organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1453-o1454

Tizoxanide pyridine monosolvate

aSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
*Correspondence e-mail: liding@mail.sysu.edu.cn

(Received 6 April 2012; accepted 13 April 2012; online 21 April 2012)

In the title compound [systematic name: 2-hy­droxy-N-(5-nitro-1,3-thia­zol-2-yl)benzamide pyridine monosolvate], C10H7N3O4S·C5H5N, the dihedral angle between the pyridine and benzamide rings is 80.55 (7)°. An intamolecular O—H⋯N hydrogen bond occurs in the tizoxanide. In the crystal, the components are linked by an O–H⋯N hydrogen bond, forming a zigzag chain along the c axis. Aromatic ππ inter­actions between inversion-related pyridine rings [centroid–centroid distance = 3.803 (6) Å] are also observed.

Related literature

For the biological activity of tizoxanide, see: Rao et al. (2009[Rao, R. U., Huang, Y., Fischer, K., Fischer, P. U. & Weil, G. J. (2009). Exp. Parasitol. 121, 38-45.]); Gargala et al. (2000[Gargala, G., Delaunay, A., Li, X., Brasseur, P., Favennec, L. & Ballet, J. J. (2000). J. Antimicrob. Chemother. 46, 57-60.]); Dubreuil et al. (1996[Dubreuil, L., Houcke, I., Mouton, Y. & Rossignol, J. F. (1996). Antimicrob. Agents Chemother. 40, 2266-2270.]); Ashton et al. (2010[Ashton, L. V., Callan, R. L., Rao, S. & Landolt, G. A. (2010). Vet Med Int. pii: 891010.]); Korba, Elazar et al. (2008[Korba, B. E., Elazar, M., Lui, P., Rossignol, J. F. & Glenn, J. S. (2008). Antimicrob. Agents Chemother. 52, 4069-4071.]); Zhao et al. (2010[Zhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z. & Meng, X. (2010). J. Vet. Pharmacol. Ther. 33, 147-153. ]). For related structures and background to the bioactivity of tizoxanide, see: Pankuch & Appelbaum (2006[Pankuch, G. A. & Appelbaum, P. C. (2006). Antimicrob. Agents Chemother. 50, 1112-1117.]); Stettler et al. (2003[Stettler, M., Fink, R., Walker, M., Gottstein, B., Geary, T. G., Rossignol, J. F. & Hemphill, A. (2003). Antimicrob. Agents Chemother. 47, 467-474.]); Broekhuysen et al. (2000[Broekhuysen, J., Stockis, A., Lins, R. L., De Graeve, J. & Rossignol, J. F. (2000). Int. J. Clin. Pharmacol. Ther. 38, 387-394.]). For details on experimental methods used to obtain this form and analogues, see: Navarrete-Vazquez et al. (2011[Navarrete-Vazquez, G., Chavez-Silva, F., Argotte-Ramos, R., Rodriguez-Gutierrez, M. C., Chan-Bacab, M. J., Cedillo-Rivera, R., Moo-Puc, R. & Hernandez-Nunez, E. (2011). Bioorg. Med. Chem. Lett. 21, 3168-3171.]). For a pyridine-solvated forms, see: Dong et al. (2011[Dong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096.]). For additional literature on related tizoxanide thiazolide compounds, see: Megraud et al. (1998[Megraud, F., Occhialini, A. & Rossignol, J. F. (1998). Antimicrob. Agents Chemother. 42, 2836-2840.]); Chan-Bacab et al. (2009[Chan-Bacab, M. J., Hernandez-Nunez, E. & Navarrete-Vazquez, G. (2009). J. Antimicrob. Chemother. 63, 1292-1293.]); Korba, Montero et al. (2008[Korba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antiviral Res. 77, 56-63.]); Stachulski et al. (2011a[Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011a). J. Med. Chem. 54, 4119-4132.]b[Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Lawrenson, A. S., Moores, S. L., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011b). J. Med. Chem. 54, 8670-8680.]). For the biological activity of the anti-parasitic agent nitazoxanide {systematic name: [2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl]ethanoate}, see: Hemp­hill et al. (2006[Hemphill, A., Mueller, J. & Esposito, M. (2006). Expert Opin. Pharmacother. 7, 953-964.]); Rossignol et al. (2006[Rossignol, J. F., Abu-Zekry, M., Hussein, A. & Santoro, M. G. (2006). Lancet, 368, 124-129.]). For the structure of nitazoxanide, see: Bruno et al. (2010[Bruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51-57.]). For the effect of crystallization from different solvents on drug properties, see: Trask et al. (2004[Trask, A. V., Motherwell, W. D. & Jones, W. (2004). Chem. Commun. pp. 890-891.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7N3O4S·C5H5N

  • Mr = 344.35

  • Triclinic, [P \overline 1]

  • a = 6.9826 (3) Å

  • b = 10.0462 (5) Å

  • c = 11.8387 (7) Å

  • α = 102.998 (5)°

  • β = 99.037 (5)°

  • γ = 104.367 (4)°

  • V = 763.69 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.16 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent Xcalibur Onyx Nova diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.712, Tmax = 0.806

  • 4493 measured reflections

  • 2481 independent reflections

  • 2349 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.08

  • 2481 reflections

  • 265 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O1 0.85 (2) 1.95 (2) 2.6248 (16) 135.9 (18)
O1—H25⋯N8 0.94 (2) 1.64 (2) 2.5671 (16) 175 (3)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Nitazoxanide was first developed as an anti-parasitic agent, and marketed in the USA since 2002 (Stachulski et al., 2011a). In humans, once orally administered, nitazoxanide is hydrolyzed in plasma to its active metabolite tizoxanide (TIZ), which is 99% protein bound (Broekhuysen et al., 2000; Ashton et al., 2010). Nitazoxanide exhibits a broad spectrum of activities against intracellular and extracellular protozoa, helminthes, aerobic and anaerobic bacteria, and viruses infecting humans and animals (Hemphill et al., 2006; Rossignol et al., 2006; Korba, Montero et al., 2008; Zhao et al., 2010; Stachulski et al., 2011b).

In the present study, tizoxanide was prepared via deacetylation of nitazoxanide in pyridine and it crystallized as a 1:1 ratio complex with pyridine as crystals. Thermogravimetric analysis was performed to study the thermal stability of the title complex, which indicated a one-step molecular weight loss of 22.43% corresponding to one pyridine molecule in the temperature range of 333–373 K, confirming a 1:1 ratio complex of tizoxanide-pyridine (theoretical weight loss 22.97%).

The tizoxanide and pyridine are linked through hydrogen bond O1–H···N8 (bond distance = 2.567 Å). A stable crystal was formed through intramolecular O1—H···N7 (bond distance = 2.625 Å) and intermolecular O1—H···N8 hydrogen-bonding interactions involving the benzamide group and the pyridine molecule. It is arresting that ππ interactions play an important role in the molecular packing. Inversion-related pyridine molecules are linked by π-π interactions [centroid-centroid distance = 3.803 (6) Å], which stabilize the crystal. By comparison with X-ray of prodrug nitazoxanide (Bruno et al., 2010), tizoxanide has stronger intramolecular hydrogen bonds. These hydrogen bonds may be useful for pharmaceutical preparation of tizoxanide. The molecular and crystal structures are stabilized by intra- (O1—H···N7) and intermolecular (O1—H···N8, π-stacking) interactions respectively, which give a great stability to the crystal building.

When the drug crystallized from different solvents, the crystal form may be changed and then altering a drug's properties, such as melting point and solubility (Trask et al., 2004). We speculated that the replacement of a weak alkaline solvent or solid compound containing the pyridine ring may form the corresponding crystals made of different formulations of active drugs for tizoxanide. Obviously, crystal form of the title compound is different from prodrug nitazoxanide, which suggests that changing solvent or pyridine derivatives may form new crystals and new dosage forms of drugs. This is our future work.

Related literature top

For the biological activity of tizoxanide, see: Rao et al. (2009); Gargala et al. (2000); Dubreuil et al. (1996); Ashton et al. (2010); Korba, Elazar et al. (2008); Zhao et al. (2010). For related structures and background to the bioactivity of tizoxanide, see: Pankuch & Appelbaum (2006); Stettler et al. (2003); Broekhuysen et al. (2000). For details on experimental methods used to obtain this form and analogues, see: Navarrete-Vazquez et al. (2011). For a pyridine-solvated forms, see: Dong et al. (2011). For additional literature on related tizoxanide thiazolide compounds, see: Megraud et al. (1998); Chan-Bacab et al. (2009); Korba, Montero et al. (2008); Stachulski et al. (2011a,b). For the biological activity of the anti-parasitic agent nitazoxanide {systematic name: [2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl]ethanoate}, see: Hemphill et al. (2006); Rossignol et al. (2006). For the structure of nitazoxanide, see: Bruno et al. (2010). For the effect of crystallization from different solvents on the properties of drugs, see: Trask et al. (2004).

Experimental top

A solution of 80 mg of nitazoxanide in 250 ul of pyridine was stirred for 15 min at 333 K and left to crystallize at 293 K overnight. A size suitable flaxen needle was attained for X-ray analysis.

Thermogravimetric analysis for the title complex was performed using a NETZSCH STA409 instrument with sample. The sample was placed in an aluminium cell, heated at 5 °C min-1 and purged with nitrogen gas flowing at 20 cm3 min-1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound (I). The displacement ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional plane formed by the hydrogen bonds of the molecules; dashed lines represent hydrogen bonds and some of the H atoms have been omitted for reasons of clarity.
[Figure 3] Fig. 3. The thermogravimetric analysis of the title compound showing a one-step molecular weight loss of 22.43% corresponding to one pyridine molecule.
2-Hydroxy-N-(5-nitro-1,3-thiazol-2-yl)benzamide pyridine monosolvate top
Crystal data top
C10H7N3O4S·C5H5NZ = 2
Mr = 344.35F(000) = 356
Triclinic, P1Dx = 1.497 Mg m3
a = 6.9826 (3) ÅCu Kα radiation, λ = 1.5418 Å
b = 10.0462 (5) ÅCell parameters from 3840 reflections
c = 11.8387 (7) Åθ = 3.9–65.7°
α = 102.998 (5)°µ = 2.16 mm1
β = 99.037 (5)°T = 293 K
γ = 104.367 (4)°Rod, colorless
V = 763.69 (7) Å30.20 × 0.15 × 0.10 mm
Data collection top
Agilent Xcalibur Onyx Nova
diffractometer
2481 independent reflections
Radiation source: Nova (Cu) X-ray Source2349 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 8.2417 pixels mm-1θmax = 64.0°, θmin = 3.9°
ω scansh = 48
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1111
Tmin = 0.712, Tmax = 0.806l = 1313
4493 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.2467P]
where P = (Fo2 + 2Fc2)/3
2481 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H7N3O4S·C5H5Nγ = 104.367 (4)°
Mr = 344.35V = 763.69 (7) Å3
Triclinic, P1Z = 2
a = 6.9826 (3) ÅCu Kα radiation
b = 10.0462 (5) ŵ = 2.16 mm1
c = 11.8387 (7) ÅT = 293 K
α = 102.998 (5)°0.20 × 0.15 × 0.10 mm
β = 99.037 (5)°
Data collection top
Agilent Xcalibur Onyx Nova
diffractometer
2481 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2349 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.806Rint = 0.016
4493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.08Δρmax = 0.20 e Å3
2481 reflectionsΔρmin = 0.25 e Å3
265 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13956 (5)0.44049 (4)0.18461 (3)0.02193 (13)
O20.38793 (16)0.69194 (12)0.07942 (9)0.0287 (3)
O40.09371 (17)0.24233 (13)0.40776 (9)0.0379 (3)
O50.23353 (17)0.06550 (12)0.34113 (10)0.0375 (3)
N60.12170 (18)0.18630 (14)0.32633 (11)0.0274 (3)
N70.31757 (17)0.56377 (13)0.04990 (11)0.0200 (3)
N80.59845 (19)0.69146 (13)0.49121 (11)0.0275 (3)
C90.5749 (2)0.80811 (15)0.24522 (13)0.0208 (3)
C100.5468 (2)0.80762 (15)0.12457 (12)0.0201 (3)
N110.09847 (18)0.33048 (13)0.00698 (11)0.0225 (3)
C120.4136 (2)0.68695 (15)0.02405 (12)0.0208 (3)
C130.0197 (2)0.22865 (17)0.10729 (14)0.0241 (3)
C140.0158 (2)0.26888 (16)0.20893 (13)0.0230 (3)
C150.8152 (2)1.04417 (17)0.29859 (14)0.0290 (4)
C160.1899 (2)0.44557 (15)0.03509 (12)0.0196 (3)
C170.7287 (2)0.61931 (18)0.51622 (16)0.0344 (4)
C180.5727 (3)0.7465 (2)0.69334 (16)0.0470 (5)
C190.6541 (2)0.92756 (16)0.09458 (14)0.0252 (3)
C200.7871 (2)1.04502 (17)0.17969 (15)0.0296 (4)
C210.5227 (3)0.75377 (18)0.57844 (15)0.0354 (4)
C220.7067 (3)0.6728 (2)0.71945 (17)0.0518 (6)
C230.7866 (3)0.6082 (2)0.6301 (2)0.0489 (5)
C240.7100 (2)0.92842 (16)0.33129 (14)0.0251 (3)
O10.47188 (15)0.69476 (11)0.27650 (9)0.0237 (2)
H190.631 (3)0.9235 (18)0.0134 (17)0.029 (4)*
H240.725 (3)0.9313 (19)0.4158 (17)0.032 (4)*
H200.857 (3)1.127 (2)0.1564 (17)0.040 (5)*
H130.093 (3)0.138 (2)0.1026 (15)0.028 (4)*
H150.906 (3)1.122 (2)0.3591 (17)0.035 (5)*
H70.332 (3)0.561 (2)0.1221 (18)0.033 (5)*
H170.779 (3)0.575 (2)0.4501 (18)0.040 (5)*
H210.427 (3)0.805 (2)0.5559 (19)0.052 (6)*
H220.739 (4)0.670 (3)0.799 (2)0.075 (7)*
H180.514 (4)0.800 (3)0.762 (2)0.068 (7)*
H230.877 (3)0.558 (2)0.641 (2)0.056 (6)*
H250.525 (4)0.698 (3)0.355 (2)0.073 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0230 (2)0.0258 (2)0.01336 (19)0.00558 (15)0.00094 (14)0.00226 (14)
O20.0343 (6)0.0325 (6)0.0151 (5)0.0044 (5)0.0018 (4)0.0073 (4)
O40.0353 (6)0.0502 (7)0.0181 (6)0.0042 (5)0.0012 (5)0.0023 (5)
O50.0310 (6)0.0309 (6)0.0347 (7)0.0005 (5)0.0007 (5)0.0057 (5)
N60.0209 (6)0.0329 (8)0.0206 (7)0.0062 (6)0.0005 (5)0.0030 (6)
N70.0223 (6)0.0237 (6)0.0121 (6)0.0062 (5)0.0014 (5)0.0033 (5)
N80.0310 (7)0.0258 (7)0.0186 (6)0.0012 (5)0.0002 (5)0.0063 (5)
C90.0200 (7)0.0237 (7)0.0195 (7)0.0088 (6)0.0045 (6)0.0049 (6)
C100.0200 (7)0.0232 (7)0.0176 (7)0.0096 (6)0.0037 (6)0.0035 (6)
N110.0227 (6)0.0238 (6)0.0200 (6)0.0071 (5)0.0034 (5)0.0044 (5)
C120.0194 (7)0.0249 (8)0.0186 (7)0.0086 (6)0.0038 (6)0.0051 (6)
C130.0208 (7)0.0237 (8)0.0249 (8)0.0062 (6)0.0032 (6)0.0027 (6)
C140.0192 (7)0.0255 (8)0.0197 (7)0.0064 (6)0.0010 (6)0.0006 (6)
C150.0291 (8)0.0231 (8)0.0263 (8)0.0031 (7)0.0008 (7)0.0009 (7)
C160.0186 (7)0.0247 (7)0.0158 (7)0.0097 (6)0.0031 (5)0.0030 (6)
C170.0292 (8)0.0318 (9)0.0379 (10)0.0005 (7)0.0043 (7)0.0128 (8)
C180.0652 (13)0.0402 (10)0.0225 (9)0.0032 (9)0.0079 (9)0.0052 (8)
C190.0273 (8)0.0267 (8)0.0220 (8)0.0086 (6)0.0044 (6)0.0078 (6)
C200.0320 (8)0.0247 (8)0.0300 (9)0.0047 (7)0.0058 (7)0.0084 (7)
C210.0433 (10)0.0320 (9)0.0248 (9)0.0046 (8)0.0050 (7)0.0047 (7)
C220.0655 (13)0.0449 (11)0.0231 (10)0.0172 (10)0.0096 (9)0.0168 (9)
C230.0374 (10)0.0422 (11)0.0595 (14)0.0019 (9)0.0110 (9)0.0292 (10)
C240.0268 (8)0.0264 (8)0.0187 (8)0.0074 (6)0.0022 (6)0.0018 (6)
O10.0269 (5)0.0253 (6)0.0146 (5)0.0025 (4)0.0018 (4)0.0048 (4)
Geometric parameters (Å, º) top
S1—C141.7269 (15)C13—H130.944 (18)
S1—C161.7363 (14)C15—C201.393 (2)
O2—C121.2240 (18)C15—C241.382 (2)
O4—N61.2381 (17)C15—H150.94 (2)
O5—N61.2265 (18)C17—C231.383 (3)
N6—C141.4217 (19)C17—H170.97 (2)
N7—C121.3775 (19)C18—C211.373 (3)
N7—C161.3684 (19)C18—C221.369 (3)
N7—H70.85 (2)C18—H181.06 (2)
N8—C171.334 (2)C19—C201.377 (2)
N8—C211.335 (2)C19—H190.939 (18)
C9—C101.410 (2)C20—H200.97 (2)
C9—C241.403 (2)C21—H210.98 (2)
C9—O11.3483 (18)C22—C231.381 (3)
C10—C121.481 (2)C22—H220.94 (3)
C10—C191.403 (2)C23—H230.92 (2)
N11—C131.365 (2)C24—H240.983 (19)
N11—C161.3148 (19)O1—H250.93 (3)
C13—C141.355 (2)
C14—S1—C1686.32 (7)N11—C16—S1116.83 (11)
O4—N6—C14116.98 (13)N11—C16—N7121.36 (13)
O5—N6—O4124.16 (13)N8—C17—C23121.43 (18)
O5—N6—C14118.86 (13)N8—C17—H17116.3 (11)
C12—N7—H7119.5 (13)C23—C17—H17122.3 (11)
C16—N7—C12123.00 (12)C21—C18—H18121.1 (13)
C16—N7—H7117.4 (13)C22—C18—C21118.52 (19)
C17—N8—C21118.94 (14)C22—C18—H18120.4 (13)
C24—C9—C10118.84 (13)C10—C19—H19116.6 (11)
O1—C9—C10120.13 (13)C20—C19—C10121.77 (14)
O1—C9—C24121.02 (13)C20—C19—H19121.6 (11)
C9—C10—C12124.80 (13)C15—C20—H20121.2 (11)
C19—C10—C9118.97 (13)C19—C20—C15118.89 (15)
C19—C10—C12116.22 (13)C19—C20—H20119.8 (11)
C16—N11—C13109.77 (12)N8—C21—C18122.73 (18)
O2—C12—N7119.41 (13)N8—C21—H21116.0 (13)
O2—C12—C10123.02 (13)C18—C21—H21121.2 (13)
N7—C12—C10117.56 (12)C18—C22—C23119.32 (17)
N11—C13—H13120.4 (11)C18—C22—H22116.7 (16)
C14—C13—N11114.35 (14)C23—C22—H22124.0 (16)
C14—C13—H13125.2 (11)C17—C23—H23116.4 (15)
N6—C14—S1120.07 (11)C22—C23—C17119.06 (19)
C13—C14—S1112.72 (11)C22—C23—H23124.5 (15)
C13—C14—N6127.21 (14)C9—C24—H24119.1 (11)
C20—C15—H15121.3 (11)C15—C24—C9120.72 (14)
C24—C15—C20120.79 (15)C15—C24—H24120.1 (11)
C24—C15—H15117.9 (11)C9—O1—H25111.8 (16)
N7—C16—S1121.81 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O10.85 (2)1.95 (2)2.6248 (16)135.9 (18)
O1—H25···N80.94 (2)1.64 (2)2.5671 (16)175 (3)

Experimental details

Crystal data
Chemical formulaC10H7N3O4S·C5H5N
Mr344.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9826 (3), 10.0462 (5), 11.8387 (7)
α, β, γ (°)102.998 (5), 99.037 (5), 104.367 (4)
V3)763.69 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.16
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent Xcalibur Onyx Nova
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.712, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
4493, 2481, 2349
Rint0.016
(sin θ/λ)max1)0.583
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.08
No. of reflections2481
No. of parameters265
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O10.85 (2)1.95 (2)2.6248 (16)135.9 (18)
O1—H25···N80.94 (2)1.64 (2)2.5671 (16)175 (3)
 

Acknowledgements

We thank Sun Yat-sen University for financial support of this work. We also thank Professor Xiaopeng Hu for the data collection.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAshton, L. V., Callan, R. L., Rao, S. & Landolt, G. A. (2010). Vet Med Int. pii: 891010.  Google Scholar
First citationBroekhuysen, J., Stockis, A., Lins, R. L., De Graeve, J. & Rossignol, J. F. (2000). Int. J. Clin. Pharmacol. Ther. 38, 387–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationChan-Bacab, M. J., Hernandez-Nunez, E. & Navarrete-Vazquez, G. (2009). J. Antimicrob. Chemother. 63, 1292–1293.  Web of Science PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDubreuil, L., Houcke, I., Mouton, Y. & Rossignol, J. F. (1996). Antimicrob. Agents Chemother. 40, 2266–2270.  CAS PubMed Web of Science Google Scholar
First citationGargala, G., Delaunay, A., Li, X., Brasseur, P., Favennec, L. & Ballet, J. J. (2000). J. Antimicrob. Chemother. 46, 57–60.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHemphill, A., Mueller, J. & Esposito, M. (2006). Expert Opin. Pharmacother. 7, 953–964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorba, B. E., Elazar, M., Lui, P., Rossignol, J. F. & Glenn, J. S. (2008). Antimicrob. Agents Chemother. 52, 4069–4071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antiviral Res. 77, 56–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMegraud, F., Occhialini, A. & Rossignol, J. F. (1998). Antimicrob. Agents Chemother. 42, 2836–2840.  Web of Science CAS PubMed Google Scholar
First citationNavarrete-Vazquez, G., Chavez-Silva, F., Argotte-Ramos, R., Rodriguez-Gutierrez, M. C., Chan-Bacab, M. J., Cedillo-Rivera, R., Moo-Puc, R. & Hernandez-Nunez, E. (2011). Bioorg. Med. Chem. Lett. 21, 3168–3171.  Web of Science CAS PubMed Google Scholar
First citationPankuch, G. A. & Appelbaum, P. C. (2006). Antimicrob. Agents Chemother. 50, 1112–1117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, R. U., Huang, Y., Fischer, K., Fischer, P. U. & Weil, G. J. (2009). Exp. Parasitol. 121, 38–45.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossignol, J. F., Abu-Zekry, M., Hussein, A. & Santoro, M. G. (2006). Lancet, 368, 124–129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011a). J. Med. Chem. 54, 4119–4132.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Lawrenson, A. S., Moores, S. L., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011b). J. Med. Chem. 54, 8670–8680.  Web of Science CrossRef PubMed Google Scholar
First citationStettler, M., Fink, R., Walker, M., Gottstein, B., Geary, T. G., Rossignol, J. F. & Hemphill, A. (2003). Antimicrob. Agents Chemother. 47, 467–474.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrask, A. V., Motherwell, W. D. & Jones, W. (2004). Chem. Commun. pp. 890–891.  Web of Science CSD CrossRef Google Scholar
First citationZhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z. & Meng, X. (2010). J. Vet. Pharmacol. Ther. 33, 147–153.   Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1453-o1454
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds