metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(1,10-phenanthrolin-1-ium) hexa­cyanidoferrate(III) ethanol monosolvate trihydrate

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China, and bSchool of Biology and Chemical Engineering, Jiangusu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihuayuan@163.com

(Received 9 April 2012; accepted 23 April 2012; online 28 April 2012)

The asymmetric unit of the title complex, (C12H9N2)3[Fe(CN)6]·C2H5OH·3H2O, consists of two half [Fe(CN)6]3− anions located on inversion centers, three 1,10-phenanthrolin-1-ium cations, [Hphen]+, an ethanol and three water solvent mol­ecules. The average Fe—C and C—N bond lengths are 1.942 (6) and 1.154 (3) Å, respectively, while the Fe—C—N angles deviate slightly from linearity with values ranging from 177.8 (2) to 179.7 (2)°. The FeIII atoms adopt a distorted octa­hedral geometry. All the species are linked through O—H⋯N, N—H⋯O and O—H⋯O hydrogen-bonding inter­actions, resulting in a three-dimensional supra­molecular network.

Related literature

For general background to hexa­cyanido­metalate(III)-based complexes, see: Andruh et al. (2009[Andruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342-3359.]); Tokoro & Ohkoshi (2011[Tokoro, H. & Ohkoshi, S. (2011). Dalton Trans. 40, 6825-6833.]). For background to complexes containing hexa­cyanido­metalate and phen ligands, see: Koner et al. (2005[Koner, R., Drew, M. G. B., Figuerola, A., Diaz, C. & Mohanta, S. (2005). Inorg. Chim. Acta, 358, 3041-3047.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H9N2)3[Fe(CN)6]·C2H6O·3H2O

  • Mr = 855.72

  • Monoclinic, P 21 /c

  • a = 20.5744 (18) Å

  • b = 14.8742 (13) Å

  • c = 14.1594 (12) Å

  • β = 109.123 (1)°

  • V = 4094.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.935

  • 35350 measured reflections

  • 9412 independent reflections

  • 6179 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.01

  • 9412 reflections

  • 555 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1WA⋯N1i 0.85 1.97 2.822 (2) 176
O1—H1WB⋯N2ii 0.85 1.89 2.732 (3) 172
O2—H2WA⋯N3iii 0.85 1.97 2.809 (3) 169
O2—H2WB⋯N4iii 0.85 1.92 2.761 (3) 171
O3—H3WA⋯N5 0.85 2.05 2.891 (3) 168
O3—H3WB⋯N6iv 0.85 1.93 2.769 (3) 168
N7—H7A⋯O1 0.88 1.83 2.681 (2) 161
N9—H9A⋯O3 0.88 1.80 2.643 (2) 159
N12—H12A⋯O2 0.88 1.84 2.635 (3) 150
O4—H4⋯O1v 0.84 1.99 2.813 (3) 167
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Design and synthesis of hexacyanometalate-based complexes have been widely studied because of their rich topologies and interesting properties (Tokoro & Ohkoshi, 2011). A large number of 3d-4f bimetallic systems have been synthesized by self-assembly of [M(CN)6]3- (M = Fe, Cr, Co) building blocks and lanthanide ions in the presence of organic ligands (Andruh et al., 2009). Recently, our group have aimed to prepare low-dimensional 3d-4f assembiles, employing [Fe(CN)6]3- as aprecusor to react with lanthanide ions (Nd, Eu) and the chelating ligand 1,10-phenanthroline (phen). Unexceptedly, a new ion-pair complex, (Hphen)3.Fe(CN)6.CH3CH2OH.3H2O was obtained, in which the lanthanide ions were not involved.

The asymmetric unit of the title complex consists of two half [Fe(CN)6]3- anions located on inversion centers, three protonated cations, [Hphen]+, an ethanol and three water molecules (Fig. 1). Both Fe atoms are in six-coordinated octahedral geometry. The average bond distances of Fe—C and C—N are 1.942 (6) and 1.154 (3) Å, respectively, while the Fe—C—N angles derivate slightly from the linearity with the angles spanning from 177.8 (2) to 179.7 (2)°. The crystal structure is stabilized by hydrogen-bonding interactions involving [Fe(CN)6]3- units, [Hphen]+ cations, ethanol and water of hydration to form a three-dimensional supermolecular network (Fig. 2).

Related literature top

For general background to hexacyanometalate(III)-based complexes, see: Andruh et al. (2009); Tokoro et al. (2011). For background to complexes containing hexacyanometalate and phen ligands, see: Koner et al. (2005).

Experimental top

Single crystals of the title complex were prepared at room temperature by slow diffusion of an ethanol solution (3 ml) containing Ln(NO3)3.6H2O (Ln = Nd, Eu; 0.10 mmol) and phen (0.20 mmol) into a water solution (15 ml) of K3[Fe(CN)6].H2O (0.10 mmol). After about two weeks, block-shaped yellow crystals were obtained.

Refinement top

The C-bound H atoms were included in the refinement at calculated positions in riding mode (C—H = 0.95–0.99 Å, Uiso(H) = 1.2 or 1.5 Ueq(C)). The H atoms of water molecules and N-bound H atoms of the phen ligands were located from difference Fourier maps and refined in riding modes (O—H = 0.85 and N—H = 0.88 Å, Uiso(H) = 1.5 Ueq(O) or 1.2 Ueq(N)). The hydroxyl H atom of the ethanol molecule was located from a Fourier map and was included as riding mode (O—H = 0.84 Å, Uiso(H) = 1.2 Ueq(O)).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title complex, showing the 30% probability thermal motion ellipsoid. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.
[Figure 2] Fig. 2. A three-dimensional supramolecular network of the title complex. Dotted lines represent hydrogen-bonding interactions.
Tris(1,10-phenanthrolin-1-ium) hexacyanidoferrate(III) ethanol monosolvate trihydrate top
Crystal data top
(C12H9N2)3[Fe(CN)6]·C2H6O·3H2OF(000) = 1780
Mr = 855.72Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6253 reflections
a = 20.5744 (18) Åθ = 2.5–27.4°
b = 14.8742 (13) ŵ = 0.43 mm1
c = 14.1594 (12) ÅT = 173 K
β = 109.123 (1)°Block, colorless
V = 4094.1 (6) Å30.21 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
9412 independent reflections
Radiation source: fine-focus sealed tube6179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ & ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2626
Tmin = 0.915, Tmax = 0.935k = 1918
35350 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0508P)2 + 1.7012P]
where P = (Fo2 + 2Fc2)/3
9412 reflections(Δ/σ)max = 0.001
555 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
(C12H9N2)3[Fe(CN)6]·C2H6O·3H2OV = 4094.1 (6) Å3
Mr = 855.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.5744 (18) ŵ = 0.43 mm1
b = 14.8742 (13) ÅT = 173 K
c = 14.1594 (12) Å0.21 × 0.18 × 0.16 mm
β = 109.123 (1)°
Data collection top
Bruker APEXII
diffractometer
9412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
6179 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.935Rint = 0.049
35350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.42 e Å3
9412 reflectionsΔρmin = 0.46 e Å3
555 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01691 (10)
O10.61077 (8)0.68067 (10)1.22601 (11)0.0260 (4)
H1WA0.58710.66021.26040.039*
H1WB0.59750.73371.20640.039*
N10.53010 (10)0.62058 (14)0.34081 (15)0.0311 (5)
C10.51810 (11)0.57457 (15)0.39874 (16)0.0213 (5)
Fe21.00000.50000.50000.01750 (11)
O20.74379 (8)0.17371 (11)0.01841 (13)0.0350 (4)
H2WA0.71730.14430.00540.053*
H2WB0.77790.14100.01750.053*
N20.56126 (11)0.65586 (14)0.64662 (15)0.0339 (5)
C20.53866 (12)0.59643 (15)0.59344 (16)0.0236 (5)
O30.90143 (8)0.68762 (10)0.10957 (12)0.0296 (4)
H3WA0.91300.65780.16380.044*
H3WB0.93160.72760.11290.044*
N30.64249 (10)0.40996 (14)0.54417 (15)0.0320 (5)
C30.59010 (11)0.44465 (15)0.52866 (16)0.0226 (5)
O40.74538 (11)0.80279 (16)0.1391 (2)0.0725 (8)
H40.70810.81160.18550.087*
N40.86099 (10)0.42701 (15)0.50654 (15)0.0344 (5)
C40.91260 (11)0.45459 (15)0.50366 (16)0.0226 (5)
N50.92963 (11)0.60560 (14)0.30400 (15)0.0337 (5)
C50.95502 (11)0.56681 (16)0.37726 (17)0.0237 (5)
N60.98584 (11)0.66414 (14)0.62580 (15)0.0316 (5)
C60.99123 (11)0.60252 (15)0.57895 (16)0.0220 (5)
N70.58878 (9)0.59499 (12)1.05172 (13)0.0208 (4)
H7A0.59820.61111.11460.025*
C70.57651 (11)0.65885 (16)0.98177 (17)0.0248 (5)
H70.57780.72031.00060.030*
N80.61145 (10)0.47211 (13)1.20218 (14)0.0250 (4)
C80.56189 (11)0.63637 (16)0.88212 (17)0.0273 (5)
H80.55370.68210.83280.033*
N90.89140 (9)0.61601 (13)0.06545 (14)0.0240 (4)
H9A0.89700.62630.00210.029*
C90.55926 (11)0.54730 (17)0.85518 (17)0.0256 (5)
H90.54870.53140.78680.031*
N100.92307 (9)0.48236 (13)0.07413 (14)0.0237 (4)
C100.57223 (10)0.47915 (15)0.92884 (16)0.0211 (5)
N110.73512 (9)0.38648 (14)0.10638 (15)0.0286 (4)
C110.57002 (11)0.38495 (16)0.90624 (17)0.0249 (5)
H110.56000.36590.83890.030*
N120.76927 (9)0.32388 (14)0.08598 (15)0.0284 (5)
H12A0.76070.28740.03440.034*
C120.58206 (11)0.32297 (16)0.98008 (17)0.0261 (5)
H120.58060.26090.96370.031*
C130.59700 (10)0.34912 (15)1.08258 (16)0.0221 (5)
C140.60826 (11)0.28672 (16)1.16144 (17)0.0277 (5)
H140.60710.22391.14860.033*
C150.62086 (12)0.31807 (16)1.25668 (18)0.0315 (6)
H150.62900.27721.31090.038*
C160.62168 (12)0.41098 (16)1.27358 (17)0.0300 (5)
H160.63010.43131.34010.036*
C170.59953 (10)0.44070 (15)1.10768 (16)0.0199 (5)
C180.58720 (10)0.50614 (15)1.02921 (15)0.0194 (4)
C190.87499 (12)0.68438 (17)0.12971 (19)0.0311 (6)
H190.86950.74290.10650.037*
C200.86585 (12)0.67089 (18)0.23002 (19)0.0345 (6)
H200.85370.71970.27570.041*
C210.87446 (11)0.58643 (18)0.26289 (18)0.0318 (6)
H210.86870.57680.33150.038*
C220.89188 (11)0.51358 (16)0.19514 (17)0.0260 (5)
C230.90248 (12)0.42396 (18)0.22367 (18)0.0320 (6)
H230.89810.41160.29130.038*
C240.91866 (12)0.35646 (17)0.15582 (18)0.0308 (6)
H240.92560.29760.17660.037*
C250.92544 (11)0.37243 (15)0.05304 (16)0.0235 (5)
C260.94197 (12)0.30442 (16)0.02035 (18)0.0294 (5)
H260.94790.24400.00300.035*
C270.94935 (12)0.32691 (16)0.11723 (18)0.0286 (5)
H270.96100.28210.16790.034*
C280.93975 (11)0.41590 (16)0.14109 (17)0.0268 (5)
H280.94540.42990.20880.032*
C290.91672 (10)0.46000 (15)0.02137 (16)0.0201 (5)
C300.89972 (10)0.53096 (15)0.09443 (16)0.0214 (5)
C310.71790 (12)0.41970 (18)0.19830 (18)0.0332 (6)
H310.71010.37850.25210.040*
C320.71043 (12)0.51142 (19)0.2212 (2)0.0372 (6)
H320.69750.53110.28870.045*
C330.72208 (12)0.57241 (18)0.1450 (2)0.0362 (6)
H330.71780.63510.15870.043*
C340.74048 (11)0.54076 (17)0.04558 (19)0.0298 (6)
C350.75300 (12)0.59971 (19)0.0385 (2)0.0403 (7)
H350.74910.66280.02780.048*
C360.77032 (12)0.5672 (2)0.1328 (2)0.0410 (7)
H360.77820.60770.18730.049*
C370.77683 (12)0.47259 (18)0.15146 (19)0.0332 (6)
C380.79561 (13)0.4349 (2)0.2477 (2)0.0451 (7)
H380.80490.47320.30430.054*
C390.80072 (14)0.3435 (2)0.2609 (2)0.0482 (8)
H390.81350.31830.32610.058*
C400.78688 (13)0.2887 (2)0.17787 (19)0.0398 (6)
H400.78990.22530.18610.048*
C410.76419 (10)0.41360 (17)0.06965 (18)0.0268 (5)
C420.74609 (10)0.44752 (16)0.03118 (17)0.0254 (5)
C430.7239 (2)0.8784 (3)0.0029 (3)0.0806 (12)
H43A0.67420.87330.03090.121*
H43B0.73400.93490.04060.121*
H43C0.73990.82770.04890.121*
C440.7595 (2)0.8775 (3)0.0716 (3)0.0795 (12)
H44A0.74730.93330.11160.095*
H44B0.80960.87920.03570.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0227 (2)0.0143 (2)0.0139 (2)0.00103 (17)0.00619 (16)0.00050 (18)
O10.0348 (9)0.0182 (8)0.0268 (9)0.0025 (7)0.0125 (7)0.0052 (7)
N10.0398 (11)0.0297 (12)0.0240 (11)0.0038 (9)0.0110 (9)0.0042 (9)
C10.0251 (11)0.0205 (12)0.0170 (11)0.0003 (9)0.0052 (9)0.0022 (9)
Fe20.0213 (2)0.0155 (2)0.0160 (2)0.00027 (17)0.00647 (16)0.00038 (18)
O20.0283 (9)0.0290 (10)0.0509 (11)0.0027 (7)0.0172 (8)0.0052 (8)
N20.0521 (13)0.0237 (12)0.0236 (11)0.0071 (10)0.0093 (9)0.0031 (9)
C20.0334 (12)0.0205 (12)0.0170 (11)0.0002 (9)0.0084 (9)0.0042 (9)
O30.0388 (9)0.0227 (9)0.0267 (9)0.0063 (7)0.0099 (7)0.0001 (7)
N30.0315 (11)0.0302 (12)0.0354 (12)0.0027 (9)0.0125 (9)0.0045 (9)
C30.0292 (12)0.0207 (12)0.0183 (11)0.0015 (9)0.0084 (9)0.0017 (9)
O40.0425 (13)0.0613 (16)0.0932 (19)0.0131 (11)0.0054 (12)0.0321 (14)
N40.0324 (11)0.0392 (13)0.0321 (12)0.0054 (9)0.0113 (9)0.0005 (10)
C40.0268 (11)0.0223 (12)0.0171 (11)0.0007 (9)0.0052 (9)0.0011 (9)
N50.0418 (12)0.0306 (12)0.0253 (11)0.0016 (9)0.0063 (9)0.0041 (9)
C50.0270 (11)0.0221 (12)0.0226 (12)0.0007 (9)0.0088 (9)0.0007 (10)
N60.0442 (12)0.0250 (12)0.0277 (11)0.0042 (9)0.0148 (9)0.0003 (9)
C60.0253 (11)0.0226 (12)0.0180 (11)0.0003 (9)0.0071 (9)0.0048 (9)
N70.0221 (9)0.0219 (10)0.0185 (9)0.0013 (7)0.0070 (7)0.0020 (8)
C70.0255 (11)0.0233 (12)0.0273 (13)0.0011 (9)0.0109 (9)0.0053 (10)
N80.0312 (10)0.0250 (11)0.0190 (10)0.0011 (8)0.0085 (8)0.0020 (8)
C80.0294 (12)0.0298 (14)0.0250 (12)0.0041 (10)0.0120 (10)0.0087 (10)
N90.0238 (9)0.0255 (11)0.0223 (10)0.0011 (8)0.0068 (8)0.0024 (8)
C90.0209 (11)0.0386 (15)0.0179 (12)0.0009 (10)0.0073 (9)0.0044 (10)
N100.0224 (9)0.0290 (12)0.0196 (10)0.0015 (8)0.0067 (7)0.0001 (8)
C100.0173 (10)0.0280 (13)0.0188 (11)0.0015 (8)0.0070 (8)0.0009 (9)
N110.0264 (10)0.0310 (12)0.0275 (11)0.0008 (8)0.0076 (8)0.0004 (9)
C110.0229 (11)0.0304 (13)0.0213 (12)0.0011 (9)0.0072 (9)0.0047 (10)
N120.0257 (10)0.0335 (12)0.0246 (11)0.0004 (8)0.0063 (8)0.0007 (9)
C120.0261 (11)0.0231 (13)0.0284 (13)0.0004 (9)0.0080 (10)0.0031 (10)
C130.0206 (10)0.0217 (12)0.0233 (12)0.0006 (9)0.0062 (9)0.0011 (10)
C140.0314 (12)0.0219 (13)0.0280 (13)0.0017 (10)0.0072 (10)0.0027 (10)
C150.0403 (14)0.0250 (14)0.0288 (13)0.0012 (10)0.0108 (11)0.0079 (11)
C160.0377 (13)0.0316 (14)0.0199 (12)0.0012 (11)0.0084 (10)0.0029 (10)
C170.0182 (10)0.0212 (12)0.0194 (11)0.0001 (8)0.0048 (8)0.0003 (9)
C180.0167 (9)0.0227 (12)0.0198 (11)0.0007 (9)0.0073 (8)0.0007 (10)
C190.0285 (12)0.0263 (13)0.0390 (15)0.0001 (10)0.0117 (11)0.0077 (11)
C200.0314 (13)0.0377 (16)0.0336 (14)0.0014 (11)0.0094 (11)0.0154 (12)
C210.0251 (12)0.0462 (17)0.0247 (13)0.0008 (11)0.0092 (10)0.0080 (12)
C220.0196 (10)0.0371 (15)0.0203 (11)0.0004 (9)0.0052 (9)0.0023 (10)
C230.0325 (13)0.0422 (16)0.0221 (13)0.0014 (11)0.0100 (10)0.0050 (11)
C240.0336 (13)0.0297 (14)0.0304 (14)0.0030 (10)0.0123 (11)0.0064 (11)
C250.0213 (11)0.0251 (13)0.0231 (12)0.0005 (9)0.0059 (9)0.0007 (10)
C260.0296 (12)0.0238 (13)0.0347 (14)0.0021 (10)0.0105 (10)0.0008 (11)
C270.0310 (12)0.0258 (13)0.0289 (13)0.0016 (10)0.0095 (10)0.0091 (11)
C280.0263 (11)0.0329 (14)0.0198 (12)0.0002 (10)0.0059 (9)0.0037 (10)
C290.0150 (9)0.0252 (12)0.0189 (11)0.0009 (8)0.0040 (8)0.0008 (9)
C300.0175 (10)0.0228 (12)0.0234 (12)0.0002 (8)0.0060 (9)0.0012 (9)
C310.0284 (12)0.0415 (16)0.0278 (14)0.0030 (11)0.0067 (10)0.0015 (12)
C320.0268 (12)0.0450 (18)0.0389 (15)0.0004 (11)0.0094 (11)0.0148 (13)
C330.0239 (12)0.0306 (15)0.0531 (17)0.0003 (10)0.0110 (11)0.0106 (13)
C340.0178 (11)0.0293 (14)0.0404 (15)0.0033 (9)0.0070 (10)0.0004 (12)
C350.0251 (12)0.0316 (15)0.0607 (19)0.0029 (10)0.0095 (13)0.0089 (14)
C360.0246 (12)0.0455 (17)0.0493 (18)0.0052 (11)0.0074 (12)0.0209 (14)
C370.0209 (11)0.0451 (16)0.0320 (14)0.0035 (10)0.0064 (10)0.0099 (12)
C380.0339 (14)0.070 (2)0.0295 (15)0.0006 (14)0.0082 (11)0.0141 (15)
C390.0469 (16)0.070 (2)0.0255 (15)0.0043 (15)0.0094 (12)0.0062 (15)
C400.0349 (14)0.0510 (18)0.0328 (15)0.0052 (12)0.0103 (11)0.0091 (13)
C410.0159 (10)0.0329 (14)0.0303 (13)0.0012 (9)0.0059 (9)0.0037 (11)
C420.0151 (10)0.0305 (14)0.0295 (13)0.0009 (9)0.0056 (9)0.0009 (10)
C430.069 (2)0.093 (3)0.067 (3)0.024 (2)0.005 (2)0.012 (2)
C440.070 (2)0.063 (3)0.107 (3)0.024 (2)0.031 (2)0.037 (2)
Geometric parameters (Å, º) top
Fe1—C21.937 (2)C13—C141.412 (3)
Fe1—C2i1.937 (2)C14—C151.369 (3)
Fe1—C1i1.943 (2)C14—H140.9500
Fe1—C11.943 (2)C15—C161.402 (3)
Fe1—C31.946 (2)C15—H150.9500
Fe1—C3i1.946 (2)C16—H160.9500
O1—H1WA0.8500C17—C181.436 (3)
O1—H1WB0.8501C19—C201.385 (4)
N1—C11.155 (3)C19—H190.9500
Fe2—C61.934 (2)C20—C211.371 (4)
Fe2—C6ii1.934 (2)C20—H200.9500
Fe2—C4ii1.937 (2)C21—C221.413 (3)
Fe2—C41.937 (2)C21—H210.9500
Fe2—C5ii1.952 (2)C22—C301.406 (3)
Fe2—C51.952 (2)C22—C231.430 (3)
O2—H2WA0.8499C23—C241.354 (3)
O2—H2WB0.8503C23—H230.9500
N2—C21.156 (3)C24—C251.436 (3)
O3—H3WA0.8502C24—H240.9500
O3—H3WB0.8503C25—C291.408 (3)
N3—C31.149 (3)C25—C261.410 (3)
O4—C441.432 (4)C26—C271.371 (3)
O4—H40.8400C26—H260.9500
N4—C41.151 (3)C27—C281.396 (3)
N5—C51.152 (3)C27—H270.9500
N6—C61.158 (3)C28—H280.9500
N7—C71.335 (3)C29—C301.439 (3)
N7—C181.357 (3)C31—C321.399 (4)
N7—H7A0.8800C31—H310.9500
C7—C81.384 (3)C32—C331.370 (4)
C7—H70.9500C32—H320.9500
N8—C161.324 (3)C33—C341.413 (4)
N8—C171.362 (3)C33—H330.9500
C8—C91.375 (3)C34—C421.401 (3)
C8—H80.9500C34—C351.432 (4)
N9—C191.332 (3)C35—C361.354 (4)
N9—C301.358 (3)C35—H350.9500
N9—H9A0.8800C36—C371.429 (4)
C9—C101.416 (3)C36—H360.9500
C9—H90.9500C37—C381.406 (4)
N10—C281.334 (3)C37—C411.408 (3)
N10—C291.357 (3)C38—C391.372 (4)
C10—C181.410 (3)C38—H380.9500
C10—C111.435 (3)C39—C401.381 (4)
N11—C311.327 (3)C39—H390.9500
N11—C421.361 (3)C40—H400.9500
C11—C121.354 (3)C41—C421.443 (3)
C11—H110.9500C43—C441.468 (5)
N12—C401.337 (3)C43—H43A0.9800
N12—C411.352 (3)C43—H43B0.9800
N12—H12A0.8800C43—H43C0.9800
C12—C131.435 (3)C44—H44A0.9900
C12—H120.9500C44—H44B0.9900
C13—C171.404 (3)
C2—Fe1—C2i180.0N7—C18—C17119.59 (19)
C2—Fe1—C1i93.08 (9)C10—C18—C17120.8 (2)
C2i—Fe1—C1i86.92 (9)N9—C19—C20120.6 (2)
C2—Fe1—C186.92 (9)N9—C19—H19119.7
C2i—Fe1—C193.08 (9)C20—C19—H19119.7
C1i—Fe1—C1180.0C21—C20—C19119.4 (2)
C2—Fe1—C391.20 (9)C21—C20—H20120.3
C2i—Fe1—C388.80 (9)C19—C20—H20120.3
C1i—Fe1—C390.25 (9)C20—C21—C22120.3 (2)
C1—Fe1—C389.75 (9)C20—C21—H21119.9
C2—Fe1—C3i88.80 (9)C22—C21—H21119.9
C2i—Fe1—C3i91.20 (9)C30—C22—C21117.8 (2)
C1i—Fe1—C3i89.75 (9)C30—C22—C23118.7 (2)
C1—Fe1—C3i90.25 (9)C21—C22—C23123.4 (2)
C3—Fe1—C3i180.0C24—C23—C22121.0 (2)
H1WA—O1—H1WB109.7C24—C23—H23119.5
N1—C1—Fe1177.9 (2)C22—C23—H23119.5
C6—Fe2—C6ii180.0C23—C24—C25121.1 (2)
C6—Fe2—C4ii90.21 (9)C23—C24—H24119.5
C6ii—Fe2—C4ii89.79 (9)C25—C24—H24119.5
C6—Fe2—C489.79 (9)C29—C25—C26117.0 (2)
C6ii—Fe2—C490.21 (9)C29—C25—C24119.7 (2)
C4ii—Fe2—C4180.0C26—C25—C24123.3 (2)
C6—Fe2—C5ii89.63 (9)C27—C26—C25118.9 (2)
C6ii—Fe2—C5ii90.37 (9)C27—C26—H26120.5
C4ii—Fe2—C5ii91.60 (9)C25—C26—H26120.5
C4—Fe2—C5ii88.40 (9)C26—C27—C28119.7 (2)
C6—Fe2—C590.37 (9)C26—C27—H27120.2
C6ii—Fe2—C589.63 (9)C28—C27—H27120.2
C4ii—Fe2—C588.40 (9)N10—C28—C27123.7 (2)
C4—Fe2—C591.60 (9)N10—C28—H28118.2
C5ii—Fe2—C5180.0C27—C28—H28118.2
H2WA—O2—H2WB109.4N10—C29—C25124.3 (2)
N2—C2—Fe1177.8 (2)N10—C29—C30117.3 (2)
H3WA—O3—H3WB109.4C25—C29—C30118.4 (2)
N3—C3—Fe1178.2 (2)N9—C30—C22119.6 (2)
C44—O4—H4109.5N9—C30—C29119.4 (2)
N4—C4—Fe2179.3 (2)C22—C30—C29121.0 (2)
N5—C5—Fe2178.5 (2)N11—C31—C32124.4 (2)
N6—C6—Fe2179.7 (2)N11—C31—H31117.8
C7—N7—C18122.30 (19)C32—C31—H31117.8
C7—N7—H7A118.9C33—C32—C31119.0 (2)
C18—N7—H7A118.9C33—C32—H32120.5
N7—C7—C8120.6 (2)C31—C32—H32120.5
N7—C7—H7119.7C32—C33—C34119.0 (2)
C8—C7—H7119.7C32—C33—H33120.5
C16—N8—C17116.6 (2)C34—C33—H33120.5
C9—C8—C7119.4 (2)C42—C34—C33117.2 (2)
C9—C8—H8120.3C42—C34—C35120.1 (2)
C7—C8—H8120.3C33—C34—C35122.7 (3)
C19—N9—C30122.2 (2)C36—C35—C34121.2 (3)
C19—N9—H9A118.9C36—C35—H35119.4
C30—N9—H9A118.9C34—C35—H35119.4
C8—C9—C10120.3 (2)C35—C36—C37120.8 (3)
C8—C9—H9119.8C35—C36—H36119.6
C10—C9—H9119.8C37—C36—H36119.6
C28—N10—C29116.4 (2)C38—C37—C41117.8 (3)
C18—C10—C9117.7 (2)C38—C37—C36123.5 (3)
C18—C10—C11118.9 (2)C41—C37—C36118.7 (2)
C9—C10—C11123.4 (2)C39—C38—C37120.8 (3)
C31—N11—C42116.2 (2)C39—C38—H38119.6
C12—C11—C10120.5 (2)C37—C38—H38119.6
C12—C11—H11119.7C38—C39—C40118.9 (3)
C10—C11—H11119.7C38—C39—H39120.6
C40—N12—C41122.2 (2)C40—C39—H39120.6
C40—N12—H12A118.9N12—C40—C39120.8 (3)
C41—N12—H12A118.9N12—C40—H40119.6
C11—C12—C13121.4 (2)C39—C40—H40119.6
C11—C12—H12119.3N12—C41—C37119.4 (2)
C13—C12—H12119.3N12—C41—C42119.6 (2)
C17—C13—C14117.0 (2)C37—C41—C42120.9 (2)
C17—C13—C12119.8 (2)N11—C42—C34124.2 (2)
C14—C13—C12123.2 (2)N11—C42—C41117.6 (2)
C15—C14—C13119.0 (2)C34—C42—C41118.2 (2)
C15—C14—H14120.5C44—C43—H43A109.5
C13—C14—H14120.5C44—C43—H43B109.5
C14—C15—C16119.5 (2)H43A—C43—H43B109.5
C14—C15—H15120.3C44—C43—H43C109.5
C16—C15—H15120.3H43A—C43—H43C109.5
N8—C16—C15123.8 (2)H43B—C43—H43C109.5
N8—C16—H16118.1O4—C44—C43116.6 (3)
C15—C16—H16118.1O4—C44—H44A108.1
N8—C17—C13124.1 (2)C43—C44—H44A108.1
N8—C17—C18117.20 (19)O4—C44—H44B108.1
C13—C17—C18118.6 (2)C43—C44—H44B108.1
N7—C18—C10119.62 (19)H44A—C44—H44B107.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N1iii0.851.972.822 (2)176
O1—H1WB···N2iv0.851.892.732 (3)172
O2—H2WA···N3v0.851.972.809 (3)169
O2—H2WB···N4v0.851.922.761 (3)171
O3—H3WA···N50.852.052.891 (3)168
O3—H3WB···N6vi0.851.932.769 (3)168
N7—H7A···O10.881.832.681 (2)161
N9—H9A···O30.881.802.643 (2)159
N12—H12A···O20.881.842.635 (3)150
O4—H4···O1vii0.841.992.813 (3)167
Symmetry codes: (iii) x, y, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z1/2; (vi) x, y+3/2, z1/2; (vii) x, y+3/2, z3/2.

Experimental details

Crystal data
Chemical formula(C12H9N2)3[Fe(CN)6]·C2H6O·3H2O
Mr855.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)20.5744 (18), 14.8742 (13), 14.1594 (12)
β (°) 109.123 (1)
V3)4094.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.21 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.915, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
35350, 9412, 6179
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.01
No. of reflections9412
No. of parameters555
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N1i0.851.972.822 (2)176.3
O1—H1WB···N2ii0.851.892.732 (3)172.3
O2—H2WA···N3iii0.851.972.809 (3)169.4
O2—H2WB···N4iii0.851.922.761 (3)170.9
O3—H3WA···N50.852.052.891 (3)168.2
O3—H3WB···N6iv0.851.932.769 (3)167.6
N7—H7A···O10.881.832.681 (2)161.2
N9—H9A···O30.881.802.643 (2)159.3
N12—H12A···O20.881.842.635 (3)150.0
O4—H4···O1v0.841.992.813 (3)167.0
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z3/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province of China (No. BK2010343).

References

First citationAndruh, M., Costes, J. P., Diaz, C. & Gao, S. (2009). Inorg. Chem. 48, 3342–3359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoner, R., Drew, M. G. B., Figuerola, A., Diaz, C. & Mohanta, S. (2005). Inorg. Chim. Acta, 358, 3041–3047.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokoro, H. & Ohkoshi, S. (2011). Dalton Trans. 40, 6825–6833.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds