organic compounds
1-(Anthracen-1-yl)pyrrolidine-2,5-dione
aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: manuel.fernandes@wits.ac.za
In the molecular structure of title compound, C18H13NO2, the succinimide ring is orientated away from the plane of the anthracene moiety by 71.94 (4)°. The features three different types of intermolecular interactions, viz. C—H⋯O, C—H⋯π and π–π bonds. Molecules along the b axis stack on each other as a result of π–π interactions which have a centroid–centroid distance of 3.6780 (15) Å, while C—H⋯π interactions are present between neigbouring stacks. Also, acting between the stacks are the C—H⋯O interactions between the aromatic H atoms of the anthracene and the O atoms of the succinimide.
Related literature
For studies of regio- and sterio-selectivity of substituted anthracenes in Diels–Alder reactions, see: Singh & Ningombom (2010); Alston et al. (1979); Meek et al. (1960); Kaplan & Conroy (1963); Verma & Singh (1977). For a study involving NMR experiments, see: Hubbard et al. (1992).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker 2005); cell SAINT (Bruker 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681201536X/rk2341sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681201536X/rk2341Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681201536X/rk2341Isup3.cml
The title compound was synthesized with very low yield (a few crystals) by reaction of 1-aminoanthracene (0.200 g, 1 mmol) with succinic anhydride (0.107 g, 1 mmol) in the presence of dioxane as a solvent (3 ml) by strirring at room temperature for a few hours. Thionyl chloride (3 ml) in dioxane (2 ml) was then slowly added to the reaction mixture at room temperature. The mixture was then kept at 323 K for 12 h, followed by neutralization of excess thionyl chloride by pouring the mixture into a beaker containing ice. This mixture was then filtered yielding a dark brown material, which after recrystallization by slow evaporation from chloroform yielded a few crystals suitable for analysis by X-ray diffraction.
All H atoms were positioned geometrically, and allowed to ride on their parent atoms, with C–H bond lengths of 0.95Å for aromatic H or 0.99Å for methylene H and Uiso(H) = 1.2Ueq(C). The 1449 Friedel pairs were merged during structure refinement.
Data collection: APEX2 (Bruker 2005); cell
SAINT (Bruker 2005); data reduction: SAINT (Bruker 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. C–H···O, C–H···π and π–π interactions in the structure of the title compound. The C–H···π and π–π interactions are respectively indicated by dollar ($) or hash (#) symbols. |
C18H13NO2 | F(000) = 576 |
Mr = 275.29 | Dx = 1.383 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2466 reflections |
a = 18.4179 (9) Å | θ = 2.8–26.7° |
b = 5.7697 (4) Å | µ = 0.09 mm−1 |
c = 12.4403 (6) Å | T = 173 K |
V = 1321.98 (13) Å3 | Plate, brown |
Z = 4 | 0.49 × 0.15 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1258 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.081 |
Graphite monochromator | θmax = 28.0°, θmin = 2.2° |
ϕ– and ω–scans | h = −24→24 |
10655 measured reflections | k = −7→7 |
1667 independent reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3 |
1667 reflections | (Δ/σ)max = 0.002 |
190 parameters | Δρmax = 0.17 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
C18H13NO2 | V = 1321.98 (13) Å3 |
Mr = 275.29 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 18.4179 (9) Å | µ = 0.09 mm−1 |
b = 5.7697 (4) Å | T = 173 K |
c = 12.4403 (6) Å | 0.49 × 0.15 × 0.10 mm |
Bruker APEXII CCD diffractometer | 1258 reflections with I > 2σ(I) |
10655 measured reflections | Rint = 0.081 |
1667 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 1 restraint |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.17 e Å−3 |
1667 reflections | Δρmin = −0.19 e Å−3 |
190 parameters |
Geometry. All s.u.'s (except s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.12512 (12) | 1.0166 (5) | 0.33781 (19) | 0.0300 (6) | |
C2 | −0.13405 (14) | 1.2022 (5) | 0.40282 (19) | 0.0348 (7) | |
H2 | −0.1762 | 1.2958 | 0.3959 | 0.042* | |
C3 | −0.08086 (14) | 1.2588 (5) | 0.4816 (2) | 0.0369 (7) | |
H3 | −0.0870 | 1.3914 | 0.5259 | 0.044* | |
C4 | −0.02145 (13) | 1.1223 (5) | 0.4929 (2) | 0.0373 (7) | |
H4 | 0.0131 | 1.1585 | 0.5471 | 0.045* | |
C5 | −0.00952 (13) | 0.9262 (5) | 0.42571 (18) | 0.0313 (6) | |
C6 | 0.05236 (13) | 0.7881 (5) | 0.43475 (19) | 0.0340 (7) | |
H6 | 0.0869 | 0.8231 | 0.4891 | 0.041* | |
C7 | 0.06517 (13) | 0.6010 (5) | 0.3669 (2) | 0.0331 (6) | |
C8 | 0.12738 (13) | 0.4548 (5) | 0.3779 (2) | 0.0393 (7) | |
H8 | 0.1618 | 0.4860 | 0.4329 | 0.047* | |
C9 | 0.13797 (14) | 0.2722 (6) | 0.3111 (2) | 0.0420 (7) | |
H9 | 0.1795 | 0.1764 | 0.3200 | 0.050* | |
C10 | 0.08711 (14) | 0.2228 (6) | 0.2274 (2) | 0.0429 (7) | |
H10 | 0.0952 | 0.0961 | 0.1801 | 0.051* | |
C11 | 0.02709 (13) | 0.3575 (5) | 0.2156 (2) | 0.0351 (7) | |
H11 | −0.0065 | 0.3229 | 0.1599 | 0.042* | |
C12 | 0.01350 (12) | 0.5483 (5) | 0.28448 (18) | 0.0300 (6) | |
C13 | −0.04932 (12) | 0.6848 (5) | 0.27515 (19) | 0.0298 (6) | |
H13 | −0.0837 | 0.6496 | 0.2206 | 0.036* | |
C14 | −0.06241 (12) | 0.8710 (5) | 0.34406 (18) | 0.0280 (6) | |
C15 | −0.19237 (13) | 1.1049 (5) | 0.16742 (19) | 0.0324 (6) | |
C16 | −0.24985 (14) | 0.9892 (5) | 0.1008 (2) | 0.0409 (7) | |
H16A | −0.2302 | 0.9440 | 0.0298 | 0.049* | |
H16B | −0.2917 | 1.0943 | 0.0898 | 0.049* | |
C17 | −0.27266 (14) | 0.7749 (5) | 0.1650 (2) | 0.0394 (7) | |
H17A | −0.3250 | 0.7813 | 0.1828 | 0.047* | |
H17B | −0.2630 | 0.6316 | 0.1236 | 0.047* | |
C18 | −0.22734 (12) | 0.7812 (5) | 0.2656 (2) | 0.0328 (6) | |
N1 | −0.17925 (10) | 0.9652 (4) | 0.25776 (16) | 0.0301 (5) | |
O1 | −0.16111 (10) | 1.2847 (4) | 0.14866 (14) | 0.0409 (5) | |
O2 | −0.23048 (9) | 0.6519 (4) | 0.34224 (15) | 0.0415 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0272 (12) | 0.0376 (16) | 0.0252 (11) | −0.0043 (11) | 0.0015 (9) | 0.0022 (13) |
C2 | 0.0324 (13) | 0.0423 (18) | 0.0298 (13) | 0.0020 (12) | 0.0038 (10) | 0.0024 (14) |
C3 | 0.0414 (15) | 0.0417 (18) | 0.0278 (12) | −0.0020 (13) | 0.0027 (11) | −0.0064 (13) |
C4 | 0.0360 (14) | 0.051 (2) | 0.0253 (12) | −0.0075 (13) | 0.0000 (11) | −0.0014 (14) |
C5 | 0.0294 (12) | 0.0421 (17) | 0.0223 (11) | −0.0043 (12) | 0.0000 (10) | 0.0022 (12) |
C6 | 0.0275 (12) | 0.0484 (19) | 0.0260 (12) | −0.0051 (12) | −0.0050 (10) | 0.0036 (14) |
C7 | 0.0280 (12) | 0.0402 (18) | 0.0312 (13) | −0.0038 (12) | 0.0001 (10) | 0.0069 (13) |
C8 | 0.0262 (12) | 0.050 (2) | 0.0419 (14) | −0.0011 (13) | −0.0026 (11) | 0.0111 (15) |
C9 | 0.0290 (13) | 0.0429 (19) | 0.0541 (17) | 0.0058 (13) | 0.0047 (13) | 0.0080 (16) |
C10 | 0.0365 (15) | 0.0420 (19) | 0.0503 (17) | 0.0007 (14) | 0.0099 (13) | −0.0003 (17) |
C11 | 0.0320 (14) | 0.0402 (18) | 0.0333 (13) | −0.0010 (13) | 0.0013 (10) | −0.0016 (13) |
C12 | 0.0260 (12) | 0.0353 (17) | 0.0287 (12) | −0.0020 (11) | 0.0030 (9) | 0.0051 (13) |
C13 | 0.0258 (11) | 0.0403 (18) | 0.0235 (11) | −0.0061 (11) | 0.0000 (9) | 0.0032 (13) |
C14 | 0.0261 (11) | 0.0361 (16) | 0.0217 (11) | −0.0054 (11) | 0.0019 (9) | 0.0022 (12) |
C15 | 0.0279 (12) | 0.0426 (17) | 0.0267 (12) | 0.0034 (12) | 0.0039 (9) | 0.0004 (13) |
C16 | 0.0381 (13) | 0.052 (2) | 0.0326 (12) | −0.0054 (14) | −0.0045 (10) | 0.0022 (14) |
C17 | 0.0344 (13) | 0.0445 (18) | 0.0393 (14) | −0.0035 (12) | −0.0058 (11) | 0.0011 (14) |
C18 | 0.0260 (12) | 0.0367 (16) | 0.0357 (13) | 0.0043 (11) | 0.0009 (10) | 0.0031 (14) |
N1 | 0.0257 (9) | 0.0377 (13) | 0.0269 (9) | 0.0010 (9) | −0.0007 (8) | 0.0015 (10) |
O1 | 0.0431 (10) | 0.0482 (13) | 0.0313 (9) | −0.0103 (10) | 0.0025 (8) | 0.0046 (9) |
O2 | 0.0349 (9) | 0.0453 (12) | 0.0443 (11) | −0.0037 (9) | −0.0026 (8) | 0.0134 (10) |
C1—C2 | 1.352 (4) | C10—C11 | 1.359 (4) |
C1—C14 | 1.430 (3) | C10—H10 | 0.9500 |
C1—N1 | 1.440 (3) | C11—C12 | 1.418 (4) |
C2—C3 | 1.423 (4) | C11—H11 | 0.9500 |
C2—H2 | 0.9500 | C12—C13 | 1.405 (3) |
C3—C4 | 1.355 (4) | C13—C14 | 1.395 (3) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
C4—C5 | 1.424 (4) | C15—O1 | 1.209 (3) |
C4—H4 | 0.9500 | C15—N1 | 1.404 (3) |
C5—C6 | 1.395 (4) | C15—C16 | 1.501 (4) |
C5—C14 | 1.443 (3) | C16—C17 | 1.531 (4) |
C6—C7 | 1.390 (4) | C16—H16A | 0.9900 |
C6—H6 | 0.9500 | C16—H16B | 0.9900 |
C7—C8 | 1.429 (4) | C17—C18 | 1.505 (3) |
C7—C12 | 1.432 (3) | C17—H17A | 0.9900 |
C8—C9 | 1.357 (4) | C17—H17B | 0.9900 |
C8—H8 | 0.9500 | C18—O2 | 1.211 (3) |
C9—C10 | 1.430 (4) | C18—N1 | 1.386 (3) |
C9—H9 | 0.9500 | ||
C2—C1—C14 | 122.1 (2) | C12—C11—H11 | 119.3 |
C2—C1—N1 | 119.5 (2) | C13—C12—C11 | 122.1 (2) |
C14—C1—N1 | 118.4 (2) | C13—C12—C7 | 119.2 (2) |
C1—C2—C3 | 120.6 (3) | C11—C12—C7 | 118.7 (2) |
C1—C2—H2 | 119.7 | C14—C13—C12 | 121.6 (2) |
C3—C2—H2 | 119.7 | C14—C13—H13 | 119.2 |
C4—C3—C2 | 119.6 (3) | C12—C13—H13 | 119.2 |
C4—C3—H3 | 120.2 | C13—C14—C1 | 123.9 (2) |
C2—C3—H3 | 120.2 | C13—C14—C5 | 119.1 (2) |
C3—C4—C5 | 121.7 (2) | C1—C14—C5 | 117.0 (2) |
C3—C4—H4 | 119.2 | O1—C15—N1 | 124.4 (2) |
C5—C4—H4 | 119.2 | O1—C15—C16 | 127.7 (2) |
C6—C5—C4 | 122.2 (2) | N1—C15—C16 | 107.9 (2) |
C6—C5—C14 | 118.8 (2) | C15—C16—C17 | 105.4 (2) |
C4—C5—C14 | 119.0 (2) | C15—C16—H16A | 110.7 |
C7—C6—C5 | 122.2 (2) | C17—C16—H16A | 110.7 |
C7—C6—H6 | 118.9 | C15—C16—H16B | 110.7 |
C5—C6—H6 | 118.9 | C17—C16—H16B | 110.7 |
C6—C7—C8 | 122.4 (2) | H16A—C16—H16B | 108.8 |
C6—C7—C12 | 119.1 (2) | C18—C17—C16 | 105.2 (2) |
C8—C7—C12 | 118.4 (3) | C18—C17—H17A | 110.7 |
C9—C8—C7 | 121.0 (3) | C16—C17—H17A | 110.7 |
C9—C8—H8 | 119.5 | C18—C17—H17B | 110.7 |
C7—C8—H8 | 119.5 | C16—C17—H17B | 110.7 |
C8—C9—C10 | 120.5 (3) | H17A—C17—H17B | 108.8 |
C8—C9—H9 | 119.8 | O2—C18—N1 | 123.9 (2) |
C10—C9—H9 | 119.8 | O2—C18—C17 | 127.8 (2) |
C11—C10—C9 | 119.8 (3) | N1—C18—C17 | 108.3 (2) |
C11—C10—H10 | 120.1 | C18—N1—C15 | 112.7 (2) |
C9—C10—H10 | 120.1 | C18—N1—C1 | 123.5 (2) |
C10—C11—C12 | 121.5 (3) | C15—N1—C1 | 123.7 (2) |
C10—C11—H11 | 119.3 | ||
C14—C1—C2—C3 | −0.6 (4) | C2—C1—C14—C13 | −176.7 (2) |
N1—C1—C2—C3 | −179.1 (2) | N1—C1—C14—C13 | 1.8 (3) |
C1—C2—C3—C4 | −1.4 (4) | C2—C1—C14—C5 | 1.9 (3) |
C2—C3—C4—C5 | 1.9 (4) | N1—C1—C14—C5 | −179.5 (2) |
C3—C4—C5—C6 | 178.3 (3) | C6—C5—C14—C13 | −1.4 (3) |
C3—C4—C5—C14 | −0.4 (4) | C4—C5—C14—C13 | 177.3 (2) |
C4—C5—C6—C7 | −177.9 (2) | C6—C5—C14—C1 | 179.8 (2) |
C14—C5—C6—C7 | 0.8 (4) | C4—C5—C14—C1 | −1.4 (3) |
C5—C6—C7—C8 | −178.1 (3) | O1—C15—C16—C17 | −177.3 (2) |
C5—C6—C7—C12 | 0.4 (4) | N1—C15—C16—C17 | 3.5 (3) |
C6—C7—C8—C9 | 179.4 (3) | C15—C16—C17—C18 | 0.6 (3) |
C12—C7—C8—C9 | 0.9 (4) | C16—C17—C18—O2 | 175.4 (3) |
C7—C8—C9—C10 | 0.4 (4) | C16—C17—C18—N1 | −4.5 (3) |
C8—C9—C10—C11 | −1.0 (4) | O2—C18—N1—C15 | −172.7 (2) |
C9—C10—C11—C12 | 0.3 (4) | C17—C18—N1—C15 | 7.2 (3) |
C10—C11—C12—C13 | −178.2 (3) | O2—C18—N1—C1 | 3.1 (4) |
C10—C11—C12—C7 | 1.1 (4) | C17—C18—N1—C1 | −177.0 (2) |
C6—C7—C12—C13 | −0.9 (3) | O1—C15—N1—C18 | 173.9 (2) |
C8—C7—C12—C13 | 177.6 (2) | C16—C15—N1—C18 | −6.9 (3) |
C6—C7—C12—C11 | 179.9 (2) | O1—C15—N1—C1 | −1.8 (4) |
C8—C7—C12—C11 | −1.6 (4) | C16—C15—N1—C1 | 177.4 (2) |
C11—C12—C13—C14 | 179.4 (2) | C2—C1—N1—C18 | −107.2 (3) |
C7—C12—C13—C14 | 0.2 (3) | C14—C1—N1—C18 | 74.2 (3) |
C12—C13—C14—C1 | 179.6 (2) | C2—C1—N1—C15 | 68.1 (3) |
C12—C13—C14—C5 | 0.9 (3) | C14—C1—N1—C15 | −110.5 (3) |
Cg2 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.38 | 3.234 (3) | 149 |
C6—H6···O1ii | 0.95 | 2.49 | 3.357 (3) | 152 |
C9—H9···O2iii | 0.95 | 2.53 | 3.465 (3) | 167 |
C13—H13···O1iv | 0.95 | 2.70 | 3.471 (3) | 139 |
C17—H17A···Cg2v | 0.99 | 2.92 | 3.709 (3) | 138 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, z+1/2; (iii) x+1/2, −y+1/2, z; (iv) x, y−1, z; (v) x+1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | C18H13NO2 |
Mr | 275.29 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 173 |
a, b, c (Å) | 18.4179 (9), 5.7697 (4), 12.4403 (6) |
V (Å3) | 1321.98 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.49 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10655, 1667, 1258 |
Rint | 0.081 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.088, 0.95 |
No. of reflections | 1667 |
No. of parameters | 190 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.19 |
Computer programs: APEX2 (Bruker 2005), SAINT (Bruker 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cg2 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.95 | 2.38 | 3.234 (3) | 149 |
C6—H6···O1ii | 0.95 | 2.49 | 3.357 (3) | 152 |
C9—H9···O2iii | 0.95 | 2.53 | 3.465 (3) | 167 |
C13—H13···O1iv | 0.95 | 2.70 | 3.471 (3) | 139 |
C17—H17A···Cg2v | 0.99 | 2.92 | 3.709 (3) | 138 |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, z+1/2; (iii) x+1/2, −y+1/2, z; (iv) x, y−1, z; (v) x+1/2, −y+3/2, z. |
Acknowledgements
This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.
References
Alston, P. V., Ottenbrite, R. M. & Newby, J. (1979). J. Org. Chem. 44, 4939–4943. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hubbard, J. L., Carl, J. M. III, Anderson, G. D. & Rankin, G. O. (1992). J. Heterocycl. Chem. 29, 719–721. CrossRef CAS Google Scholar
Kaplan, F. & Conroy, H. (1963). J. Org. Chem. 28, 1593–1596. CrossRef CAS Web of Science Google Scholar
Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany. Google Scholar
Meek, J. S., Wilgus, D. R. & Dann, J. R. (1960). J. Am. Chem. Soc. 82, 2566–2569. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, M. D. & Ningombom, A. (2010). Indian J. Chem. Sect. B, 49, 789–794. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Verma, S. M. & Singh, M. D. (1977). J. Org. Chem. 42, 3736–3740. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The compound anthracene has been known for a long time and its properties have been extensively studied. The regio- and sterio-selectivity of substituted anthracenes in Diels-Alder reactions have been investigated and reported (Alston et al., 1979; Meek et al., 1960; Kaplan & Conroy, 1963; Verma & Singh, 1977; Singh & Ningombom, 2010). A study of the title compound and 1-succinimidonaphthalene involving synthesis, NMR experiments and molecular mechanics has been reported by Hubbard et al. (1992).
Both the anthracene and succinimide moeities are planar but are tilted with respect to each other at an angle of 71.94 (4)° (Fig. 1). Two anthracene bond lengths – C1—C14 [1.430 (3)Å] and C5—C14 [1.443 (3)Å] – are significantly longer than the 1.39Å typical of aromatic rings. As a consequence the rings containing these have been flagged as having larger than average C6-ring C—C bond lengths by PLATON (Spek, 2009), suggesting that the succinimide group has a significant effect on the charge distribution within the anthracene ring. The crystal structure contains three different types of intermolecular interactions, these include C–H···O, C–H···π and π–π interactions (Fig. 2). The π–π interaction occurs over a Cg1···Cg2 distance of 3.678 (2)Å between the rings defined by C1-C5/C14 (Cg1) and C7-C12 (Cg2). This leads to the stacking of molecules along b axis. Geometrical details of the C–H···π and C–H···O interactions are given in the Table 1.