organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1433

(E,E)-N′-{4-[(2-Benzoyl­hydrazin-1-yl­­idene)meth­yl]benzyl­­idene}benzo­hydrazide

aApplied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, bDepartment of Chemistry, University of Zanjan, 45195-313 Zanjan, Iran, cYoung Researchers Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55019 Kurupelit, Samsun, Turkey
*Correspondence e-mail: bikas_r@yahoo.com

(Received 24 March 2012; accepted 4 April 2012; online 18 April 2012)

In the title compound, C22H18N4O2, the mol­ecules lie across an inversion centre. The dihedral angle between the mean planes of the central and terminal benzene rings is 66.03 (2)°. The mol­ecule displays trans and anti conformations about the C=N and N—N bonds, respectively. In the crystal, N—H⋯O hydrogen bonds, with the O atoms of C=O groups acting as acceptors, link the mol­ecules into a chain along [101].

Related literature

For historical background to aroylhydrazones, see: Savanini et al. (2002[Savanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193-2198.]). For related structures, see: Bikas et al. (2012[Bikas, R., Hosseini Monfared, H., Lis, T. & Siczek, M. (2012). Acta Cryst. E68, o367-o368.], 2010a[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010a). Acta Cryst. E66, o2015.],b[Bikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010b). Acta Cryst. E66, o2073.]); Hosseini Monfared et al. (2010a[Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236-o237.]). For catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010b[Hosseini Monfared, H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574-2583.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N4O2

  • Mr = 370.40

  • Monoclinic, C 2/c

  • a = 30.569 (3) Å

  • b = 5.1845 (3) Å

  • c = 12.5191 (11) Å

  • β = 112.408 (7)°

  • V = 1834.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.42 × 0.22 × 0.08 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.976, Tmax = 0.992

  • 13265 measured reflections

  • 1905 independent reflections

  • 965 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.078

  • S = 0.94

  • 1905 reflections

  • 163 parameters

  • All H-atom parameters refined

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.19 (2) 3.056 (3) 171 (2)
Symmetry code: (i) x, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design, synthesis, and characterization of metal complexes with Schiff-base ligands play a vital role in the coordination chemistry of transition metals. Hydrazones are a special group of compounds in the Schiff base family that are characterized by the presence of RR'C=N–N=C(O)R'' which two inter-linked nitrogen atoms (–N—N–) separate them from imines, oximes, etc. Hydrazone ligands derived from the condensation of acid hydrazides (R–CO–NH–NH2) with aromatic carbonyl compounds are important O, N-donor ligands. As biologically active compounds, hydrazones find application in the treatment of diseases such as tuberculosis, leprosy and mental disorder and also as anti-tumor agents. Hydrazone Schiff bases also have wide spread applications in fields such as coordination chemistry, bioinorganic chemistry , magnetics, electronics, nonlinear optics and fluorescent materials. Aroylhydrazone complexes also seem to be good candidates for catalytic oxidation studies because of their resistance to oxidation (Hosseini Monfared et al., 2010b). As part of our studies on the synthesis and characterization of hydrazone derivatives (Bikas et al., 2012, 2010a,b), we report here the crystal structure of (N',N''E,N',N''E)-N',N''-(1,4-phenylenebis(methan-1-yl-1-ylidene))dibenzohydrazide. The molecules of C22H18N4O2, lie across inversion centres and the asymmetric unit contains a half molecule (Fig. 1). The terminal benzene rings are parallel to each other and the distance of two planes which embrace these rings is 3.168 Å apart. The dihedral angle between the mean planes of the central and two terminal benzene rings is 66.03 (2)°. The molecule displays a trans configuration with respect to the C=N and N—N bonds. The packing diagram of the title compound is shown in Fig. 2. There are two strong intermolecular N—H···O hydrogen bonds in which the O atoms of the carbonyl groups (–C=O) act as hydrogen acceptors for the hydrogen of N—H and a one-dimensional chain is formed by these hydrogen bonds (Fig. 3).

Related literature top

For historical background to aroylhydrazones, see: Savanini et al. (2002). For related structures, see: Bikas et al. (2012, 2010a,b); Hosseini Monfared et al. (2010a). For catalytic applications of aroylhydrazones, see: Hosseini Monfared et al. (2010b).

Experimental top

For preparing the title compound a methanol (10 ml) solution of benzhydrazide (3 mmol) was added drop-wise to a methanol solution (10 ml) of terephthalaldehyde (1.5 mmol), and the mixture was refluxed for 4 h. The solution was then evaporated on a steam bath to 5 cm3 and cooled to room temperature. The white precipitates of the title compound were separated and filtered off, washed with 3 ml of cooled methanol and then dried in air. Colorless crystals were obtained from its methanol solution by thermal gradient method. Yield: 93%. IR (cm-1): 3253 (s, broad, N—H), 1654 (vs, C=O), 1607 (s, C=N), 1546 (vs), 1507 (m), 1361 (s), 1284 (vs), 1146 (s), 1069 (s), 969 (m), 915 (m), 846 (m), 723 (s), 692 (s), 661 (s), 569 (w), 538 (w), 423 (w).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound.
[Figure 3] Fig. 3. Hydrogen bonding in the title compound. The blue dashed lines indicate intermolecular N–H···O hydrogen bonds.
(E,E)-N'-{4-[(2-Benzoylhydrazin-1- ylidene)methyl]benzylidene}benzohydrazide top
Crystal data top
C22H18N4O2F(000) = 776
Mr = 370.40Dx = 1.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8004 reflections
a = 30.569 (3) Åθ = 1.4–27.5°
b = 5.1845 (3) ŵ = 0.09 mm1
c = 12.5191 (11) ÅT = 293 K
β = 112.408 (7)°Prism, colorless
V = 1834.3 (3) Å30.42 × 0.22 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
1905 independent reflections
Radiation source: fine-focus sealed tube965 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.4°
rotation method scansh = 3838
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 66
Tmin = 0.976, Tmax = 0.992l = 1515
13265 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078All H-atom parameters refined
S = 0.94 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
1905 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H18N4O2V = 1834.3 (3) Å3
Mr = 370.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 30.569 (3) ŵ = 0.09 mm1
b = 5.1845 (3) ÅT = 293 K
c = 12.5191 (11) Å0.42 × 0.22 × 0.08 mm
β = 112.408 (7)°
Data collection top
Stoe IPDS 2
diffractometer
1905 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
965 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.992Rint = 0.105
13265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 0.94Δρmax = 0.11 e Å3
1905 reflectionsΔρmin = 0.14 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84753 (7)0.1985 (4)0.32678 (19)0.0454 (6)
C20.84744 (9)0.3457 (5)0.4191 (2)0.0562 (7)
C30.81956 (9)0.2794 (6)0.4790 (2)0.0658 (8)
C40.79059 (10)0.0693 (6)0.4454 (3)0.0695 (8)
C50.78956 (10)0.0782 (5)0.3532 (3)0.0711 (8)
C60.81817 (8)0.0140 (5)0.2948 (2)0.0582 (7)
C70.87799 (7)0.2804 (4)0.26408 (19)0.0475 (6)
C80.94196 (8)0.0556 (5)0.1321 (2)0.0502 (6)
C100.96656 (9)0.1846 (5)0.0081 (2)0.0558 (7)
C111.00525 (9)0.2099 (5)0.0707 (2)0.0553 (7)
C120.97114 (7)0.0250 (4)0.06315 (18)0.0458 (6)
N10.89465 (7)0.0866 (4)0.21865 (17)0.0543 (6)
N20.92141 (7)0.1407 (3)0.15428 (16)0.0516 (5)
O10.88701 (6)0.5082 (3)0.25515 (14)0.0650 (5)
H10.8912 (7)0.074 (4)0.2351 (18)0.055 (7)*
H20.9404 (6)0.232 (4)0.1624 (16)0.052 (6)*
H30.8174 (7)0.118 (4)0.2312 (19)0.058 (7)*
H40.9424 (8)0.305 (4)0.0167 (18)0.065 (7)*
H51.0094 (7)0.343 (4)0.1209 (18)0.056 (7)*
H60.8219 (8)0.387 (4)0.546 (2)0.078 (8)*
H70.8670 (7)0.499 (4)0.4386 (17)0.068 (7)*
H80.7688 (9)0.228 (5)0.324 (2)0.101 (10)*
H90.7717 (9)0.017 (5)0.489 (2)0.096 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (14)0.0457 (13)0.0519 (16)0.0066 (11)0.0255 (13)0.0039 (12)
C20.0568 (16)0.0572 (16)0.0627 (18)0.0026 (13)0.0319 (15)0.0062 (13)
C30.0676 (17)0.0798 (19)0.0621 (19)0.0055 (16)0.0385 (17)0.0027 (16)
C40.0691 (19)0.0738 (19)0.084 (2)0.0066 (15)0.0495 (18)0.0112 (17)
C50.0715 (19)0.0601 (17)0.099 (2)0.0068 (15)0.0518 (19)0.0044 (17)
C60.0618 (15)0.0521 (14)0.0735 (19)0.0023 (13)0.0401 (15)0.0111 (15)
C70.0477 (13)0.0479 (14)0.0513 (16)0.0053 (12)0.0239 (12)0.0012 (12)
C80.0532 (15)0.0486 (16)0.0569 (16)0.0007 (12)0.0301 (13)0.0008 (12)
C100.0580 (16)0.0553 (15)0.0662 (18)0.0137 (13)0.0375 (15)0.0052 (13)
C110.0655 (16)0.0507 (14)0.0605 (18)0.0083 (13)0.0362 (15)0.0045 (13)
C120.0454 (14)0.0483 (13)0.0504 (15)0.0004 (12)0.0259 (12)0.0059 (12)
N10.0648 (14)0.0476 (12)0.0704 (15)0.0036 (11)0.0481 (13)0.0054 (11)
N20.0531 (12)0.0537 (12)0.0599 (13)0.0006 (9)0.0349 (11)0.0002 (10)
O10.0857 (12)0.0445 (9)0.0850 (13)0.0003 (9)0.0552 (10)0.0020 (9)
Geometric parameters (Å, º) top
C1—C61.381 (3)C7—N11.346 (3)
C1—C21.386 (3)C8—N21.281 (3)
C1—C71.490 (3)C8—C121.467 (3)
C2—C31.377 (3)C8—H21.00 (2)
C2—H70.97 (2)C10—C11i1.375 (3)
C3—C41.365 (4)C10—C121.379 (3)
C3—H60.99 (2)C10—H40.94 (2)
C4—C51.374 (3)C11—C10i1.375 (3)
C4—H90.98 (3)C11—C121.392 (3)
C5—C61.378 (3)C11—H50.91 (2)
C5—H80.98 (3)N1—N21.378 (2)
C6—H30.95 (2)N1—H10.87 (2)
C7—O11.228 (2)
C6—C1—C2118.3 (2)O1—C7—C1121.95 (19)
C6—C1—C7122.8 (2)N1—C7—C1115.0 (2)
C2—C1—C7118.9 (2)N2—C8—C12120.0 (2)
C3—C2—C1121.0 (3)N2—C8—H2123.2 (11)
C3—C2—H7121.3 (13)C12—C8—H2116.7 (11)
C1—C2—H7117.7 (13)C11i—C10—C12120.8 (2)
C4—C3—C2119.6 (3)C11i—C10—H4120.5 (13)
C4—C3—H6122.6 (14)C12—C10—H4118.5 (13)
C2—C3—H6117.8 (14)C10i—C11—C12120.8 (2)
C3—C4—C5120.5 (3)C10i—C11—H5120.9 (13)
C3—C4—H9120.0 (15)C12—C11—H5118.2 (13)
C5—C4—H9119.4 (15)C10—C12—C11118.4 (2)
C4—C5—C6119.7 (3)C10—C12—C8122.1 (2)
C4—C5—H8124.0 (17)C11—C12—C8119.5 (2)
C6—C5—H8116.3 (17)C7—N1—N2120.0 (2)
C5—C6—C1120.8 (3)C7—N1—H1120.9 (14)
C5—C6—H3119.3 (13)N2—N1—H1118.9 (14)
C1—C6—H3119.9 (13)C8—N2—N1114.51 (19)
O1—C7—N1123.0 (2)
C6—C1—C2—C31.3 (4)C2—C1—C7—N1149.0 (2)
C7—C1—C2—C3179.4 (2)C11i—C10—C12—C110.4 (4)
C1—C2—C3—C41.7 (4)C11i—C10—C12—C8179.2 (2)
C2—C3—C4—C50.9 (4)C10i—C11—C12—C100.4 (4)
C3—C4—C5—C60.3 (4)C10i—C11—C12—C8179.3 (2)
C4—C5—C6—C10.7 (4)N2—C8—C12—C1020.1 (3)
C2—C1—C6—C50.1 (4)N2—C8—C12—C11158.7 (2)
C7—C1—C6—C5178.1 (2)O1—C7—N1—N23.0 (3)
C6—C1—C7—O1147.0 (2)C1—C7—N1—N2177.04 (19)
C2—C1—C7—O130.9 (3)C12—C8—N2—N1179.3 (2)
C6—C1—C7—N133.0 (3)C7—N1—N2—C8168.7 (2)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.87 (2)2.19 (2)3.056 (3)171 (2)
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H18N4O2
Mr370.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)30.569 (3), 5.1845 (3), 12.5191 (11)
β (°) 112.408 (7)
V3)1834.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.22 × 0.08
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
13265, 1905, 965
Rint0.105
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.078, 0.94
No. of reflections1905
No. of parameters163
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.11, 0.14

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.19 (2)3.056 (3)171 (2)
Symmetry code: (i) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: karimian.r@gmail.com.

Acknowledgements

The authors are grateful to the Islamic Azad University (Tabriz Branch), the University of Zanjan and Ondokuz Mayis University.

References

First citationBikas, R., Hosseini Monfared, H., Bijanzad, K., Koroglu, A. & Kazak, C. (2010b). Acta Cryst. E66, o2073.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010a). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBikas, R., Hosseini Monfared, H., Lis, T. & Siczek, M. (2012). Acta Cryst. E68, o367–o368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHosseini Monfared, H., Bikas, R. & Mayer, P. (2010a). Acta Cryst. E66, o236–o237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosseini Monfared, H., Bikas, R. & Mayer, P. (2010b). Inorg. Chim. Acta, 363, 2574–2583.  Google Scholar
First citationSavanini, L., Chiasserini, L., Gaeta, A. & Pellerano, C. (2002). Bioorg. Med. Chem. 10, 2193–2198.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1433
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds