organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1503

1-(Anthracen-1-yl)pyrrolidine-2,5-dione

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: manuel.fernandes@wits.ac.za

(Received 2 March 2012; accepted 8 April 2012; online 21 April 2012)

In the mol­ecular structure of title compound, C18H13NO2, the succinimide ring is orientated away from the plane of the anthracene moiety by 71.94 (4)°. The crystal structure features three different types of inter­molecular inter­actions, viz. C—H⋯O, C—H⋯π and ππ bonds. Mol­ecules along the b axis stack on each other as a result of ππ inter­actions which have a centroid–centroid distance of 3.6780 (15) Å, while C—H⋯π inter­actions are present between neigbouring stacks. Also, acting between the stacks are the C—H⋯O inter­actions between the aromatic H atoms of the anthracene and the O atoms of the succinimide.

Related literature

For studies of regio- and sterio-selectivity of substituted anthracenes in Diels–Alder reactions, see: Singh & Ningombom (2010[Singh, M. D. & Ningombom, A. (2010). Indian J. Chem. Sect. B, 49, 789-794.]); Alston et al. (1979[Alston, P. V., Ottenbrite, R. M. & Newby, J. (1979). J. Org. Chem. 44, 4939-4943.]); Meek et al. (1960[Meek, J. S., Wilgus, D. R. & Dann, J. R. (1960). J. Am. Chem. Soc. 82, 2566-2569.]); Kaplan & Conroy (1963[Kaplan, F. & Conroy, H. (1963). J. Org. Chem. 28, 1593-1596.]); Verma & Singh (1977[Verma, S. M. & Singh, M. D. (1977). J. Org. Chem. 42, 3736-3740.]). For a study involving NMR experiments, see: Hubbard et al. (1992[Hubbard, J. L., Carl, J. M. III, Anderson, G. D. & Rankin, G. O. (1992). J. Heterocycl. Chem. 29, 719-721.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13NO2

  • Mr = 275.29

  • Orthorhombic, P n a 21

  • a = 18.4179 (9) Å

  • b = 5.7697 (4) Å

  • c = 12.4403 (6) Å

  • V = 1321.98 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.49 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10655 measured reflections

  • 1667 independent reflections

  • 1258 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.088

  • S = 0.95

  • 1667 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.38 3.234 (3) 149
C6—H6⋯O1ii 0.95 2.49 3.357 (3) 152
C9—H9⋯O2iii 0.95 2.53 3.465 (3) 167
C13—H13⋯O1iv 0.95 2.70 3.471 (3) 139
C17—H17ACg2v 0.99 2.92 3.709 (3) 138
Symmetry codes: (i) x, y+1, z; (ii) [-x, -y+2, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The compound anthracene has been known for a long time and its properties have been extensively studied. The regio- and sterio-selectivity of substituted anthracenes in Diels-Alder reactions have been investigated and reported (Alston et al., 1979; Meek et al., 1960; Kaplan & Conroy, 1963; Verma & Singh, 1977; Singh & Ningombom, 2010). A study of the title compound and 1-succinimidonaphthalene involving synthesis, NMR experiments and molecular mechanics has been reported by Hubbard et al. (1992).

Both the anthracene and succinimide moeities are planar but are tilted with respect to each other at an angle of 71.94 (4)° (Fig. 1). Two anthracene bond lengths – C1—C14 [1.430 (3)Å] and C5—C14 [1.443 (3)Å] – are significantly longer than the 1.39Å typical of aromatic rings. As a consequence the rings containing these have been flagged as having larger than average C6-ring C—C bond lengths by PLATON (Spek, 2009), suggesting that the succinimide group has a significant effect on the charge distribution within the anthracene ring. The crystal structure contains three different types of intermolecular interactions, these include C–H···O, C–H···π and ππ interactions (Fig. 2). The ππ interaction occurs over a Cg1···Cg2 distance of 3.678 (2)Å between the rings defined by C1-C5/C14 (Cg1) and C7-C12 (Cg2). This leads to the stacking of molecules along b axis. Geometrical details of the C–H···π and C–H···O interactions are given in the Table 1.

Related literature top

For studies involving Diels–Alder reactions with anthracene, see: Singh & Ningombom (2010); Alston et al. (1979); Meek et al. (1960); Kaplan & Conroy (1963); Verma & Singh (1977). For a study involving NMR experiments, see: Hubbard et al. (1992).

Experimental top

The title compound was synthesized with very low yield (a few crystals) by reaction of 1-aminoanthracene (0.200 g, 1 mmol) with succinic anhydride (0.107 g, 1 mmol) in the presence of dioxane as a solvent (3 ml) by strirring at room temperature for a few hours. Thionyl chloride (3 ml) in dioxane (2 ml) was then slowly added to the reaction mixture at room temperature. The mixture was then kept at 323 K for 12 h, followed by neutralization of excess thionyl chloride by pouring the mixture into a beaker containing ice. This mixture was then filtered yielding a dark brown material, which after recrystallization by slow evaporation from chloroform yielded a few crystals suitable for analysis by X-ray diffraction.

Refinement top

All H atoms were positioned geometrically, and allowed to ride on their parent atoms, with C–H bond lengths of 0.95Å for aromatic H or 0.99Å for methylene H and Uiso(H) = 1.2Ueq(C). The 1449 Friedel pairs were merged during structure refinement.

Computing details top

Data collection: APEX2 (Bruker 2005); cell refinement: SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O, C–H···π and ππ interactions in the structure of the title compound. The C–H···π and ππ interactions are respectively indicated by dollar ($) or hash (#) symbols.
1-(Anthracen-1-yl)pyrrolidine-2,5-dione top
Crystal data top
C18H13NO2F(000) = 576
Mr = 275.29Dx = 1.383 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2466 reflections
a = 18.4179 (9) Åθ = 2.8–26.7°
b = 5.7697 (4) ŵ = 0.09 mm1
c = 12.4403 (6) ÅT = 173 K
V = 1321.98 (13) Å3Plate, brown
Z = 40.49 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1258 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
ϕ– and ω–scansh = 2424
10655 measured reflectionsk = 77
1667 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
1667 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C18H13NO2V = 1321.98 (13) Å3
Mr = 275.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.4179 (9) ŵ = 0.09 mm1
b = 5.7697 (4) ÅT = 173 K
c = 12.4403 (6) Å0.49 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1258 reflections with I > 2σ(I)
10655 measured reflectionsRint = 0.081
1667 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.088H-atom parameters constrained
S = 0.95Δρmax = 0.17 e Å3
1667 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12512 (12)1.0166 (5)0.33781 (19)0.0300 (6)
C20.13405 (14)1.2022 (5)0.40282 (19)0.0348 (7)
H20.17621.29580.39590.042*
C30.08086 (14)1.2588 (5)0.4816 (2)0.0369 (7)
H30.08701.39140.52590.044*
C40.02145 (13)1.1223 (5)0.4929 (2)0.0373 (7)
H40.01311.15850.54710.045*
C50.00952 (13)0.9262 (5)0.42571 (18)0.0313 (6)
C60.05236 (13)0.7881 (5)0.43475 (19)0.0340 (7)
H60.08690.82310.48910.041*
C70.06517 (13)0.6010 (5)0.3669 (2)0.0331 (6)
C80.12738 (13)0.4548 (5)0.3779 (2)0.0393 (7)
H80.16180.48600.43290.047*
C90.13797 (14)0.2722 (6)0.3111 (2)0.0420 (7)
H90.17950.17640.32000.050*
C100.08711 (14)0.2228 (6)0.2274 (2)0.0429 (7)
H100.09520.09610.18010.051*
C110.02709 (13)0.3575 (5)0.2156 (2)0.0351 (7)
H110.00650.32290.15990.042*
C120.01350 (12)0.5483 (5)0.28448 (18)0.0300 (6)
C130.04932 (12)0.6848 (5)0.27515 (19)0.0298 (6)
H130.08370.64960.22060.036*
C140.06241 (12)0.8710 (5)0.34406 (18)0.0280 (6)
C150.19237 (13)1.1049 (5)0.16742 (19)0.0324 (6)
C160.24985 (14)0.9892 (5)0.1008 (2)0.0409 (7)
H16A0.23020.94400.02980.049*
H16B0.29171.09430.08980.049*
C170.27266 (14)0.7749 (5)0.1650 (2)0.0394 (7)
H17A0.32500.78130.18280.047*
H17B0.26300.63160.12360.047*
C180.22734 (12)0.7812 (5)0.2656 (2)0.0328 (6)
N10.17925 (10)0.9652 (4)0.25776 (16)0.0301 (5)
O10.16111 (10)1.2847 (4)0.14866 (14)0.0409 (5)
O20.23048 (9)0.6519 (4)0.34224 (15)0.0415 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (12)0.0376 (16)0.0252 (11)0.0043 (11)0.0015 (9)0.0022 (13)
C20.0324 (13)0.0423 (18)0.0298 (13)0.0020 (12)0.0038 (10)0.0024 (14)
C30.0414 (15)0.0417 (18)0.0278 (12)0.0020 (13)0.0027 (11)0.0064 (13)
C40.0360 (14)0.051 (2)0.0253 (12)0.0075 (13)0.0000 (11)0.0014 (14)
C50.0294 (12)0.0421 (17)0.0223 (11)0.0043 (12)0.0000 (10)0.0022 (12)
C60.0275 (12)0.0484 (19)0.0260 (12)0.0051 (12)0.0050 (10)0.0036 (14)
C70.0280 (12)0.0402 (18)0.0312 (13)0.0038 (12)0.0001 (10)0.0069 (13)
C80.0262 (12)0.050 (2)0.0419 (14)0.0011 (13)0.0026 (11)0.0111 (15)
C90.0290 (13)0.0429 (19)0.0541 (17)0.0058 (13)0.0047 (13)0.0080 (16)
C100.0365 (15)0.0420 (19)0.0503 (17)0.0007 (14)0.0099 (13)0.0003 (17)
C110.0320 (14)0.0402 (18)0.0333 (13)0.0010 (13)0.0013 (10)0.0016 (13)
C120.0260 (12)0.0353 (17)0.0287 (12)0.0020 (11)0.0030 (9)0.0051 (13)
C130.0258 (11)0.0403 (18)0.0235 (11)0.0061 (11)0.0000 (9)0.0032 (13)
C140.0261 (11)0.0361 (16)0.0217 (11)0.0054 (11)0.0019 (9)0.0022 (12)
C150.0279 (12)0.0426 (17)0.0267 (12)0.0034 (12)0.0039 (9)0.0004 (13)
C160.0381 (13)0.052 (2)0.0326 (12)0.0054 (14)0.0045 (10)0.0022 (14)
C170.0344 (13)0.0445 (18)0.0393 (14)0.0035 (12)0.0058 (11)0.0011 (14)
C180.0260 (12)0.0367 (16)0.0357 (13)0.0043 (11)0.0009 (10)0.0031 (14)
N10.0257 (9)0.0377 (13)0.0269 (9)0.0010 (9)0.0007 (8)0.0015 (10)
O10.0431 (10)0.0482 (13)0.0313 (9)0.0103 (10)0.0025 (8)0.0046 (9)
O20.0349 (9)0.0453 (12)0.0443 (11)0.0037 (9)0.0026 (8)0.0134 (10)
Geometric parameters (Å, º) top
C1—C21.352 (4)C10—C111.359 (4)
C1—C141.430 (3)C10—H100.9500
C1—N11.440 (3)C11—C121.418 (4)
C2—C31.423 (4)C11—H110.9500
C2—H20.9500C12—C131.405 (3)
C3—C41.355 (4)C13—C141.395 (3)
C3—H30.9500C13—H130.9500
C4—C51.424 (4)C15—O11.209 (3)
C4—H40.9500C15—N11.404 (3)
C5—C61.395 (4)C15—C161.501 (4)
C5—C141.443 (3)C16—C171.531 (4)
C6—C71.390 (4)C16—H16A0.9900
C6—H60.9500C16—H16B0.9900
C7—C81.429 (4)C17—C181.505 (3)
C7—C121.432 (3)C17—H17A0.9900
C8—C91.357 (4)C17—H17B0.9900
C8—H80.9500C18—O21.211 (3)
C9—C101.430 (4)C18—N11.386 (3)
C9—H90.9500
C2—C1—C14122.1 (2)C12—C11—H11119.3
C2—C1—N1119.5 (2)C13—C12—C11122.1 (2)
C14—C1—N1118.4 (2)C13—C12—C7119.2 (2)
C1—C2—C3120.6 (3)C11—C12—C7118.7 (2)
C1—C2—H2119.7C14—C13—C12121.6 (2)
C3—C2—H2119.7C14—C13—H13119.2
C4—C3—C2119.6 (3)C12—C13—H13119.2
C4—C3—H3120.2C13—C14—C1123.9 (2)
C2—C3—H3120.2C13—C14—C5119.1 (2)
C3—C4—C5121.7 (2)C1—C14—C5117.0 (2)
C3—C4—H4119.2O1—C15—N1124.4 (2)
C5—C4—H4119.2O1—C15—C16127.7 (2)
C6—C5—C4122.2 (2)N1—C15—C16107.9 (2)
C6—C5—C14118.8 (2)C15—C16—C17105.4 (2)
C4—C5—C14119.0 (2)C15—C16—H16A110.7
C7—C6—C5122.2 (2)C17—C16—H16A110.7
C7—C6—H6118.9C15—C16—H16B110.7
C5—C6—H6118.9C17—C16—H16B110.7
C6—C7—C8122.4 (2)H16A—C16—H16B108.8
C6—C7—C12119.1 (2)C18—C17—C16105.2 (2)
C8—C7—C12118.4 (3)C18—C17—H17A110.7
C9—C8—C7121.0 (3)C16—C17—H17A110.7
C9—C8—H8119.5C18—C17—H17B110.7
C7—C8—H8119.5C16—C17—H17B110.7
C8—C9—C10120.5 (3)H17A—C17—H17B108.8
C8—C9—H9119.8O2—C18—N1123.9 (2)
C10—C9—H9119.8O2—C18—C17127.8 (2)
C11—C10—C9119.8 (3)N1—C18—C17108.3 (2)
C11—C10—H10120.1C18—N1—C15112.7 (2)
C9—C10—H10120.1C18—N1—C1123.5 (2)
C10—C11—C12121.5 (3)C15—N1—C1123.7 (2)
C10—C11—H11119.3
C14—C1—C2—C30.6 (4)C2—C1—C14—C13176.7 (2)
N1—C1—C2—C3179.1 (2)N1—C1—C14—C131.8 (3)
C1—C2—C3—C41.4 (4)C2—C1—C14—C51.9 (3)
C2—C3—C4—C51.9 (4)N1—C1—C14—C5179.5 (2)
C3—C4—C5—C6178.3 (3)C6—C5—C14—C131.4 (3)
C3—C4—C5—C140.4 (4)C4—C5—C14—C13177.3 (2)
C4—C5—C6—C7177.9 (2)C6—C5—C14—C1179.8 (2)
C14—C5—C6—C70.8 (4)C4—C5—C14—C11.4 (3)
C5—C6—C7—C8178.1 (3)O1—C15—C16—C17177.3 (2)
C5—C6—C7—C120.4 (4)N1—C15—C16—C173.5 (3)
C6—C7—C8—C9179.4 (3)C15—C16—C17—C180.6 (3)
C12—C7—C8—C90.9 (4)C16—C17—C18—O2175.4 (3)
C7—C8—C9—C100.4 (4)C16—C17—C18—N14.5 (3)
C8—C9—C10—C111.0 (4)O2—C18—N1—C15172.7 (2)
C9—C10—C11—C120.3 (4)C17—C18—N1—C157.2 (3)
C10—C11—C12—C13178.2 (3)O2—C18—N1—C13.1 (4)
C10—C11—C12—C71.1 (4)C17—C18—N1—C1177.0 (2)
C6—C7—C12—C130.9 (3)O1—C15—N1—C18173.9 (2)
C8—C7—C12—C13177.6 (2)C16—C15—N1—C186.9 (3)
C6—C7—C12—C11179.9 (2)O1—C15—N1—C11.8 (4)
C8—C7—C12—C111.6 (4)C16—C15—N1—C1177.4 (2)
C11—C12—C13—C14179.4 (2)C2—C1—N1—C18107.2 (3)
C7—C12—C13—C140.2 (3)C14—C1—N1—C1874.2 (3)
C12—C13—C14—C1179.6 (2)C2—C1—N1—C1568.1 (3)
C12—C13—C14—C50.9 (3)C14—C1—N1—C15110.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.383.234 (3)149
C6—H6···O1ii0.952.493.357 (3)152
C9—H9···O2iii0.952.533.465 (3)167
C13—H13···O1iv0.952.703.471 (3)139
C17—H17A···Cg2v0.992.923.709 (3)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x, y1, z; (v) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC18H13NO2
Mr275.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)18.4179 (9), 5.7697 (4), 12.4403 (6)
V3)1321.98 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10655, 1667, 1258
Rint0.081
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.088, 0.95
No. of reflections1667
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker 2005), SAINT (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.952.383.234 (3)149
C6—H6···O1ii0.952.493.357 (3)152
C9—H9···O2iii0.952.533.465 (3)167
C13—H13···O1iv0.952.703.471 (3)139
C17—H17A···Cg2v0.992.923.709 (3)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x, y1, z; (v) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.

References

First citationAlston, P. V., Ottenbrite, R. M. & Newby, J. (1979). J. Org. Chem. 44, 4939–4943.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHubbard, J. L., Carl, J. M. III, Anderson, G. D. & Rankin, G. O. (1992). J. Heterocycl. Chem. 29, 719–721.  CrossRef CAS Google Scholar
First citationKaplan, F. & Conroy, H. (1963). J. Org. Chem. 28, 1593–1596.  CrossRef CAS Web of Science Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationMeek, J. S., Wilgus, D. R. & Dann, J. R. (1960). J. Am. Chem. Soc. 82, 2566–2569.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, M. D. & Ningombom, A. (2010). Indian J. Chem. Sect. B, 49, 789–794.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerma, S. M. & Singh, M. D. (1977). J. Org. Chem. 42, 3736–3740.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1503
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds