organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1533

Methyl 3-(2-hy­dr­oxy­benzyl­­idene)-2-methyl­di­thio­carbazate

aUniversity of Chittagong, Chittagong 4331, Bangladesh, and bDepartamento de Química Inorgánica, Analítica y Química, Física/INQUIMAE–CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
*Correspondence e-mail: tapashir57@gmail.com

(Received 17 April 2012; accepted 18 April 2012; online 25 April 2012)

In the title compound, C10H12N2OS2, the thione and S-methyl groups are syn. An intra­molecular bifurcated O—H⋯(S,N) hydrogen bond occurs.

Related literature

For the biological activity of sulfur-ligand compounds, see: French & Blang (1965[French, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454-58.]); Ali & Livingstone (1974[Ali, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Ali et al. (1995[Ali, M. A., Fernando, K. R., Palit, D. & Nazimuddin, M. (1995). Transition Met. Chem. 20, 19-22.]); Hazari et al. (1999[Hazari, S. K. S., Dey, B. K., Palit, D., Roy, T. G., Ali, M. A. & Sen, K. (1999). J. Bang. Chem. Soc. 12, 83-91.], 2002[Hazari, S. K. S., Dey, B. K., Palit, D., Ganguli, B. & Sen, K. (2002). Ceylon J. Sci. Phys. Sci. 9, 23-30.]). For the synthesis and characterization of sulfur–nitro­gen-containing ligands, see: Hazari et al. (2002[Hazari, S. K. S., Dey, B. K., Palit, D., Ganguli, B. & Sen, K. (2002). Ceylon J. Sci. Phys. Sci. 9, 23-30.], 2006[Hazari, S. K. S., Dey, B. K., Palit, D., Roy, T. G. & Alam, K. M. D. (2006). Ceylon J. Sci. Phys. Sci. 11, 23-31.]). For a related structure, see: Hazari et al. (2012[Hazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2OS2

  • Mr = 240.34

  • Monoclinic, P 21 /c

  • a = 11.3561 (16) Å

  • b = 8.9033 (13) Å

  • c = 11.5045 (16) Å

  • β = 91.411 (13)°

  • V = 1162.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini CCD S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.859, Tmax = 0.917

  • 16680 measured reflections

  • 2833 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.171

  • S = 1.05

  • 2833 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S2 0.91 (5) 2.67 (5) 3.453 (2) 145 (4)
O1—H1O⋯N1 0.91 (5) 1.88 (5) 2.678 (3) 145 (4)

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

It is well known that sulfur-containing compounds have potential biological activities (French & Blang, 1965; Ali & Livingstone, 1974; Ali et al., 1995; Hazari et al., 1999; Hazari et al., 2002). As a continuation of the synthesis and characterization of sulfur-nitrogen containing ligands (Hazari et al., 1999; Hazari et al., 2002) and their metal complexes, the present investigation is an attempt to prepare a complex of vanadium(IV) with the Schiff base ligand (L, prepared by the condensation of salicylaldehyde and N-methyl-S– methyldithiocarbamate). Although a greenish yellow complex was obtained, during crystallization from ethanol, the ligand (m.p. 126–128°C) was regenerated in the form of a crystal. Hence, the crystal structure of the ligand has been described.

In the crystal structure of (1) (Fig.1), there is a bifurcated hydrogen bond involving O1 - H10 ··· S2 and O1 - H10 ··· N1 interactions. The O1 S2 and O1 N1 distances are 3.453 (2) Å and 2.678 (3) Å respectively.

Related literature top

For the biological activity of sulfur-ligand compounds, see: French & Blang (1965); Ali & Livingstone (1974); Ali et al. (1995); Hazari et al. (1999, 2002). For the synthesis and characterization of sulfur–nitrogen-containing ligands, see: Hazari et al. (2002, 2006). For a related structure, see: Hazari et al. (2012).

Experimental top

The title compound was isolated by following four steps synthetic procedure:

Step1. Synthesis of N-methyl-S-methyldithiocarbamate: Potassium hydroxide (11.5 g) was dissolved in 60 ml of 90% ethanol and the mixture was cooled down to 273 K in an ice bath. To this, methylhydrazine (11.1 ml) was added slowly with mechanical stirring. A solution of carbondisulfide (12 ml) was added dropwise from a burette with constant stirring over a period of an hour. During the addition of carbondisulfide, the temperature of the reaction mixture was not allowed to rise above 279 K. A yellow colored solution was obtained. After adding carbondisulfide, methyl iodide (12.5 ml) was added from a burette dropwise with vigorous mechanical stirring. After the complete addition, the mixture was stirred for further 15 minutes, whereupon well formed shining crystals appeared. The product was separated by filtration and washed with water and recrystallized from ethanol and dried in a vacuum desiccator over silica gel. Yield: 15.25 g, M.pt.: 361–363 K.

Step 2. Synthesis of methyl-N-(2-hydroxybenzyledine)-N-methyl hydrazinecarbodithionate, L (1): A hot solution of salicyladehyde (1.04 ml, 10 mmol) in absolute ethanol (40 ml) was mixed with hot solution of N-methyl-S– methyldithiocarbamate (1.36 g, 10 mmol) in the same solvent. The mixture was refluxed for 6 h. on a water bath. After reducing the volume, a yellowish white product appeared which was filtered off. This product was washed with ethanol several times (3 x 2 ml) and dried in a vacuum desiccator over silica gel. Yield: 1.65 g. M.pt.: 399–401 K.

Step 3. Attempted preparation of the oxovanadium(IV) complex with (I): Vanadyl acetylacetonate [VO2(acac)2] (2.65 g, 10 mmol) was dissolved in dry ethanol, in which a hot solution of L (2.4 g, 10 mmol) in dry ethanol was added. The mixture was refluxed for 6 h. on water bath. After reducing the volume and standing over night a light greenish yellow product appeared, which was washed with ethanol for several times and dried in a vacuum desiccator over silica gel. Melting point of product was 443–445 K.

Step 4. Crystallization: The product was dissolved in ethanol to which half volume of petroleum ether was added (10/5 ml v/v). The solution was left for several days after which the title compound, (I), was deposited as crystals.

Refinement top

Methyl groups were idealized (C—H = 0.96 A °) and allowed to ride. In all cases, H-atom displacement parameters were taken as Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C,O) otherwise.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Cristal packing for the title compound viewed along c.
Methyl 3-(2-hydroxybenzylidene)-2-methyldithiocarbazate top
Crystal data top
C10H12N2OS2F(000) = 504
Mr = 240.34Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 0 reflections
a = 11.3561 (16) Åθ = 4.0–29.1°
b = 8.9033 (13) ŵ = 0.43 mm1
c = 11.5045 (16) ÅT = 298 K
β = 91.411 (13)°Prism, colourless
V = 1162.8 (3) Å30.35 × 0.30 × 0.22 mm
Z = 4
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 29.1°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1415
Tmin = 0.859, Tmax = 0.917k = 1111
16680 measured reflectionsl = 1415
2833 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0801P)2 + 0.6976P]
where P = (Fo2 + 2Fc2)/3
2833 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C10H12N2OS2V = 1162.8 (3) Å3
Mr = 240.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3561 (16) ŵ = 0.43 mm1
b = 8.9033 (13) ÅT = 298 K
c = 11.5045 (16) Å0.35 × 0.30 × 0.22 mm
β = 91.411 (13)°
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
2833 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2039 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.917Rint = 0.052
16680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
2833 reflectionsΔρmin = 0.41 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.74513 (6)0.31081 (8)0.59687 (6)0.0526 (2)
S10.88032 (7)0.14078 (11)0.78107 (8)0.0705 (3)
O10.47228 (19)0.2727 (3)0.4609 (2)0.0610 (6)
N10.56325 (18)0.1339 (2)0.64913 (17)0.0411 (5)
N20.65614 (19)0.0963 (2)0.72163 (18)0.0447 (5)
C60.3631 (2)0.1080 (3)0.5859 (2)0.0434 (5)
C70.4625 (2)0.0705 (3)0.6613 (2)0.0437 (6)
C10.3700 (2)0.2072 (3)0.4911 (2)0.0444 (6)
C80.6446 (3)0.0200 (3)0.8097 (2)0.0582 (7)
H8A0.56580.05920.80670.087*
H8B0.66090.02210.88520.087*
H8C0.69940.09950.79520.087*
C50.2542 (2)0.0437 (4)0.6081 (3)0.0591 (7)
H50.24850.0240.66920.071*
C90.7587 (2)0.1735 (3)0.7057 (2)0.0449 (6)
C20.2700 (3)0.2389 (4)0.4249 (3)0.0578 (7)
H20.27450.30470.36240.069*
C30.1633 (3)0.1742 (4)0.4505 (3)0.0681 (9)
H30.09660.19640.40520.082*
C100.8904 (3)0.3907 (4)0.5977 (3)0.0668 (8)
H10A0.89350.4690.54050.1*
H10B0.94660.31410.57980.1*
H10C0.90870.43160.67320.1*
C40.1553 (3)0.0767 (4)0.5430 (3)0.0725 (9)
H40.08330.03390.5610.087*
H70.444 (3)0.007 (4)0.717 (3)0.082 (11)*
H1O0.527 (4)0.253 (5)0.518 (4)0.087 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0478 (4)0.0548 (4)0.0548 (4)0.0099 (3)0.0043 (3)0.0076 (3)
S10.0517 (5)0.0886 (6)0.0702 (5)0.0089 (4)0.0151 (4)0.0073 (4)
O10.0498 (12)0.0718 (13)0.0614 (12)0.0079 (10)0.0019 (10)0.0231 (11)
N10.0439 (11)0.0376 (10)0.0420 (10)0.0021 (8)0.0009 (8)0.0019 (8)
N20.0446 (11)0.0443 (11)0.0449 (11)0.0052 (9)0.0033 (9)0.0064 (9)
C60.0461 (13)0.0399 (12)0.0444 (12)0.0027 (10)0.0045 (10)0.0078 (10)
C70.0509 (14)0.0382 (12)0.0424 (13)0.0036 (10)0.0073 (10)0.0003 (10)
C10.0461 (14)0.0414 (12)0.0458 (13)0.0007 (10)0.0044 (10)0.0043 (10)
C80.0687 (19)0.0524 (15)0.0535 (15)0.0052 (13)0.0018 (13)0.0158 (12)
C50.0512 (16)0.0632 (18)0.0629 (17)0.0167 (13)0.0031 (13)0.0018 (14)
C90.0455 (14)0.0455 (13)0.0438 (13)0.0070 (10)0.0016 (10)0.0048 (10)
C20.0597 (17)0.0575 (16)0.0558 (16)0.0069 (13)0.0035 (13)0.0027 (13)
C30.0525 (18)0.079 (2)0.072 (2)0.0066 (15)0.0142 (15)0.0106 (17)
C100.0519 (17)0.076 (2)0.073 (2)0.0139 (15)0.0075 (15)0.0017 (16)
C40.0472 (17)0.088 (2)0.083 (2)0.0162 (16)0.0050 (15)0.0018 (19)
Geometric parameters (Å, º) top
S2—C91.754 (3)C8—H8A0.96
S2—C101.796 (3)C8—H8B0.96
S1—C91.639 (3)C8—H8C0.96
O1—C11.353 (3)C5—C41.366 (5)
O1—H1O0.91 (4)C5—H50.93
N1—C71.286 (3)C2—C31.380 (5)
N1—N21.370 (3)C2—H20.93
N2—C91.368 (3)C3—C41.378 (5)
N2—C81.457 (3)C3—H30.93
C6—C51.392 (4)C10—H10A0.96
C6—C11.408 (4)C10—H10B0.96
C6—C71.446 (4)C10—H10C0.96
C7—H70.89 (4)C4—H40.93
C1—C21.381 (4)
C9—S2—C10102.00 (15)C4—C5—C6122.2 (3)
C1—O1—H1O108 (3)C4—C5—H5118.9
C7—N1—N2120.0 (2)C6—C5—H5118.9
C9—N2—N1116.2 (2)N2—C9—S1123.3 (2)
C9—N2—C8122.8 (2)N2—C9—S2112.69 (19)
N1—N2—C8121.0 (2)S1—C9—S2124.01 (17)
C5—C6—C1117.8 (3)C3—C2—C1120.8 (3)
C5—C6—C7118.7 (2)C3—C2—H2119.6
C1—C6—C7123.5 (2)C1—C2—H2119.6
N1—C7—C6121.1 (2)C4—C3—C2120.2 (3)
N1—C7—H7126 (2)C4—C3—H3119.9
C6—C7—H7113 (2)C2—C3—H3119.9
O1—C1—C2118.1 (3)S2—C10—H10A109.5
O1—C1—C6122.3 (2)S2—C10—H10B109.5
C2—C1—C6119.7 (3)H10A—C10—H10B109.5
N2—C8—H8A109.5S2—C10—H10C109.5
N2—C8—H8B109.5H10A—C10—H10C109.5
H8A—C8—H8B109.5H10B—C10—H10C109.5
N2—C8—H8C109.5C5—C4—C3119.4 (3)
H8A—C8—H8C109.5C5—C4—H4120.3
H8B—C8—H8C109.5C3—C4—H4120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S20.91 (5)2.67 (5)3.453 (2)145 (4)
O1—H1O···N10.91 (5)1.88 (5)2.678 (3)145 (4)

Experimental details

Crystal data
Chemical formulaC10H12N2OS2
Mr240.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.3561 (16), 8.9033 (13), 11.5045 (16)
β (°) 91.411 (13)
V3)1162.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.35 × 0.30 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.859, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
16680, 2833, 2039
Rint0.052
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.171, 1.05
No. of reflections2833
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···S20.91 (5)2.67 (5)3.453 (2)145 (4)
O1—H1O···N10.91 (5)1.88 (5)2.678 (3)145 (4)
 

Acknowledgements

The authors acknowledge the UGC, Bangladesh, for the award of a fellowship to BG and thank the TWAS, Trieste, Italy, for awarding a TWAS–UNESCO Associateship to TGR. They are also grateful to ANPCyT for a grant (PME–2006– 01113) and to R. Baggio for his helpful suggestions.

References

First citationAli, M. A., Fernando, K. R., Palit, D. & Nazimuddin, M. (1995). Transition Met. Chem. 20, 19–22.  CrossRef CAS Google Scholar
First citationAli, M. A. & Livingstone, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrench, F. A. & Blang, E. J. (1965). Cancer Res. 25, 1454–58.  CAS PubMed Web of Science Google Scholar
First citationHazari, S. K. S., Dey, B. K., Palit, D., Ganguli, B. & Sen, K. (2002). Ceylon J. Sci. Phys. Sci. 9, 23-30.  Google Scholar
First citationHazari, S. K. S., Dey, B. K., Palit, D., Roy, T. G. & Alam, K. M. D. (2006). Ceylon J. Sci. Phys. Sci. 11, 23–31.  Google Scholar
First citationHazari, S. K. S., Dey, B. K., Palit, D., Roy, T. G., Ali, M. A. & Sen, K. (1999). J. Bang. Chem. Soc. 12, 83-91.  Google Scholar
First citationHazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1533
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds