organic compounds
Tizoxanide pyridine monosolvate
aSchool of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
*Correspondence e-mail: liding@mail.sysu.edu.cn
In the title compound [systematic name: 2-hydroxy-N-(5-nitro-1,3-thiazol-2-yl)benzamide pyridine monosolvate], C10H7N3O4S·C5H5N, the dihedral angle between the pyridine and benzamide rings is 80.55 (7)°. An intamolecular O—H⋯N hydrogen bond occurs in the tizoxanide. In the crystal, the components are linked by an O–H⋯N hydrogen bond, forming a zigzag chain along the c axis. Aromatic π–π interactions between inversion-related pyridine rings [centroid–centroid distance = 3.803 (6) Å] are also observed.
Related literature
For the biological activity of tizoxanide, see: Rao et al. (2009); Gargala et al. (2000); Dubreuil et al. (1996); Ashton et al. (2010); Korba, Elazar et al. (2008); Zhao et al. (2010). For related structures and background to the bioactivity of tizoxanide, see: Pankuch & Appelbaum (2006); Stettler et al. (2003); Broekhuysen et al. (2000). For details on experimental methods used to obtain this form and analogues, see: Navarrete-Vazquez et al. (2011). For a pyridine-solvated forms, see: Dong et al. (2011). For additional literature on related tizoxanide thiazolide compounds, see: Megraud et al. (1998); Chan-Bacab et al. (2009); Korba, Montero et al. (2008); Stachulski et al. (2011ab). For the biological activity of the anti-parasitic agent nitazoxanide {systematic name: [2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl]ethanoate}, see: Hemphill et al. (2006); Rossignol et al. (2006). For the structure of nitazoxanide, see: Bruno et al. (2010). For the effect of crystallization from different solvents on drug properties, see: Trask et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536812016133/qm2062sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812016133/qm2062Isup2.mol
Structure factors: contains datablock I. DOI: 10.1107/S1600536812016133/qm2062Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812016133/qm2062Isup4.cml
A solution of 80 mg of nitazoxanide in 250 ul of pyridine was stirred for 15 min at 333 K and left to crystallize at 293 K overnight. A size suitable flaxen needle was attained for X-ray analysis.
Thermogravimetric analysis for the title complex was performed using a NETZSCH STA409 instrument with sample. The sample was placed in an aluminium cell, heated at 5 °C min-1 and purged with nitrogen gas flowing at 20 cm3 min-1.
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C10H7N3O4S·C5H5N | Z = 2 |
Mr = 344.35 | F(000) = 356 |
Triclinic, P1 | Dx = 1.497 Mg m−3 |
a = 6.9826 (3) Å | Cu Kα radiation, λ = 1.5418 Å |
b = 10.0462 (5) Å | Cell parameters from 3840 reflections |
c = 11.8387 (7) Å | θ = 3.9–65.7° |
α = 102.998 (5)° | µ = 2.16 mm−1 |
β = 99.037 (5)° | T = 293 K |
γ = 104.367 (4)° | Rod, colorless |
V = 763.69 (7) Å3 | 0.20 × 0.15 × 0.10 mm |
Agilent Xcalibur Onyx Nova diffractometer | 2481 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 2349 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.016 |
Detector resolution: 8.2417 pixels mm-1 | θmax = 64.0°, θmin = 3.9° |
ω scans | h = −4→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −11→11 |
Tmin = 0.712, Tmax = 0.806 | l = −13→13 |
4493 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | All H-atom parameters refined |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0385P)2 + 0.2467P] where P = (Fo2 + 2Fc2)/3 |
2481 reflections | (Δ/σ)max = 0.001 |
265 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C10H7N3O4S·C5H5N | γ = 104.367 (4)° |
Mr = 344.35 | V = 763.69 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9826 (3) Å | Cu Kα radiation |
b = 10.0462 (5) Å | µ = 2.16 mm−1 |
c = 11.8387 (7) Å | T = 293 K |
α = 102.998 (5)° | 0.20 × 0.15 × 0.10 mm |
β = 99.037 (5)° |
Agilent Xcalibur Onyx Nova diffractometer | 2481 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2349 reflections with I > 2σ(I) |
Tmin = 0.712, Tmax = 0.806 | Rint = 0.016 |
4493 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.075 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.20 e Å−3 |
2481 reflections | Δρmin = −0.25 e Å−3 |
265 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.13956 (5) | 0.44049 (4) | −0.18461 (3) | 0.02193 (13) | |
O2 | 0.38793 (16) | 0.69194 (12) | −0.07942 (9) | 0.0287 (3) | |
O4 | −0.09371 (17) | 0.24233 (13) | −0.40776 (9) | 0.0379 (3) | |
O5 | −0.23353 (17) | 0.06550 (12) | −0.34113 (10) | 0.0375 (3) | |
N6 | −0.12170 (18) | 0.18630 (14) | −0.32633 (11) | 0.0274 (3) | |
N7 | 0.31757 (17) | 0.56377 (13) | 0.04990 (11) | 0.0200 (3) | |
N8 | 0.59845 (19) | 0.69146 (13) | 0.49121 (11) | 0.0275 (3) | |
C9 | 0.5749 (2) | 0.80811 (15) | 0.24522 (13) | 0.0208 (3) | |
C10 | 0.5468 (2) | 0.80762 (15) | 0.12457 (12) | 0.0201 (3) | |
N11 | 0.09847 (18) | 0.33048 (13) | −0.00698 (11) | 0.0225 (3) | |
C12 | 0.4136 (2) | 0.68695 (15) | 0.02405 (12) | 0.0208 (3) | |
C13 | −0.0197 (2) | 0.22865 (17) | −0.10729 (14) | 0.0241 (3) | |
C14 | −0.0158 (2) | 0.26888 (16) | −0.20893 (13) | 0.0230 (3) | |
C15 | 0.8152 (2) | 1.04417 (17) | 0.29859 (14) | 0.0290 (4) | |
C16 | 0.1899 (2) | 0.44557 (15) | −0.03509 (12) | 0.0196 (3) | |
C17 | 0.7287 (2) | 0.61931 (18) | 0.51622 (16) | 0.0344 (4) | |
C18 | 0.5727 (3) | 0.7465 (2) | 0.69334 (16) | 0.0470 (5) | |
C19 | 0.6541 (2) | 0.92756 (16) | 0.09458 (14) | 0.0252 (3) | |
C20 | 0.7871 (2) | 1.04502 (17) | 0.17969 (15) | 0.0296 (4) | |
C21 | 0.5227 (3) | 0.75377 (18) | 0.57844 (15) | 0.0354 (4) | |
C22 | 0.7067 (3) | 0.6728 (2) | 0.71945 (17) | 0.0518 (6) | |
C23 | 0.7866 (3) | 0.6082 (2) | 0.6301 (2) | 0.0489 (5) | |
C24 | 0.7100 (2) | 0.92842 (16) | 0.33129 (14) | 0.0251 (3) | |
O1 | 0.47188 (15) | 0.69476 (11) | 0.27650 (9) | 0.0237 (2) | |
H19 | 0.631 (3) | 0.9235 (18) | 0.0134 (17) | 0.029 (4)* | |
H24 | 0.725 (3) | 0.9313 (19) | 0.4158 (17) | 0.032 (4)* | |
H20 | 0.857 (3) | 1.127 (2) | 0.1564 (17) | 0.040 (5)* | |
H13 | −0.093 (3) | 0.138 (2) | −0.1026 (15) | 0.028 (4)* | |
H15 | 0.906 (3) | 1.122 (2) | 0.3591 (17) | 0.035 (5)* | |
H7 | 0.332 (3) | 0.561 (2) | 0.1221 (18) | 0.033 (5)* | |
H17 | 0.779 (3) | 0.575 (2) | 0.4501 (18) | 0.040 (5)* | |
H21 | 0.427 (3) | 0.805 (2) | 0.5559 (19) | 0.052 (6)* | |
H22 | 0.739 (4) | 0.670 (3) | 0.799 (2) | 0.075 (7)* | |
H18 | 0.514 (4) | 0.800 (3) | 0.762 (2) | 0.068 (7)* | |
H23 | 0.877 (3) | 0.558 (2) | 0.641 (2) | 0.056 (6)* | |
H25 | 0.525 (4) | 0.698 (3) | 0.355 (2) | 0.073 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0230 (2) | 0.0258 (2) | 0.01336 (19) | 0.00558 (15) | 0.00094 (14) | 0.00226 (14) |
O2 | 0.0343 (6) | 0.0325 (6) | 0.0151 (5) | 0.0044 (5) | 0.0018 (4) | 0.0073 (4) |
O4 | 0.0353 (6) | 0.0502 (7) | 0.0181 (6) | 0.0042 (5) | 0.0012 (5) | 0.0023 (5) |
O5 | 0.0310 (6) | 0.0309 (6) | 0.0347 (7) | −0.0005 (5) | −0.0007 (5) | −0.0057 (5) |
N6 | 0.0209 (6) | 0.0329 (8) | 0.0206 (7) | 0.0062 (6) | 0.0005 (5) | −0.0030 (6) |
N7 | 0.0223 (6) | 0.0237 (6) | 0.0121 (6) | 0.0062 (5) | 0.0014 (5) | 0.0033 (5) |
N8 | 0.0310 (7) | 0.0258 (7) | 0.0186 (6) | −0.0012 (5) | 0.0002 (5) | 0.0063 (5) |
C9 | 0.0200 (7) | 0.0237 (7) | 0.0195 (7) | 0.0088 (6) | 0.0045 (6) | 0.0049 (6) |
C10 | 0.0200 (7) | 0.0232 (7) | 0.0176 (7) | 0.0096 (6) | 0.0037 (6) | 0.0035 (6) |
N11 | 0.0227 (6) | 0.0238 (6) | 0.0200 (6) | 0.0071 (5) | 0.0034 (5) | 0.0044 (5) |
C12 | 0.0194 (7) | 0.0249 (8) | 0.0186 (7) | 0.0086 (6) | 0.0038 (6) | 0.0051 (6) |
C13 | 0.0208 (7) | 0.0237 (8) | 0.0249 (8) | 0.0062 (6) | 0.0032 (6) | 0.0027 (6) |
C14 | 0.0192 (7) | 0.0255 (8) | 0.0197 (7) | 0.0064 (6) | 0.0010 (6) | −0.0006 (6) |
C15 | 0.0291 (8) | 0.0231 (8) | 0.0263 (8) | 0.0031 (7) | 0.0008 (7) | −0.0009 (7) |
C16 | 0.0186 (7) | 0.0247 (7) | 0.0158 (7) | 0.0097 (6) | 0.0031 (5) | 0.0030 (6) |
C17 | 0.0292 (8) | 0.0318 (9) | 0.0379 (10) | 0.0005 (7) | 0.0043 (7) | 0.0128 (8) |
C18 | 0.0652 (13) | 0.0402 (10) | 0.0225 (9) | −0.0032 (9) | 0.0079 (9) | 0.0052 (8) |
C19 | 0.0273 (8) | 0.0267 (8) | 0.0220 (8) | 0.0086 (6) | 0.0044 (6) | 0.0078 (6) |
C20 | 0.0320 (8) | 0.0247 (8) | 0.0300 (9) | 0.0047 (7) | 0.0058 (7) | 0.0084 (7) |
C21 | 0.0433 (10) | 0.0320 (9) | 0.0248 (9) | 0.0046 (8) | 0.0050 (7) | 0.0047 (7) |
C22 | 0.0655 (13) | 0.0449 (11) | 0.0231 (10) | −0.0172 (10) | −0.0096 (9) | 0.0168 (9) |
C23 | 0.0374 (10) | 0.0422 (11) | 0.0595 (14) | −0.0019 (9) | −0.0110 (9) | 0.0292 (10) |
C24 | 0.0268 (8) | 0.0264 (8) | 0.0187 (8) | 0.0074 (6) | 0.0022 (6) | 0.0018 (6) |
O1 | 0.0269 (5) | 0.0253 (6) | 0.0146 (5) | 0.0025 (4) | 0.0018 (4) | 0.0048 (4) |
S1—C14 | 1.7269 (15) | C13—H13 | 0.944 (18) |
S1—C16 | 1.7363 (14) | C15—C20 | 1.393 (2) |
O2—C12 | 1.2240 (18) | C15—C24 | 1.382 (2) |
O4—N6 | 1.2381 (17) | C15—H15 | 0.94 (2) |
O5—N6 | 1.2265 (18) | C17—C23 | 1.383 (3) |
N6—C14 | 1.4217 (19) | C17—H17 | 0.97 (2) |
N7—C12 | 1.3775 (19) | C18—C21 | 1.373 (3) |
N7—C16 | 1.3684 (19) | C18—C22 | 1.369 (3) |
N7—H7 | 0.85 (2) | C18—H18 | 1.06 (2) |
N8—C17 | 1.334 (2) | C19—C20 | 1.377 (2) |
N8—C21 | 1.335 (2) | C19—H19 | 0.939 (18) |
C9—C10 | 1.410 (2) | C20—H20 | 0.97 (2) |
C9—C24 | 1.403 (2) | C21—H21 | 0.98 (2) |
C9—O1 | 1.3483 (18) | C22—C23 | 1.381 (3) |
C10—C12 | 1.481 (2) | C22—H22 | 0.94 (3) |
C10—C19 | 1.403 (2) | C23—H23 | 0.92 (2) |
N11—C13 | 1.365 (2) | C24—H24 | 0.983 (19) |
N11—C16 | 1.3148 (19) | O1—H25 | 0.93 (3) |
C13—C14 | 1.355 (2) | ||
C14—S1—C16 | 86.32 (7) | N11—C16—S1 | 116.83 (11) |
O4—N6—C14 | 116.98 (13) | N11—C16—N7 | 121.36 (13) |
O5—N6—O4 | 124.16 (13) | N8—C17—C23 | 121.43 (18) |
O5—N6—C14 | 118.86 (13) | N8—C17—H17 | 116.3 (11) |
C12—N7—H7 | 119.5 (13) | C23—C17—H17 | 122.3 (11) |
C16—N7—C12 | 123.00 (12) | C21—C18—H18 | 121.1 (13) |
C16—N7—H7 | 117.4 (13) | C22—C18—C21 | 118.52 (19) |
C17—N8—C21 | 118.94 (14) | C22—C18—H18 | 120.4 (13) |
C24—C9—C10 | 118.84 (13) | C10—C19—H19 | 116.6 (11) |
O1—C9—C10 | 120.13 (13) | C20—C19—C10 | 121.77 (14) |
O1—C9—C24 | 121.02 (13) | C20—C19—H19 | 121.6 (11) |
C9—C10—C12 | 124.80 (13) | C15—C20—H20 | 121.2 (11) |
C19—C10—C9 | 118.97 (13) | C19—C20—C15 | 118.89 (15) |
C19—C10—C12 | 116.22 (13) | C19—C20—H20 | 119.8 (11) |
C16—N11—C13 | 109.77 (12) | N8—C21—C18 | 122.73 (18) |
O2—C12—N7 | 119.41 (13) | N8—C21—H21 | 116.0 (13) |
O2—C12—C10 | 123.02 (13) | C18—C21—H21 | 121.2 (13) |
N7—C12—C10 | 117.56 (12) | C18—C22—C23 | 119.32 (17) |
N11—C13—H13 | 120.4 (11) | C18—C22—H22 | 116.7 (16) |
C14—C13—N11 | 114.35 (14) | C23—C22—H22 | 124.0 (16) |
C14—C13—H13 | 125.2 (11) | C17—C23—H23 | 116.4 (15) |
N6—C14—S1 | 120.07 (11) | C22—C23—C17 | 119.06 (19) |
C13—C14—S1 | 112.72 (11) | C22—C23—H23 | 124.5 (15) |
C13—C14—N6 | 127.21 (14) | C9—C24—H24 | 119.1 (11) |
C20—C15—H15 | 121.3 (11) | C15—C24—C9 | 120.72 (14) |
C24—C15—C20 | 120.79 (15) | C15—C24—H24 | 120.1 (11) |
C24—C15—H15 | 117.9 (11) | C9—O1—H25 | 111.8 (16) |
N7—C16—S1 | 121.81 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O1 | 0.85 (2) | 1.95 (2) | 2.6248 (16) | 135.9 (18) |
O1—H25···N8 | 0.94 (2) | 1.64 (2) | 2.5671 (16) | 175 (3) |
Experimental details
Crystal data | |
Chemical formula | C10H7N3O4S·C5H5N |
Mr | 344.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.9826 (3), 10.0462 (5), 11.8387 (7) |
α, β, γ (°) | 102.998 (5), 99.037 (5), 104.367 (4) |
V (Å3) | 763.69 (7) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.16 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Agilent Xcalibur Onyx Nova diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.712, 0.806 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4493, 2481, 2349 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.583 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.075, 1.08 |
No. of reflections | 2481 |
No. of parameters | 265 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.20, −0.25 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O1 | 0.85 (2) | 1.95 (2) | 2.6248 (16) | 135.9 (18) |
O1—H25···N8 | 0.94 (2) | 1.64 (2) | 2.5671 (16) | 175 (3) |
Acknowledgements
We thank Sun Yat-sen University for financial support of this work. We also thank Professor Xiaopeng Hu for the data collection.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Ashton, L. V., Callan, R. L., Rao, S. & Landolt, G. A. (2010). Vet Med Int. pii: 891010. Google Scholar
Broekhuysen, J., Stockis, A., Lins, R. L., De Graeve, J. & Rossignol, J. F. (2000). Int. J. Clin. Pharmacol. Ther. 38, 387–394. Web of Science CrossRef PubMed CAS Google Scholar
Bruno, F. P., Caira, M. R., Monti, G. A., Kassuha, D. E. & Sperandeo, N. R. (2010). J. Mol. Struct. 984, 51–57. Web of Science CSD CrossRef CAS Google Scholar
Chan-Bacab, M. J., Hernandez-Nunez, E. & Navarrete-Vazquez, G. (2009). J. Antimicrob. Chemother. 63, 1292–1293. Web of Science PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, F.-Y., Wu, J., Tian, H.-Y., Ye, Q.-M. & Jiang, R.-W. (2011). Acta Cryst. E67, o3096. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dubreuil, L., Houcke, I., Mouton, Y. & Rossignol, J. F. (1996). Antimicrob. Agents Chemother. 40, 2266–2270. CAS PubMed Web of Science Google Scholar
Gargala, G., Delaunay, A., Li, X., Brasseur, P., Favennec, L. & Ballet, J. J. (2000). J. Antimicrob. Chemother. 46, 57–60. Web of Science CrossRef PubMed CAS Google Scholar
Hemphill, A., Mueller, J. & Esposito, M. (2006). Expert Opin. Pharmacother. 7, 953–964. Web of Science CrossRef PubMed CAS Google Scholar
Korba, B. E., Elazar, M., Lui, P., Rossignol, J. F. & Glenn, J. S. (2008). Antimicrob. Agents Chemother. 52, 4069–4071. Web of Science CrossRef PubMed CAS Google Scholar
Korba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S. & Rossignol, J. F. (2008). Antiviral Res. 77, 56–63. Web of Science CrossRef PubMed CAS Google Scholar
Megraud, F., Occhialini, A. & Rossignol, J. F. (1998). Antimicrob. Agents Chemother. 42, 2836–2840. Web of Science CAS PubMed Google Scholar
Navarrete-Vazquez, G., Chavez-Silva, F., Argotte-Ramos, R., Rodriguez-Gutierrez, M. C., Chan-Bacab, M. J., Cedillo-Rivera, R., Moo-Puc, R. & Hernandez-Nunez, E. (2011). Bioorg. Med. Chem. Lett. 21, 3168–3171. Web of Science CAS PubMed Google Scholar
Pankuch, G. A. & Appelbaum, P. C. (2006). Antimicrob. Agents Chemother. 50, 1112–1117. Web of Science CrossRef PubMed CAS Google Scholar
Rao, R. U., Huang, Y., Fischer, K., Fischer, P. U. & Weil, G. J. (2009). Exp. Parasitol. 121, 38–45. Web of Science CrossRef PubMed CAS Google Scholar
Rossignol, J. F., Abu-Zekry, M., Hussein, A. & Santoro, M. G. (2006). Lancet, 368, 124–129. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011a). J. Med. Chem. 54, 4119–4132. Web of Science CrossRef CAS PubMed Google Scholar
Stachulski, A. V., Pidathala, C., Row, E. C., Sharma, R., Berry, N. G., Lawrenson, A. S., Moores, S. L., Iqbal, M., Bentley, J., Allman, S. A., Edwards, G., Helm, A., Hellier, J., Korba, B. E., Semple, J. E. & Rossignol, J. F. (2011b). J. Med. Chem. 54, 8670–8680. Web of Science CrossRef PubMed Google Scholar
Stettler, M., Fink, R., Walker, M., Gottstein, B., Geary, T. G., Rossignol, J. F. & Hemphill, A. (2003). Antimicrob. Agents Chemother. 47, 467–474. Web of Science CrossRef PubMed CAS Google Scholar
Trask, A. V., Motherwell, W. D. & Jones, W. (2004). Chem. Commun. pp. 890–891. Web of Science CSD CrossRef Google Scholar
Zhao, Z., Xue, F., Zhang, L., Zhang, K., Fei, C., Zheng, W., Wang, X., Wang, M., Zhao, Z. & Meng, X. (2010). J. Vet. Pharmacol. Ther. 33, 147–153. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitazoxanide was first developed as an anti-parasitic agent, and marketed in the USA since 2002 (Stachulski et al., 2011a). In humans, once orally administered, nitazoxanide is hydrolyzed in plasma to its active metabolite tizoxanide (TIZ), which is 99% protein bound (Broekhuysen et al., 2000; Ashton et al., 2010). Nitazoxanide exhibits a broad spectrum of activities against intracellular and extracellular protozoa, helminthes, aerobic and anaerobic bacteria, and viruses infecting humans and animals (Hemphill et al., 2006; Rossignol et al., 2006; Korba, Montero et al., 2008; Zhao et al., 2010; Stachulski et al., 2011b).
In the present study, tizoxanide was prepared via deacetylation of nitazoxanide in pyridine and it crystallized as a 1:1 ratio complex with pyridine as crystals. Thermogravimetric analysis was performed to study the thermal stability of the title complex, which indicated a one-step molecular weight loss of 22.43% corresponding to one pyridine molecule in the temperature range of 333–373 K, confirming a 1:1 ratio complex of tizoxanide-pyridine (theoretical weight loss 22.97%).
The tizoxanide and pyridine are linked through hydrogen bond O1–H···N8 (bond distance = 2.567 Å). A stable crystal was formed through intramolecular O1—H···N7 (bond distance = 2.625 Å) and intermolecular O1—H···N8 hydrogen-bonding interactions involving the benzamide group and the pyridine molecule. It is arresting that π–π interactions play an important role in the molecular packing. Inversion-related pyridine molecules are linked by π-π interactions [centroid-centroid distance = 3.803 (6) Å], which stabilize the crystal. By comparison with X-ray of prodrug nitazoxanide (Bruno et al., 2010), tizoxanide has stronger intramolecular hydrogen bonds. These hydrogen bonds may be useful for pharmaceutical preparation of tizoxanide. The molecular and crystal structures are stabilized by intra- (O1—H···N7) and intermolecular (O1—H···N8, π-stacking) interactions respectively, which give a great stability to the crystal building.
When the drug crystallized from different solvents, the crystal form may be changed and then altering a drug's properties, such as melting point and solubility (Trask et al., 2004). We speculated that the replacement of a weak alkaline solvent or solid compound containing the pyridine ring may form the corresponding crystals made of different formulations of active drugs for tizoxanide. Obviously, crystal form of the title compound is different from prodrug nitazoxanide, which suggests that changing solvent or pyridine derivatives may form new crystals and new dosage forms of drugs. This is our future work.