = 0.525l = 1515
14246 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.6019P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3200 reflectionsΔρmax = 0.46 e Å3
150 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0332 (7)
Crystal data top
(C8H15N3)[CdCl4]V = 1398.4 (5) Å3
Mr = 407.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3747 (17) ŵ = 2.30 mm1
b = 13.772 (3) ÅT = 298 K
c = 12.153 (2) Å0.36 × 0.32 × 0.28 mm
β = 93.89 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3200 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2899 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.525Rint = 0.038
14246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.46 e Å3
3200 reflectionsΔρmin = 0.48 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.77481 (2)0.228314 (13)0.006713 (15)0.02939 (9)
Cl20.78074 (8)0.24012 (5)0.21119 (5)0.03509 (16)
Cl30.80985 (8)0.40133 (4)0.03853 (5)0.03183 (15)
Cl40.51643 (8)0.15674 (5)0.05148 (5)0.03630 (16)
Cl11.01183 (8)0.13969 (5)0.04509 (6)0.03678 (16)
N20.3731 (2)0.42550 (13)0.76461 (15)0.0207 (4)
C40.1866 (3)0.28852 (19)0.7311 (2)0.0314 (6)
H4A0.12420.28520.66100.038*
H4B0.19320.22380.76250.038*
N30.1084 (2)0.35561 (15)0.80727 (17)0.0259 (4)
C20.2107 (3)0.36440 (19)0.9119 (2)0.0286 (5)
H2A0.23400.30050.94250.034*
H2B0.15540.40160.96540.034*
C80.5761 (3)0.55142 (19)0.8006 (2)0.0318 (6)
C30.3525 (3)0.32615 (19)0.7140 (2)0.0350 (6)
H3A0.43190.28220.74790.042*
H3B0.36810.32950.63580.042*
C70.5335 (3)0.46373 (17)0.7366 (2)0.0279 (5)
H7A0.61440.41430.75220.033*
H7B0.53070.47870.65850.033*
C10.3652 (3)0.4152 (2)0.88691 (19)0.0305 (5)
H1A0.36950.47880.92120.037*
H1B0.45610.37780.91700.037*
N10.6122 (3)0.61640 (17)0.8522 (2)0.0438 (6)
C60.0823 (3)0.45326 (19)0.7556 (2)0.0359 (6)
H6A0.04000.49780.80810.043*
H6B0.00570.44840.69220.043*
C50.2410 (3)0.4904 (2)0.7198 (3)0.0401 (7)
H5A0.23910.49180.63990.048*
H5B0.25920.55600.74690.048*
H10.024 (4)0.333 (2)0.817 (3)0.050 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02778 (12)0.02888 (12)0.03141 (13)0.00082 (7)0.00131 (8)0.00145 (7)
Cl20.0308 (3)0.0461 (4)0.0282 (3)0.0020 (3)0.0009 (3)0.0045 (3)
Cl30.0360 (3)0.0254 (3)0.0348 (3)0.0025 (2)0.0080 (3)0.0005 (2)
Cl40.0314 (3)0.0443 (4)0.0334 (3)0.0076 (3)0.0032 (3)0.0087 (3)
Cl10.0341 (3)0.0352 (3)0.0414 (4)0.0051 (3)0.0048 (3)0.0012 (3)
N20.0200 (9)0.0205 (9)0.0216 (9)0.0004 (7)0.0024 (7)0.0003 (7)
C40.0300 (13)0.0308 (13)0.0338 (14)0.0037 (10)0.0046 (11)0.0111 (10)
N30.0195 (10)0.0303 (11)0.0283 (11)0.0023 (8)0.0044 (8)0.0023 (8)
C20.0292 (13)0.0334 (13)0.0234 (12)0.0054 (10)0.0017 (10)0.0007 (10)
C80.0288 (13)0.0309 (14)0.0351 (14)0.0056 (10)0.0013 (11)0.0092 (11)
C30.0356 (14)0.0293 (13)0.0415 (15)0.0075 (11)0.0140 (12)0.0176 (11)
C70.0250 (12)0.0286 (12)0.0306 (13)0.0040 (10)0.0063 (10)0.0026 (10)
C10.0272 (13)0.0440 (15)0.0203 (12)0.0044 (11)0.0024 (10)0.0012 (10)
N10.0557 (16)0.0299 (12)0.0442 (14)0.0120 (11)0.0080 (12)0.0085 (11)
C60.0258 (13)0.0368 (14)0.0449 (16)0.0084 (11)0.0017 (11)0.0057 (12)
C50.0296 (13)0.0315 (14)0.0578 (18)0.0028 (11)0.0060 (12)0.0187 (13)
Geometric parameters (Å, º) top
Cd1—Cl42.4385 (8)C2—H2A0.9700
Cd1—Cl12.4486 (8)C2—H2B0.9700
Cd1—Cl32.4674 (8)C8—N11.123 (3)
Cd1—Cl22.4874 (8)C8—C71.467 (3)
N2—C51.496 (3)C3—H3A0.9700
N2—C11.499 (3)C3—H3B0.9700
N2—C71.503 (3)C7—H7A0.9700
N2—C31.505 (3)C7—H7B0.9700
C4—N31.491 (3)C1—H1A0.9700
C4—C31.511 (4)C1—H1B0.9700
C4—H4A0.9700C6—C51.515 (4)
C4—H4B0.9700C6—H6A0.9700
N3—C21.489 (3)C6—H6B0.9700
N3—C61.494 (3)C5—H5A0.9700
N3—H10.79 (3)C5—H5B0.9700
C2—C11.520 (3)
Cl4—Cd1—Cl1116.28 (3)N2—C3—C4109.66 (19)
Cl4—Cd1—Cl3116.26 (3)N2—C3—H3A109.7
Cl1—Cd1—Cl3108.26 (3)C4—C3—H3A109.7
Cl4—Cd1—Cl2105.86 (3)N2—C3—H3B109.7
Cl1—Cd1—Cl2109.14 (3)C4—C3—H3B109.7
Cl3—Cd1—Cl299.49 (2)H3A—C3—H3B108.2
C5—N2—C1109.6 (2)C8—C7—N2110.9 (2)
C5—N2—C7111.00 (18)C8—C7—H7A109.5
C1—N2—C7110.95 (18)N2—C7—H7A109.5
C5—N2—C3109.5 (2)C8—C7—H7B109.5
C1—N2—C3107.91 (19)N2—C7—H7B109.5
C7—N2—C3107.77 (18)H7A—C7—H7B108.0
N3—C4—C3108.67 (19)N2—C1—C2109.70 (19)
N3—C4—H4A110.0N2—C1—H1A109.7
C3—C4—H4A110.0C2—C1—H1A109.7
N3—C4—H4B110.0N2—C1—H1B109.7
C3—C4—H4B110.0C2—C1—H1B109.7
H4A—C4—H4B108.3H1A—C1—H1B108.2
C2—N3—C4109.2 (2)N3—C6—C5108.6 (2)
C2—N3—C6110.2 (2)N3—C6—H6A110.0
C4—N3—C6110.8 (2)C5—C6—H6A110.0
C2—N3—H1112 (2)N3—C6—H6B110.0
C4—N3—H1107 (2)C5—C6—H6B110.0
C6—N3—H1108 (2)H6A—C6—H6B108.4
N3—C2—C1108.38 (19)N2—C5—C6109.6 (2)
N3—C2—H2A110.0N2—C5—H5A109.8
C1—C2—H2A110.0C6—C5—H5A109.8
N3—C2—H2B110.0N2—C5—H5B109.8
C1—C2—H2B110.0C6—C5—H5B109.8
H2A—C2—H2B108.4H5A—C5—H5B108.2
N1—C8—C7177.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl2i0.79 (3)2.54 (3)3.193 (2)141 (3)
N3—H1···Cl3ii0.79 (3)2.76 (3)3.285 (2)126 (3)
C1—H1A···Cl3iii0.972.703.507 (3)141 (2)
C3—H3B···Cl4iv0.972.673.599 (3)160 (2)
C4—H4A···Cl1i0.972.813.704 (3)153 (2)
C7—H7A···Cl2iv0.972.613.514 (3)155 (2)
C7—H7B···Cl4v0.972.793.489 (3)129 (2)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H15N3)[CdCl4]
Mr407.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3747 (17), 13.772 (3), 12.153 (2)
β (°) 93.89 (3)
V3)1398.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.441, 0.525
No. of measured, independent and
observed [I > 2σ(I)] reflections
14246, 3200, 2899
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.15
No. of reflections3200
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···Cl2i0.79 (3)2.54 (3)3.193 (2)141 (3)
N3—H1···Cl3ii0.79 (3)2.76 (3)3.285 (2)126 (3)
C1—H1A···Cl3iii0.972.703.507 (3)141 (2)
C3—H3B···Cl4iv0.972.673.599 (3)160 (2)
C4—H4A···Cl1i0.972.813.704 (3)153 (2)
C7—H7A···Cl2iv0.972.613.514 (3)155 (2)
C7—H7B···Cl4v0.972.793.489 (3)129 (2)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Start-up Projects for Postdoctoral Research Funds (1112000064), the Major Postdoctoral Research Funds (3212000602) of Southeast University and the Jiangsu Planned Projects for Postdoctoral Research Funds (1101010B).

References

First citationBasaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science PubMed Google Scholar
First citationCai, Y. (2010). Acta Cryst. E66, m830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, B. (2010). Acta Cryst. E66, m1672.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Cheng, L.-Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Y. & Zhu, B.-H. (2012). Acta Cryst. E68, m665.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds