organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1359

[2-(2,5-Di­chloro­benz­yl)-4-hy­dr­oxy-1,1-dioxo-2H-1,2-benzo­thia­zin-3-yl](phen­yl)methanone

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bChemistry Department, Govt. College University, Faisalabad, Pakistan, cDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Darul Ta'zim, Malaysia, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 9 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title mol­ecule, C22H15Cl2NO4S, the heterocyclic thia­zine ring adopts a half-chair conformation, with the S and N atoms displaced by 0.343 (5) and 0.402 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The mol­ecular structure is consolidated by an intra­molecular O—H⋯O hydrogen bond, which generates an S(?) ring. In the crystal, the molecules are linked by C—H⋯O interactions into [010] chains.

Related literature

For background information on the activity of anti-inflammatory and analgesic oxicams, see: Lombardino et al. (1971[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1971). J. Med. Chem. 14, 1171-1175.]); Soler (1985[Soler, J. E. (1985). US Patent No. 4 563 452.]); Carty et al. (1993[Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157-165.]); Turck et al. (1995[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270-276.]); Blackham & Owen (1975[Blackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201-203.]). For the biological activity of benzothia­zine derivatives, see: Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudhary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 54, 1171-1175.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For the syntheses and crystal stuctures of related benzothia­zine derivatives, see: Ahmad et al. (2011[Ahmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2613.]); Aslam et al. (2012[Aslam, S., Siddiqui, H. L., Ahmad, M., Bukhari, I. H. & Parvez, M. (2012). Acta Cryst. E68, o502.]).

[Scheme 1]

Experimental

Crystal data
  • C22H15Cl2NO4S

  • Mr = 460.32

  • Monoclinic, P 21 /c

  • a = 12.8172 (5) Å

  • b = 9.9215 (4) Å

  • c = 16.7155 (5) Å

  • β = 110.511 (2)°

  • V = 1990.89 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.913, Tmax = 0.930

  • 16108 measured reflections

  • 4592 independent reflections

  • 3598 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.118

  • S = 1.11

  • 4592 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 0.95 2.60 3.310 (4) 132
O3—H3O⋯O4 0.84 1.80 2.539 (3) 146
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxicam is the most recent class of non-steroidal anti-inflammatory drugs (NSAIDs) and includes molecules that are derived from 1,2-benzothiazine-1,1-dioxide nuclei which are found to be potent anti-inflammatory and analgesic agents, e.g., piroxicam (Lombardino et al., 1971), droxicam (Soler, 1985), ampiroxicam (Carty et al., 1993), meloxicam (Turck et al., 1995) and sudoxicam (Blackham & Owen, 1975), etc. Besides oxicam, a large number of benzothiazine derivatives are found to possess anti-microbial (Zia-ur-Rehman et al., 2005) and anti-oxidant activities (Ahmad et al., 2010). As part of our ongoing research we are interested in the synthesis and characterization of novel benzothiazine derivatives (Aslam et al., 2012; Ahmad et al., 2011). In this paper we report the synthesis, molecular and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree well with the corresponding bond distances and angles reported for structures of closely related compounds (Ahmad et al., 2011; Aslam et al., 2012). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.402 (5)Å and 0.343 (5)Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The dihedral angle between the mean planes of benzene rings C1-C6 and C17-C22 is 31.17 (7)° while the mean planes of the benzene rings C1-C6 and C10-C15 are oriented at 35.09 (9)° with respect to each other. The molecular structure of the title compound is stabilized by intramolecular interactions O3–H3O···O4, C11–H11···N1 and C16–H16A···O2, etc, while the crystal packing is consolidated by C3–H3···O4i intermolecular nonclassical hydrogen bonds resulting in chains of molecules lying along the b-axis (Fig. 2 and Table 1). Symmetry code: (i) x, y+1, z.

Related literature top

For background information on the activity of anti-inflammatory and analgesic oxicams, see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995); Blackham & Owen (1975). For the biological activity of benzothiazine derivatives, see: Zia-ur-Rehman et al. (2005); Ahmad et al. (2010). For the syntheses and crystal stuctures of novel benzothiazine derivatives, see: Ahmad et al. (2011); Aslam et al. (2012).

Experimental top

A mixture of 3-benzoyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide (1.0 g, 3.32 mmol), aqueous sodium hydroxide (0.26 g, 6.6 mmol) and 2-(bromomethyl)-1,4-dichlorobenzene (0.80 g, 3.32 mmol) in acetone (10 ml) was subjected to ultrasonic irradiation for 20 minutes at 318 K. The reaction mixture was then acidified to pH = 3 by using dilute hydrochloric acid. The precipitates were filtered, washed with excess of distilled water and dried at room temperature to get chrome yellow powder of the title compound (1.38 g, 90.3%). The crystals suitable for X-ray crystallographic analysis were grown from methanol by slow evaporation at room temperature.

Refinement top

The H atoms bonded to C and O atoms were positioned geometrically and refined using a riding model, with O–H = 0.84Å and C–H = 0.95Å and 0.99Å, respectively, for aryl and methylene type H-atoms. The Uiso(H) were allowed at 1.2Ueq(parent atom).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. The H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular and intramolecular hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
[2-(2,5-Dichlorobenzyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazin- 3-yl](phenyl)methanone top
Crystal data top
C22H15Cl2NO4SF(000) = 944
Mr = 460.32Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8696 reflections
a = 12.8172 (5) Åθ = 1.0–27.5°
b = 9.9215 (4) ŵ = 0.46 mm1
c = 16.7155 (5) ÅT = 173 K
β = 110.511 (2)°Prism, yellow
V = 1990.89 (13) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4592 independent reflections
Radiation source: fine-focus sealed tube3598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω and ϕ scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1616
Tmin = 0.913, Tmax = 0.930k = 1212
16108 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0232P)2 + 2.3517P]
where P = (Fo2 + 2Fc2)/3
4592 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C22H15Cl2NO4SV = 1990.89 (13) Å3
Mr = 460.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8172 (5) ŵ = 0.46 mm1
b = 9.9215 (4) ÅT = 173 K
c = 16.7155 (5) Å0.20 × 0.18 × 0.16 mm
β = 110.511 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4592 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3598 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.930Rint = 0.055
16108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.11Δρmax = 0.33 e Å3
4592 reflectionsΔρmin = 0.44 e Å3
272 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52481 (7)0.04749 (10)0.39033 (6)0.0658 (3)
Cl20.50174 (9)0.57915 (12)0.37257 (7)0.0804 (3)
S10.87675 (5)0.25684 (7)0.53887 (4)0.03478 (16)
O10.98780 (15)0.2067 (2)0.56375 (12)0.0457 (5)
O20.84712 (17)0.3467 (2)0.59407 (11)0.0465 (5)
O30.79566 (17)0.0186 (2)0.31269 (11)0.0418 (5)
H3O0.78660.06240.32350.050*
O40.77251 (15)0.18006 (19)0.40080 (11)0.0408 (5)
N10.79342 (17)0.1262 (2)0.52149 (12)0.0331 (5)
C10.8421 (2)0.3280 (3)0.43643 (16)0.0339 (6)
C20.8521 (2)0.4653 (3)0.42629 (18)0.0406 (6)
H20.87390.52360.47440.049*
C30.8297 (2)0.5165 (3)0.34482 (19)0.0465 (7)
H30.83650.61040.33690.056*
C40.7977 (3)0.4316 (3)0.27565 (18)0.0483 (7)
H40.78300.46760.22010.058*
C50.7866 (2)0.2949 (3)0.28534 (17)0.0421 (7)
H50.76380.23780.23660.050*
C60.8089 (2)0.2404 (3)0.36662 (15)0.0318 (5)
C70.7989 (2)0.0952 (3)0.37903 (15)0.0326 (6)
C80.7978 (2)0.0396 (3)0.45361 (14)0.0307 (5)
C90.7971 (2)0.1051 (3)0.46462 (16)0.0334 (6)
C100.8276 (2)0.1656 (3)0.55114 (16)0.0357 (6)
C110.9160 (2)0.1140 (3)0.61913 (17)0.0403 (6)
H110.95310.03450.61190.048*
C120.9498 (2)0.1792 (3)0.69745 (18)0.0463 (7)
H121.01070.14480.74380.056*
C130.8954 (3)0.2934 (3)0.70810 (19)0.0498 (8)
H130.91900.33760.76190.060*
C140.8066 (3)0.3445 (3)0.6410 (2)0.0505 (8)
H140.76850.42260.64910.061*
C150.7735 (3)0.2815 (3)0.56220 (19)0.0448 (7)
H150.71370.31750.51570.054*
C160.6823 (2)0.1408 (3)0.53043 (16)0.0376 (6)
H16A0.69060.19680.58130.045*
H16B0.65600.05070.54030.045*
C170.5954 (2)0.2036 (3)0.45391 (16)0.0396 (6)
C180.5232 (2)0.1274 (4)0.38632 (19)0.0502 (8)
C190.4486 (3)0.1900 (5)0.3150 (2)0.0661 (11)
H190.40090.13720.26950.079*
C200.4435 (3)0.3273 (5)0.3101 (2)0.0685 (11)
H200.39330.36990.26060.082*
C210.5114 (3)0.4044 (4)0.37701 (19)0.0564 (9)
C220.5870 (2)0.3432 (3)0.44836 (17)0.0437 (7)
H220.63360.39720.49380.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0454 (4)0.0807 (7)0.0762 (6)0.0194 (4)0.0274 (4)0.0311 (5)
Cl20.0780 (7)0.0882 (8)0.0780 (6)0.0331 (6)0.0310 (5)0.0324 (6)
S10.0355 (3)0.0382 (4)0.0259 (3)0.0025 (3)0.0048 (2)0.0050 (3)
O10.0316 (10)0.0547 (13)0.0402 (10)0.0033 (9)0.0006 (8)0.0019 (9)
O20.0582 (13)0.0452 (12)0.0332 (10)0.0025 (10)0.0124 (9)0.0114 (9)
O30.0569 (12)0.0388 (11)0.0303 (9)0.0066 (10)0.0160 (9)0.0086 (8)
O40.0440 (11)0.0395 (11)0.0358 (10)0.0041 (9)0.0102 (8)0.0087 (8)
N10.0342 (11)0.0379 (12)0.0265 (10)0.0022 (10)0.0100 (9)0.0041 (9)
C10.0311 (13)0.0375 (15)0.0310 (13)0.0010 (11)0.0082 (10)0.0024 (11)
C20.0414 (15)0.0378 (15)0.0399 (15)0.0015 (12)0.0108 (12)0.0062 (12)
C30.0529 (18)0.0349 (16)0.0515 (17)0.0000 (13)0.0178 (14)0.0047 (13)
C40.0578 (19)0.0464 (18)0.0389 (15)0.0002 (15)0.0146 (14)0.0081 (13)
C50.0469 (16)0.0474 (17)0.0304 (13)0.0005 (13)0.0117 (12)0.0024 (12)
C60.0305 (12)0.0366 (14)0.0276 (11)0.0021 (11)0.0092 (10)0.0020 (11)
C70.0281 (12)0.0398 (15)0.0290 (12)0.0016 (11)0.0088 (10)0.0074 (11)
C80.0276 (12)0.0380 (14)0.0246 (11)0.0008 (11)0.0066 (9)0.0035 (10)
C90.0274 (12)0.0388 (15)0.0337 (13)0.0021 (11)0.0103 (10)0.0028 (11)
C100.0379 (14)0.0354 (14)0.0349 (13)0.0042 (12)0.0140 (11)0.0028 (11)
C110.0391 (15)0.0417 (16)0.0387 (14)0.0041 (12)0.0119 (12)0.0034 (12)
C120.0454 (16)0.0536 (19)0.0365 (15)0.0096 (14)0.0102 (13)0.0026 (13)
C130.062 (2)0.0496 (19)0.0413 (16)0.0147 (16)0.0226 (15)0.0116 (14)
C140.067 (2)0.0375 (17)0.0579 (19)0.0017 (15)0.0351 (17)0.0071 (14)
C150.0504 (17)0.0423 (17)0.0449 (16)0.0002 (13)0.0206 (14)0.0016 (13)
C160.0365 (14)0.0490 (17)0.0306 (13)0.0006 (12)0.0156 (11)0.0037 (12)
C170.0292 (13)0.0628 (19)0.0296 (13)0.0001 (13)0.0138 (11)0.0029 (12)
C180.0313 (14)0.079 (2)0.0444 (16)0.0037 (15)0.0190 (13)0.0138 (16)
C190.0351 (17)0.119 (4)0.0399 (18)0.002 (2)0.0073 (14)0.013 (2)
C200.0389 (18)0.124 (4)0.0366 (17)0.018 (2)0.0057 (14)0.015 (2)
C210.0395 (16)0.088 (3)0.0434 (17)0.0170 (17)0.0171 (14)0.0127 (17)
C220.0343 (14)0.065 (2)0.0340 (14)0.0068 (14)0.0142 (12)0.0029 (13)
Geometric parameters (Å, º) top
Cl1—C181.736 (4)C9—C101.486 (3)
Cl2—C211.738 (4)C10—C151.389 (4)
S1—O11.425 (2)C10—C111.391 (4)
S1—O21.4268 (19)C11—C121.386 (4)
S1—N11.640 (2)C11—H110.9500
S1—C11.759 (3)C12—C131.375 (4)
O3—C71.333 (3)C12—H120.9500
O3—H3O0.8400C13—C141.384 (4)
O4—C91.247 (3)C13—H130.9500
N1—C81.440 (3)C14—C151.384 (4)
N1—C161.491 (3)C14—H140.9500
C1—C21.384 (4)C15—H150.9500
C1—C61.397 (3)C16—C171.506 (4)
C2—C31.386 (4)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.372 (4)C17—C221.389 (4)
C3—H30.9500C17—C181.404 (4)
C4—C51.379 (4)C18—C191.387 (5)
C4—H40.9500C19—C201.365 (6)
C5—C61.396 (4)C19—H190.9500
C5—H50.9500C20—C211.383 (5)
C6—C71.467 (4)C20—H200.9500
C7—C81.368 (3)C21—C221.386 (4)
C8—C91.448 (4)C22—H220.9500
O1—S1—O2119.62 (12)C12—C11—C10119.7 (3)
O1—S1—N1107.33 (12)C12—C11—H11120.1
O2—S1—N1107.70 (12)C10—C11—H11120.1
O1—S1—C1108.03 (12)C13—C12—C11120.1 (3)
O2—S1—C1110.19 (12)C13—C12—H12119.9
N1—S1—C1102.62 (11)C11—C12—H12119.9
C7—O3—H3O109.5C12—C13—C14120.5 (3)
C8—N1—C16116.06 (19)C12—C13—H13119.7
C8—N1—S1114.13 (16)C14—C13—H13119.7
C16—N1—S1119.42 (18)C13—C14—C15119.8 (3)
C2—C1—C6121.6 (2)C13—C14—H14120.1
C2—C1—S1120.8 (2)C15—C14—H14120.1
C6—C1—S1117.5 (2)C14—C15—C10120.0 (3)
C1—C2—C3119.0 (3)C14—C15—H15120.0
C1—C2—H2120.5C10—C15—H15120.0
C3—C2—H2120.5N1—C16—C17113.8 (2)
C4—C3—C2120.1 (3)N1—C16—H16A108.8
C4—C3—H3120.0C17—C16—H16A108.8
C2—C3—H3120.0N1—C16—H16B108.8
C3—C4—C5121.2 (3)C17—C16—H16B108.8
C3—C4—H4119.4H16A—C16—H16B107.7
C5—C4—H4119.4C22—C17—C18118.0 (3)
C4—C5—C6120.1 (3)C22—C17—C16119.1 (3)
C4—C5—H5120.0C18—C17—C16122.9 (3)
C6—C5—H5120.0C19—C18—C17120.7 (3)
C5—C6—C1118.1 (2)C19—C18—Cl1118.4 (3)
C5—C6—C7121.3 (2)C17—C18—Cl1120.8 (3)
C1—C6—C7120.6 (2)C20—C19—C18120.3 (3)
O3—C7—C8121.4 (2)C20—C19—H19119.9
O3—C7—C6114.9 (2)C18—C19—H19119.9
C8—C7—C6123.7 (2)C19—C20—C21119.9 (3)
C7—C8—N1119.5 (2)C19—C20—H20120.0
C7—C8—C9121.2 (2)C21—C20—H20120.0
N1—C8—C9119.2 (2)C20—C21—C22120.4 (4)
O4—C9—C8119.6 (2)C20—C21—Cl2120.1 (3)
O4—C9—C10119.6 (2)C22—C21—Cl2119.4 (3)
C8—C9—C10120.8 (2)C21—C22—C17120.5 (3)
C15—C10—C11119.9 (3)C21—C22—H22119.7
C15—C10—C9119.4 (2)C17—C22—H22119.7
C11—C10—C9120.5 (2)
O1—S1—N1—C861.89 (19)S1—N1—C8—C9138.3 (2)
O2—S1—N1—C8168.09 (17)C7—C8—C9—O416.1 (4)
C1—S1—N1—C851.8 (2)N1—C8—C9—O4161.9 (2)
O1—S1—N1—C16154.46 (18)C7—C8—C9—C10162.6 (2)
O2—S1—N1—C1624.5 (2)N1—C8—C9—C1019.5 (3)
C1—S1—N1—C1691.83 (19)O4—C9—C10—C1536.4 (4)
O1—S1—C1—C296.7 (2)C8—C9—C10—C15144.9 (3)
O2—S1—C1—C235.6 (3)O4—C9—C10—C11138.0 (3)
N1—S1—C1—C2150.1 (2)C8—C9—C10—C1140.7 (4)
O1—S1—C1—C680.8 (2)C15—C10—C11—C120.3 (4)
O2—S1—C1—C6146.9 (2)C9—C10—C11—C12174.1 (3)
N1—S1—C1—C632.4 (2)C10—C11—C12—C130.7 (4)
C6—C1—C2—C30.8 (4)C11—C12—C13—C140.0 (4)
S1—C1—C2—C3176.6 (2)C12—C13—C14—C151.1 (5)
C1—C2—C3—C40.3 (4)C13—C14—C15—C101.5 (4)
C2—C3—C4—C50.3 (5)C11—C10—C15—C140.8 (4)
C3—C4—C5—C60.5 (5)C9—C10—C15—C14175.3 (3)
C4—C5—C6—C10.0 (4)C8—N1—C16—C1762.6 (3)
C4—C5—C6—C7179.3 (3)S1—N1—C16—C1780.4 (3)
C2—C1—C6—C50.7 (4)N1—C16—C17—C2286.3 (3)
S1—C1—C6—C5176.8 (2)N1—C16—C17—C1892.3 (3)
C2—C1—C6—C7180.0 (2)C22—C17—C18—C192.1 (4)
S1—C1—C6—C72.5 (3)C16—C17—C18—C19176.5 (3)
C5—C6—C7—O316.2 (4)C22—C17—C18—Cl1177.5 (2)
C1—C6—C7—O3163.1 (2)C16—C17—C18—Cl13.9 (4)
C5—C6—C7—C8166.5 (2)C17—C18—C19—C200.7 (5)
C1—C6—C7—C814.2 (4)Cl1—C18—C19—C20178.9 (3)
O3—C7—C8—N1175.6 (2)C18—C19—C20—C211.2 (5)
C6—C7—C8—N17.3 (4)C19—C20—C21—C221.8 (5)
O3—C7—C8—C92.3 (4)C19—C20—C21—Cl2177.8 (3)
C6—C7—C8—C9174.8 (2)C20—C21—C22—C170.4 (4)
C16—N1—C8—C7101.2 (3)Cl2—C21—C22—C17179.2 (2)
S1—N1—C8—C743.8 (3)C18—C17—C22—C211.5 (4)
C16—N1—C8—C976.8 (3)C16—C17—C22—C21177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.603.310 (4)132
O3—H3O···O40.841.802.539 (3)146
C11—H11···N10.952.623.003 (3)105
C16—H16A···O20.992.452.862 (3)105
C16—H16B···Cl10.992.673.120 (3)108
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H15Cl2NO4S
Mr460.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.8172 (5), 9.9215 (4), 16.7155 (5)
β (°) 110.511 (2)
V3)1990.89 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.913, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
16108, 4592, 3598
Rint0.055
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.118, 1.11
No. of reflections4592
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.44

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i0.952.603.310 (4)132.0
O3—H3O···O40.841.802.539 (3)146.3
C11—H11···N10.952.623.003 (3)104.7
C16—H16A···O20.992.452.862 (3)104.7
C16—H16B···Cl10.992.673.120 (3)108.2
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAhmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAslam, S., Siddiqui, H. L., Ahmad, M., Bukhari, I. H. & Parvez, M. (2012). Acta Cryst. E68, o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201–203.  CrossRef CAS PubMed Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCarty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157–165.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1971). J. Med. Chem. 14, 1171–1175.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoler, J. E. (1985). US Patent No. 4 563 452.  Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.  Google Scholar
First citationZia-ur-Rehman, M., Choudhary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 54, 1171–1175.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1359
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds