organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1535

2-Hy­dr­oxy­anilinium 3,5-di­nitro­benzoate

aNational First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046, People's Republic of China
*Correspondence e-mail: qzhaonucm@gmail.com

(Received 14 February 2012; accepted 5 April 2012; online 25 April 2012)

In the title molecular salt, C6H8NO+·C7H3N2O6, which crystallizes in the chiral monoclinic space group P21, the achiral components assemble by three different N—H⋯O, one O—H⋯O and one C—H⋯O hydrogen bonds into two-stranded chains running parallel to [010]. The dihedral angles between the carboxy group and the two nitro groups and the mean plane of their attached benzene ring are 24.5 (9), 6.1 (6) and 13.0 (1)°, respectively..

Related literature

For background to supra­molecular structures and hydrogen bonding, see: Burrows (2004[Burrows, A. D. (2004). Struct. Bond. 108, 55-96.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For related structures, see: Wang et al. (2008[Wang, Z. L., Wei, L. H., Li, M. X. & Wang, J. P. (2008). J. Mol. Struct. 879, 150-155.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8NO+·C7H3N2O6

  • Mr = 321.25

  • Monoclinic, P 21

  • a = 9.4988 (19) Å

  • b = 6.0803 (12) Å

  • c = 12.109 (2) Å

  • β = 95.21 (3)°

  • V = 696.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 297 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CystalClear; Rigaku, 2005[Rigaku (2005). CystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.975

  • 7134 measured reflections

  • 1733 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.218

  • S = 1.05

  • 1733 reflections

  • 210 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H8⋯O1i 0.82 1.78 2.603 (7) 179
N3—H9⋯O1ii 0.89 1.90 2.771 (8) 168
N3—H10⋯O7iii 0.89 2.02 2.870 (8) 159
N3—H11⋯O2i 0.89 1.89 2.763 (8) 166
C12—H7⋯O1ii 0.93 2.53 3.240 (9) 134
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of multicomponent organic substances is of interest for obtaining supramolecular materials with potentially useful applications. In synthesizing such materials it is important to consider that the components contain complementary functional groups to build up links by suitable supramolecular interactions (Desiraju, 2002; Burrows, 2004). A very general way to achieve this goal is to employ components containing several matching functional groups with good hydrogen bond donor and acceptor capabilities combined with suitable backbones that bear the functional groups (Steiner, 2002). Following this strategy the title compound was synthesized from 2-hydroxyaniline and 3,5-dinitrobenzoic acid and was studied by X-ray diffraction. It is a proton-transfer salt, C6H8NO+.C7H3N2O6-, that is built up from two achiral components but crystallizes in the chiral space group P21 with one molecule of a 2-hydoxyanilinium cation and one molecule of a 3,5-dinitrobenzoate anion in the asymmetric unit (Fig. 1). The protonized amino group (—NH3+), which is a good hydrogen-bond donor (Wang et al. 2008), donates two hydrogen bonds to the carboxylate oxygen atoms O1 and O2 of two adjacent 3,5-dinitrobenzoate anions and to the hydroxy oxygen O7 of another 2-hydoxyanilinium cation (Table 1). The hydroxy group of the 2-hydoxyanilinium cation in turn donates a hydrogen bond to a carboxylate oxygen O1 of a third 3,5-dinitrobenzoate anion. In this way a two-stranded infinite hydrogen bond chain is formed along [010], as shown in Fig. 2. This chain is reinforced by a weak intra-chain C—H···O bond (last entry in Table 1). The chain has Z-shaped cross section (Fig. 2). The mutual coherence between these chains is provided by van der Waals interactions, which involve also nitro oxygen atoms. Ring-ring π-π stacking contacts are missing in this structure.

Related literature top

For background to supramolecular structures and hydrogen bonding, see: Burrows (2004); Desiraju (2002); Steiner (2002). For related structures, see: Wang et al. (2008).

Experimental top

The title compound was obtained by room temperature evaporation of a methanol solution containing 2-aminophenol and 3,5-dinitrobenzoic acid in stoichiometric 1:1 amounts.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å, O—H = 0.82 Å, and N—H = 0.89 Å, and were refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N or O). and refined in riding mode. Owing to insignifant anomalous dispersion effects the absolute structure could not be determined and the 1429 Friedel pairs were merged in the final refinement with all δf" set to zero.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of asymmetric unit with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. A two-stranded hydrogen bonded chain viewed along the chain direction [010]. Hydrogens not involved in hydrogen bonds are omitted for clarity. Hydrogen bonds are shown by dashed lines.
2-Hydroxyanilinium 3,5-dinitrobenzoate top
Crystal data top
C6H8NO+·C7H3N2O6F(000) = 332
Mr = 321.25Dx = 1.532 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7134 reflections
a = 9.4988 (19) Åθ = 27.5–3.4°
b = 6.0803 (12) ŵ = 0.13 mm1
c = 12.109 (2) ÅT = 297 K
β = 95.21 (3)°Block, colorless
V = 696.5 (2) Å30.35 × 0.22 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
1733 independent reflections
Radiation source: fine-focus sealed tube1209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω and ϕ scansh = 1212
Absorption correction: multi-scan
(CystalClear; Rigaku, 2005)
k = 77
Tmin = 0.967, Tmax = 0.975l = 1515
7134 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.218 w = 1/[\s2(Fo2) + (0.0791P)2 + 1.2502P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1733 reflectionsΔρmax = 0.38 e Å3
210 parametersΔρmin = 0.28 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2\l3/sin(2\q)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.072 (14)
Crystal data top
C6H8NO+·C7H3N2O6V = 696.5 (2) Å3
Mr = 321.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.4988 (19) ŵ = 0.13 mm1
b = 6.0803 (12) ÅT = 297 K
c = 12.109 (2) Å0.35 × 0.22 × 0.20 mm
β = 95.21 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1733 independent reflections
Absorption correction: multi-scan
(CystalClear; Rigaku, 2005)
1209 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.975Rint = 0.098
7134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0841 restraint
wR(F2) = 0.218H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
1733 reflectionsΔρmin = 0.28 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3248 (7)0.2505 (12)0.2268 (6)0.0325 (16)
C20.2992 (7)0.1113 (12)0.1273 (6)0.0314 (16)
C30.2233 (7)0.0841 (11)0.1380 (5)0.0294 (15)
H10.19120.13570.20820.035*
C40.1951 (8)0.2021 (12)0.0450 (6)0.0323 (16)
C50.2459 (8)0.1379 (13)0.0596 (6)0.0349 (16)
H20.22900.21950.12200.042*
C60.3243 (7)0.0559 (13)0.0675 (5)0.0320 (16)
C70.3495 (7)0.1844 (12)0.0223 (5)0.0309 (15)
H30.39880.31620.01290.037*
N10.1063 (7)0.3963 (12)0.0578 (6)0.0427 (16)
O10.3190 (6)0.1545 (8)0.3201 (4)0.0413 (14)
O20.3450 (7)0.4499 (9)0.2114 (5)0.0498 (15)
O30.0399 (7)0.4290 (12)0.1476 (5)0.0618 (19)
O40.1028 (7)0.5164 (11)0.0228 (6)0.0597 (18)
N20.3724 (7)0.1352 (13)0.1794 (5)0.0453 (18)
O50.4282 (7)0.3173 (11)0.1871 (5)0.0571 (17)
O60.3546 (8)0.0204 (12)0.2592 (4)0.063 (2)
C80.2779 (8)0.4903 (13)0.4615 (6)0.0352 (17)
C90.1846 (9)0.4540 (16)0.3689 (6)0.047 (2)
H40.18900.32190.33060.056*
C100.0863 (9)0.6070 (18)0.3322 (7)0.054 (2)
H50.02720.58180.26790.064*
C110.0747 (9)0.8013 (17)0.3917 (7)0.051 (2)
H60.00450.90260.36910.062*
C120.1687 (8)0.8452 (15)0.4857 (6)0.0425 (18)
H70.16300.97600.52480.051*
C130.2689 (7)0.6899 (13)0.5182 (6)0.0326 (15)
O70.3797 (6)0.3374 (10)0.4957 (4)0.0444 (14)
H80.36010.28100.55390.067*
N30.3724 (6)0.7298 (10)0.6120 (5)0.0339 (14)
H90.35370.85750.64350.051*
H100.45850.73450.58870.051*
H110.36830.62190.66130.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (4)0.029 (4)0.037 (4)0.002 (3)0.003 (3)0.002 (3)
C20.033 (4)0.030 (4)0.032 (4)0.001 (3)0.007 (3)0.001 (3)
C30.032 (4)0.029 (4)0.028 (3)0.001 (3)0.004 (3)0.003 (3)
C40.030 (4)0.026 (4)0.043 (4)0.002 (3)0.011 (3)0.000 (3)
C50.037 (4)0.034 (4)0.034 (4)0.005 (3)0.009 (3)0.007 (3)
C60.032 (4)0.039 (4)0.026 (3)0.003 (3)0.003 (3)0.004 (3)
C70.026 (3)0.031 (4)0.035 (3)0.001 (3)0.003 (3)0.001 (3)
N10.033 (3)0.038 (4)0.059 (4)0.009 (3)0.017 (3)0.004 (3)
O10.071 (4)0.025 (3)0.028 (3)0.004 (3)0.002 (2)0.002 (2)
O20.081 (4)0.025 (3)0.044 (3)0.007 (3)0.010 (3)0.000 (2)
O30.060 (4)0.062 (4)0.064 (4)0.032 (4)0.004 (3)0.017 (3)
O40.059 (4)0.041 (3)0.082 (4)0.017 (3)0.021 (3)0.007 (4)
N20.039 (4)0.064 (5)0.032 (3)0.004 (4)0.001 (3)0.002 (3)
O50.069 (4)0.050 (4)0.052 (3)0.011 (4)0.000 (3)0.010 (3)
O60.087 (5)0.075 (5)0.028 (3)0.019 (4)0.003 (3)0.001 (3)
C80.042 (4)0.039 (4)0.025 (3)0.005 (3)0.008 (3)0.001 (3)
C90.058 (5)0.049 (5)0.033 (4)0.020 (5)0.002 (4)0.007 (4)
C100.048 (5)0.070 (7)0.039 (4)0.010 (5)0.013 (4)0.001 (4)
C110.044 (5)0.056 (6)0.053 (5)0.003 (4)0.004 (4)0.010 (4)
C120.046 (5)0.034 (4)0.046 (4)0.002 (4)0.001 (3)0.003 (4)
C130.030 (3)0.032 (4)0.036 (4)0.005 (3)0.006 (3)0.004 (3)
O70.059 (4)0.039 (3)0.035 (3)0.008 (3)0.005 (2)0.001 (3)
N30.040 (3)0.027 (3)0.035 (3)0.001 (3)0.006 (2)0.000 (3)
Geometric parameters (Å, º) top
C1—O21.239 (9)N2—O51.228 (10)
C1—O11.269 (8)C8—O71.378 (9)
C1—C21.510 (10)C8—C91.382 (10)
C2—C71.390 (9)C8—C131.401 (10)
C2—C31.390 (10)C9—C101.364 (14)
C3—C41.383 (9)C9—H40.9300
C3—H10.9300C10—C111.393 (14)
C4—C51.370 (10)C10—H50.9300
C4—N11.451 (10)C11—C121.407 (11)
C5—C61.393 (11)C11—H60.9300
C5—H20.9300C12—C131.373 (11)
C6—C71.377 (9)C12—H70.9300
C6—N21.472 (9)C13—N31.453 (9)
C7—H30.9300O7—H80.8200
N1—O41.222 (9)N3—H90.8900
N1—O31.223 (9)N3—H100.8900
N2—O61.216 (9)N3—H110.8900
O2—C1—O1125.2 (7)O5—N2—C6117.5 (7)
O2—C1—C2117.6 (7)O7—C8—C9121.1 (7)
O1—C1—C2117.1 (6)O7—C8—C13120.6 (6)
C7—C2—C3119.4 (6)C9—C8—C13118.2 (8)
C7—C2—C1118.9 (6)C10—C9—C8121.6 (8)
C3—C2—C1121.6 (6)C10—C9—H4119.2
C4—C3—C2120.3 (6)C8—C9—H4119.2
C4—C3—H1119.9C9—C10—C11119.6 (7)
C2—C3—H1119.9C9—C10—H5120.2
C5—C4—C3121.8 (7)C11—C10—H5120.2
C5—C4—N1118.9 (6)C10—C11—C12120.3 (8)
C3—C4—N1119.2 (6)C10—C11—H6119.8
C4—C5—C6116.4 (6)C12—C11—H6119.8
C4—C5—H2121.8C13—C12—C11118.3 (8)
C6—C5—H2121.8C13—C12—H7120.8
C7—C6—C5123.8 (6)C11—C12—H7120.8
C7—C6—N2118.6 (7)C12—C13—C8121.8 (7)
C5—C6—N2117.3 (6)C12—C13—N3120.8 (7)
C6—C7—C2118.1 (7)C8—C13—N3117.5 (6)
C6—C7—H3121.0C8—O7—H8109.5
C2—C7—H3121.0C13—N3—H9109.5
O4—N1—O3124.3 (7)C13—N3—H10109.5
O4—N1—C4117.3 (7)H9—N3—H10109.5
O3—N1—C4118.4 (7)C13—N3—H11109.5
O6—N2—O5123.2 (7)H9—N3—H11109.5
O6—N2—C6119.3 (7)H10—N3—H11109.5
O2—C1—C2—C723.9 (10)C5—C4—N1—O3166.3 (7)
O1—C1—C2—C7158.5 (6)C3—C4—N1—O312.2 (10)
O2—C1—C2—C3154.2 (7)C7—C6—N2—O6177.8 (7)
O1—C1—C2—C323.4 (10)C5—C6—N2—O67.0 (10)
C7—C2—C3—C41.5 (10)C7—C6—N2—O52.8 (10)
C1—C2—C3—C4176.6 (6)C5—C6—N2—O5172.4 (7)
C2—C3—C4—C53.2 (11)O7—C8—C9—C10178.0 (8)
C2—C3—C4—N1175.2 (6)C13—C8—C9—C100.3 (12)
C3—C4—C5—C61.7 (10)C8—C9—C10—C112.8 (13)
N1—C4—C5—C6176.7 (6)C9—C10—C11—C123.3 (13)
C4—C5—C6—C71.4 (10)C10—C11—C12—C131.5 (12)
C4—C5—C6—N2176.3 (6)C11—C12—C13—C81.0 (11)
C5—C6—C7—C23.0 (10)C11—C12—C13—N3177.6 (7)
N2—C6—C7—C2177.8 (6)O7—C8—C13—C12179.9 (7)
C3—C2—C7—C61.4 (10)C9—C8—C13—C121.6 (11)
C1—C2—C7—C6179.6 (6)O7—C8—C13—N31.3 (9)
C5—C4—N1—O413.4 (10)C9—C8—C13—N3177.0 (7)
C3—C4—N1—O4168.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H8···O1i0.821.782.603 (7)179
N3—H9···O1ii0.891.902.771 (8)168
N3—H10···O7iii0.892.022.870 (8)159
N3—H11···O2i0.891.892.763 (8)166
C12—H7···O1ii0.932.533.240 (9)134
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H8NO+·C7H3N2O6
Mr321.25
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)9.4988 (19), 6.0803 (12), 12.109 (2)
β (°) 95.21 (3)
V3)696.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CystalClear; Rigaku, 2005)
Tmin, Tmax0.967, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7134, 1733, 1209
Rint0.098
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.218, 1.05
No. of reflections1733
No. of parameters210
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H8···O1i0.821.782.603 (7)179.1
N3—H9···O1ii0.891.902.771 (8)167.6
N3—H10···O7iii0.892.022.870 (8)159.0
N3—H11···O2i0.891.892.763 (8)165.7
C12—H7···O1ii0.932.533.240 (9)133.5
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported financially by Nanjing University of Chinese Medicine for Young Researchers.

References

First citationBurrows, A. D. (2004). Struct. Bond. 108, 55–96.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWang, Z. L., Wei, L. H., Li, M. X. & Wang, J. P. (2008). J. Mol. Struct. 879, 150–155.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1535
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds