organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1550

Bis(N-methyl-N-phenyl­carbamo­yl)disulfane

aDepartment of Chemistry, Saint Michael's College, Colchester, Vermont 05439, USA, bDepartment of Chemistry, Indiana University, Bloomington, Indiana 47408, USA, and cDepartment of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
*Correspondence e-mail: barany@umn.edu

(Received 24 March 2012; accepted 12 April 2012; online 28 April 2012)

The title compound, C16H16N2O2S2, has been synthesized by several different high-yield routes, and has been encountered as a co-product in a number of reaction pathways, ever since it became of inter­est to our research program over 30 years ago. We now confirm the proposed mol­ecular structure in which the mol­ecule exhibits a twofold axis of symmetry through the mid-point of the S—S bond and the two planes defined by the (carbamo­yl)sulfenyl moieties are essentially perpendicular to each other [dihedral angle = 81.55 (14)°].

Related literature

For the preparation of the title compound, and of very closely related chemical structures, see: Kobayashi et al. (1973[Kobayashi, N., Osawa, A. & Fujisawa, T. (1973). Chem. Lett. 12, 1315-1318.]); Barany et al. (1983[Barany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750-4761.]); Schroll & Barany (1986[Schroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866-1881.]); Schrader et al. (2011[Schrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882-7892.]). For related structures, see: CSD refcodes BOWGAV (Bereman et al., 1983[Bereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25-30.]), DBZOSS01&03 (Rout et al., 1983[Rout, G. C., Seshasayee, M., Subrahmanyan, T. & Aravamudan, G. (1983). Acta Cryst. C39, 1387-1389.]; Paul & Srikrishnan, 2004[Paul, C. & Srikrishnan, T. (2004). J. Chem. Crystallogr. 34, 211-217.]), METHUS03 (Wang & Liao, 1989[Wang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65-69.]), NELTUT (Fun et al., 2001[Fun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717-o718.]), JAXPOO (Raya et al., 2005[Raya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131-o3132.]), UDALER (Li et al., 2006[Li, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417-m1418.]) and EMASIV (Singh et al., 2011[Singh, S., Chaturvedi, J., Bhattacharya, S. & Noth, H. (2011). Polyhedron, 30, 93-97.]). For the theoretical optimum torsion angle about the disulfane, see: Pauling (1949[Pauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495-499.]); Torrico-Vallejos et al. (2010[Torrico-Vallejos, S., Erben, M. F., Boese, R. & Vedova, C. O. D. (2010). New J. Chem. 34, 1365-1372.]) and references cited therein.

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O2S2

  • Mr = 332.43

  • Monoclinic, C 2/c

  • a = 15.286 (3) Å

  • b = 9.7849 (18) Å

  • c = 11.597 (2) Å

  • β = 107.433 (3)°

  • V = 1654.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.40 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.958

  • 5726 measured reflections

  • 1468 independent reflections

  • 1140 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.05

  • 1468 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis(N-methyl-N-phenylcarbamoyl)disulfane (C16H16N2O2S2) was first reported by Kobayashi et al. (1973). The compound became of interest to our research program over thirty years ago (Barany et al., 1983; Schroll and Barany, 1986) and has been synthesized by several different high-yield routes, as well as encountered as a co-product in a number of reaction pathways (Barany et al., 1983; Schroll and Barany, 1986; Schrader et al., 2011). We now confirm the molecular structure of the title compound by single-crystal X-ray analysis. The disulfane reported herein is the flagship of the homologous series of bis(N-methyl-N-phenylcarbamoyl)polysulfanes, C16H16N2O2Sn , which have been prepared and structurally characterized for n = 1–6.

The title compound exhibits a twofold axis of symmetry through the center of the S–S bond, and all bond distances and angles are within expected ranges. The N–C bond distance is 1.35 Å, consistent with ~60% double bond character, with the consequence that the (carbamoyl)sulfenyl atoms (S1,C1,O1,N1,C2,C3) are in a plane. The aromatic ring is nearly perpendicular to the (carbamoyl)sulfenyl plane, with a torsion angle of 92.5° (C2–N1–C3–C4). The S–S bond length of 2.03 Å is slightly shorter than the 2.07 Å reported for the S–S bond length in elemental sulfur (S8), suggesting that some partial double bond character extends through the S–S bond due to its adjacency to carbonyl groups on both sides. Several other reference compounds also have an S–S bond length of 2.01–2.03 Å (Bereman et al., 1983; Rout et al., 1983; Paul and Srikrishnan, 2004; Fun et al., 2001; Raya et al., 2005; Li et al., 2006; Singh et al., 2011). The most noteworthy feature of the title compound is the torsion angle about the disulfane, which is 81.6° and as such is somewhat smaller than the theoretical optimum of 90.0° (Pauling, 1949; Torrico-Vallejos et al., 2010) that has been explained as allowing for minimal mutual repulsion of pπ orbital electron lone pairs in sulfur. A comparable deviation from theory was reported for dibenzoyl disulfide (Rout et al., 1983; Paul & Srikrishnan, 2004), where the torsion angle is 80.8°. Bis(N-methyl-N-phenylthiocarbamoyl)disulfane, which only differs from the title compound by two thiocarbonyls in place of two carbonyls, has a torsion angle about the disulfane of 89.8° and shows a conformation that is not completely superimposable on the title compound (Fun et al., 2001).

Note regarding nomenclature: The title compound is named in a manner that is consistent with our prior publications. The closely related C16H16N2S4 was named bis(N-methyl-N-phenylthiocarbamoyl) disulfide by Fun et al. (2001), but we have chosen the "disulfane" revised name for consistency.

Table 1 Selected geometric parameters (Å, °)

N1–C1 1.345 (3)

N1–C2 1.461 (3)

N1–C3 1.442 (2)

C1–O1 1.209 (2)

C1–S1 1.825 (2)

S1–S1 2.0262 (11)

C2–N1–C3–C4 92.5 (3)

C1–S1–S1–C1 81.55 (14)

Symmetry operator (a): -x + 1, y, -z + 1/2

Related literature top

For the preparation of the title compound, and of very closely related chemical structures, see: Kobayashi et al. (1973); Barany et al. (1983); Schroll & Barany (1986); Schrader et al. (2011). For related structures, see: CSD refcodes BOWGAV (Bereman et al., 1983), DBZOSS01&03 (Rout et al., 1983; Paul & Srikrishnan, 2004), METHUS03 (Wang & Liao, 1989), NELTUT (Fun et al., 2001), JAXPOO (Raya et al., 2005), UDALER (Li et al., 2006) and EMASIV (Singh et al., 2011). For the theoretical optimum torsion angle about the disulfane, see: Pauling (1949); Torrico-Vallejos et al. (2010) and references cited therein. For values in dibenzoyl disulfide, see: Rout et al. (1983); Paul & Srikrishnan (2004).

Experimental top

The title compound was prepared in high yield from the reaction of N-methylaniline with bis(chlorocarbonyl)disulfane, and recrystallized from hot carbon tetrachloride/chloroform (3:2) in 60–85% recovery or from hot acetone in 75% recovery (Barany et al., 1983).

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystallographic structure of the title compound showing 50% probability displacement ellipsoids and with all non-hydrogen atoms labelled and numbered.
Bis(N-methyl-N-phenylcarbamoyl)disulfane top
Crystal data top
C16H16N2O2S2F(000) = 696
Mr = 332.43Dx = 1.334 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.286 (3) ÅCell parameters from 1966 reflections
b = 9.7849 (18) Åθ = 2.5–24.4°
c = 11.597 (2) ŵ = 0.33 mm1
β = 107.433 (3)°T = 296 K
V = 1654.9 (5) Å3Needle, colorless
Z = 40.40 × 0.16 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
1468 independent reflections
Radiation source: sealed tube1140 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1817
Tmin = 0.880, Tmax = 0.958k = 011
5726 measured reflectionsl = 013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0553P)2 + 1.0043P]
where P = (Fo2 + 2Fc2)/3
1468 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H16N2O2S2V = 1654.9 (5) Å3
Mr = 332.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.286 (3) ŵ = 0.33 mm1
b = 9.7849 (18) ÅT = 296 K
c = 11.597 (2) Å0.40 × 0.16 × 0.13 mm
β = 107.433 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1468 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
1140 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.958Rint = 0.031
5726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
1468 reflectionsΔρmin = 0.18 e Å3
101 parameters
Special details top

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56058 (4)0.49722 (6)0.73116 (5)0.0567 (2)
O10.47025 (9)0.69997 (17)0.58995 (15)0.0626 (5)
N10.61329 (11)0.65722 (19)0.57979 (17)0.0514 (5)
C10.54116 (13)0.6361 (2)0.62131 (19)0.0481 (5)
C20.60771 (17)0.7649 (3)0.4905 (2)0.0697 (7)
H2A0.54460.78870.45300.105*
H2B0.63410.73280.43010.105*
H2C0.64070.84380.52980.105*
C30.69962 (13)0.5872 (2)0.62742 (19)0.0466 (5)
C40.76230 (16)0.6332 (3)0.7319 (2)0.0681 (7)
H4A0.74860.70710.77390.082*
C50.84668 (17)0.5672 (4)0.7739 (3)0.0852 (9)
H5A0.88930.59620.84510.102*
C60.86714 (18)0.4597 (3)0.7107 (3)0.0806 (9)
H6A0.92350.41590.73930.097*
C70.80540 (18)0.4168 (3)0.6063 (3)0.0716 (7)
H7A0.82020.34490.56310.086*
C80.72070 (16)0.4796 (2)0.5640 (2)0.0562 (6)
H8A0.67820.44930.49320.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0465 (3)0.0663 (4)0.0681 (4)0.0096 (3)0.0337 (3)0.0104 (3)
O10.0407 (8)0.0691 (10)0.0836 (12)0.0153 (7)0.0269 (8)0.0072 (8)
N10.0395 (9)0.0581 (11)0.0632 (11)0.0094 (8)0.0255 (8)0.0135 (9)
C10.0387 (11)0.0530 (12)0.0566 (13)0.0036 (9)0.0205 (9)0.0051 (10)
C20.0644 (15)0.0712 (16)0.0834 (18)0.0110 (13)0.0370 (14)0.0239 (14)
C30.0349 (10)0.0546 (12)0.0573 (13)0.0039 (9)0.0244 (9)0.0078 (10)
C40.0496 (13)0.0865 (18)0.0723 (16)0.0010 (13)0.0244 (12)0.0099 (14)
C50.0468 (14)0.120 (3)0.0796 (19)0.0082 (16)0.0043 (13)0.0141 (19)
C60.0438 (14)0.092 (2)0.114 (2)0.0204 (14)0.0361 (16)0.0376 (19)
C70.0624 (15)0.0610 (15)0.105 (2)0.0186 (13)0.0467 (16)0.0171 (15)
C80.0508 (13)0.0567 (14)0.0675 (14)0.0032 (10)0.0274 (11)0.0033 (11)
Geometric parameters (Å, º) top
S1—O1i3.0078 (18)C3—C81.377 (3)
S1—C11.825 (2)C4—C51.393 (4)
S1—S1i2.0262 (11)C4—H4A0.9300
O1—C11.209 (2)C5—C61.371 (4)
N1—C11.345 (3)C5—H5A0.9300
N1—C31.442 (2)C6—C71.359 (4)
N1—C21.461 (3)C6—H6A0.9300
C2—H2A0.9600C7—C81.384 (3)
C2—H2B0.9600C7—H7A0.9300
C2—H2C0.9600C8—H8A0.9300
C3—C41.376 (3)
C1—S1—S1i100.51 (7)C3—C4—C5118.9 (3)
C1—N1—C3122.98 (17)C3—C4—H4A120.5
C1—N1—C2118.97 (17)C5—C4—H4A120.5
C3—N1—C2117.79 (17)C6—C5—C4120.3 (3)
O1—C1—N1124.8 (2)C6—C5—H5A119.8
O1—C1—S1122.58 (16)C4—C5—H5A119.8
N1—C1—S1112.64 (14)C7—C6—C5120.3 (2)
N1—C2—H2A109.5C7—C6—H6A119.8
N1—C2—H2B109.5C5—C6—H6A119.8
H2A—C2—H2B109.5C6—C7—C8120.3 (3)
N1—C2—H2C109.5C6—C7—H7A119.8
H2A—C2—H2C109.5C8—C7—H7A119.8
H2B—C2—H2C109.5C3—C8—C7119.6 (2)
C4—C3—C8120.5 (2)C3—C8—H8A120.2
C4—C3—N1119.9 (2)C7—C8—H8A120.2
C8—C3—N1119.5 (2)
C3—N1—C1—O1174.2 (2)C8—C3—C4—C51.3 (4)
C2—N1—C1—O10.2 (3)N1—C3—C4—C5177.6 (2)
C3—N1—C1—S16.4 (3)C3—C4—C5—C61.0 (4)
C2—N1—C1—S1179.66 (17)C4—C5—C6—C70.2 (4)
S1i—S1—C1—O10.1 (2)C5—C6—C7—C81.2 (4)
S1i—S1—C1—N1179.48 (15)C4—C3—C8—C70.4 (3)
C1—N1—C3—C481.5 (3)N1—C3—C8—C7176.7 (2)
C2—N1—C3—C492.5 (3)C6—C7—C8—C30.9 (4)
C1—N1—C3—C8102.2 (3)C1—S1—S1i—C1i81.55 (14)
C2—N1—C3—C883.8 (3)
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O2S2
Mr332.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)15.286 (3), 9.7849 (18), 11.597 (2)
β (°) 107.433 (3)
V3)1654.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.40 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.880, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5726, 1468, 1140
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.05
No. of reflections1468
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Dr Victor G. Young, Jr, Director of the X-Ray Crystallographic Facility at the University of Minnesota (where the data was obtained), who provided invaluable assistance and discussions during the preparation of this manuscript, Dr Jed Fisher for useful discussions and Tat'Yana Kenigsberg for assistance with the literature. Prior synthetic and mechanistic work involving the title compound were carried out by (in chronological order ending with most recent): David A. Halsrud, Dr Andrew W. Mott, Dr Steven J. Eastep, Matt Swenson, Michael J. Barany, Alex M. Schrader and Phillip T. Goldblatt.

References

First citationBarany, G., Schroll, A. L., Mott, A. W. & Halsrud, D. A. (1983). J. Org. Chem. 48, 4750–4761.  CrossRef CAS Web of Science Google Scholar
First citationBereman, R. D., Baird, D. M., Bordner, J. & Dorfman, J. R. (1983). Polyhedron, 2, 25–30.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Razak, I. A., Bei, F.-L., Jian, F.-F., Yang, X.-J., Lu, L. & Wang, X. (2001). Acta Cryst. E57, o717–o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKobayashi, N., Osawa, A. & Fujisawa, T. (1973). Chem. Lett. 12, 1315–1318.  CrossRef Web of Science Google Scholar
First citationLi, F., Yin, H.-D., Hong, M., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1417–m1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaul, C. & Srikrishnan, T. (2004). J. Chem. Crystallogr. 34, 211–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationPauling, L. (1949). Proc. Natl Acad. Sci. USA, 35, 495–499.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRaya, I., Baba, I., Rosli, F. Z. & Yamin, B. M. (2005). Acta Cryst. E61, o3131–o3132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRout, G. C., Seshasayee, M., Subrahmanyan, T. & Aravamudan, G. (1983). Acta Cryst. C39, 1387–1389.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchrader, A. M., Schroll, A. L. & Barany, G. (2011). J. Org. Chem. 76, 7882–7892.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchroll, A. L. & Barany, G. (1986). J. Org. Chem. 51, 1866–1881.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Chaturvedi, J., Bhattacharya, S. & Noth, H. (2011). Polyhedron, 30, 93–97.  Web of Science CSD CrossRef CAS Google Scholar
First citationTorrico-Vallejos, S., Erben, M. F., Boese, R. & Vedova, C. O. D. (2010). New J. Chem. 34, 1365–1372.  CAS Google Scholar
First citationWang, Y. & Liao, J. H. (1989). Acta Cryst. B45, 65–69.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1550
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds