organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1405

5-Bromo-N-(3,4-dimeth­­oxy­benz­yl)pyridin-2-amine

aSchool of Medicine and Life Sciences, Zhejiang University City College, Hangzhou 310015, Zhejiang, People's Republic of China, and bSichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, People's Republic of China
*Correspondence e-mail: shijianyoude@126.com

(Received 21 March 2012; accepted 11 April 2012; online 18 April 2012)

The title compound, C14H15BrN2O2, an inter­mediate in drug discovery, was synthesized by the reaction of 5-bromo­pyridin-2-amine and 3,4-dimeth­oxy­benzaldehyde. In the crystal, molecules are linked via pairs ofN—H⋯N hydrogen bonds, leading to the formation of inversion dimers. A short contact occurs between the aryl H atom (ortho position from N) and the centroid of the benzene ring.

Related literature

For the anti-tumor activity of related compounds, see: Kovala-Demertzi et al. (2007[Kovala-Demertzi, D., Boccarelli, A. M. A., Demertzis, M. A. & Coluccia, M. (2007). Chemotherapy, 53, 148-152.]). For the anti-ulcer activity of related compounds, see: Cho et al. (2001[Cho, S. Y., Kang, S. K., Kim, S. S., Cheon, H. G., Choi, J. K. & Yun, E. K. (2001). Bull. Korean Chem. Soc. 22, 1217-1223.]). For the anti-viral activity of related compounds, see: Mavel et al. (2002[Mavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941-946.]). For the anti-microbial activity of related compounds, see: Yeong et al. (2004[Yeong, W. J., Weon, B. I., Jae, K. R., Shim, M. J., Won, B. K. & Eung, C. C. (2004). Bioorg. Med. Chem. 12, 5909-5915.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15BrN2O2

  • Mr = 323.18

  • Monoclinic, P 21 /c

  • a = 6.3202 (2) Å

  • b = 13.7940 (4) Å

  • c = 15.8582 (6) Å

  • β = 100.961 (4)°

  • V = 1357.31 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.03 mm−1

  • T = 130 K

  • 0.42 × 0.30 × 0.15 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.509, Tmax = 1.000

  • 8188 measured reflections

  • 2384 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.060

  • S = 1.03

  • 2384 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.88 2.31 3.090 (3) 149
C2—H2ACgi 0.95 2.50 3.397 (3) 158
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The pyridine skeleton is a great importance to chemistry as well as biology which are well known for their versatile pharmacological activities such as anti-tumor (Kovala-Demertzi et al., 2007), anti-ulcer (Cho et al., 2001), anti-viral (Mavel et al., 2002) and antimicrobial (Yeong et al., 2004). The title compound is one of these compounds. The crystal packing is stabilized by a pair of strong intermolecular N2–H2···N1i classical hydrogen bonds conecting two moleculars to form a centrosymmtric dimer. The H2A atom from pyridine moiety has short contact (2.50Å) with Cgi of phenyl ring (C7-C12). Symmetry code: (i) 1-x, 2-y, -z.

Related literature top

For the anti-tumor activity of related compounds, see: Kovala-Demertzi et al. (2007). For the anti-ulcer activity of related compounds, see: Cho et al. (2001). For the anti-viral activity of related compounds, see: Mavel et al. (2002). For the anti-microbial activity of related compounds, see: Yeong et al. (2004).

Experimental top

A methanol solution of 5-bromopyridin-2-amine (1.73 g, 0.01 mol), 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mol) with sodium cyanoborohydride (0.69 g, 0.011 mol) was heated to reflux for 3 h. The mixture was poured into cold water and then filtered to get this compound. Single crystals were obtained from the powder in ethanol after 5 days.

Refinement top

H atoms were positioned geometrically (C–H = 0.95-0.99Å and N–H = 0.88Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for others.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
5-Bromo-N-(3,4-dimethoxybenzyl)pyridin-2-amine top
Crystal data top
C14H15BrN2O2F(000) = 656
Mr = 323.18Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 3191 reflections
a = 6.3202 (2) Åθ = 3.0–29.3°
b = 13.7940 (4) ŵ = 3.03 mm1
c = 15.8582 (6) ÅT = 130 K
β = 100.961 (4)°Block, colourless
V = 1357.31 (8) Å30.42 × 0.30 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
2384 independent reflections
Radiation source: Enhance (Mo) X-ray Source2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0874 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω–scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1516
Tmin = 0.509, Tmax = 1.000l = 1815
8188 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0214P)2 + 1.0069P]
where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H15BrN2O2V = 1357.31 (8) Å3
Mr = 323.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3202 (2) ŵ = 3.03 mm1
b = 13.7940 (4) ÅT = 130 K
c = 15.8582 (6) Å0.42 × 0.30 × 0.15 mm
β = 100.961 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2384 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2055 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 1.000Rint = 0.030
8188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
2384 reflectionsΔρmin = 0.49 e Å3
174 parameters
Special details top

Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29705 (4)0.620125 (18)0.137802 (17)0.02180 (10)
O10.8391 (3)1.38453 (12)0.14221 (11)0.0181 (4)
O21.1319 (3)1.40582 (12)0.05188 (11)0.0185 (4)
N10.4443 (3)0.89466 (14)0.06525 (13)0.0164 (5)
N20.7225 (3)1.00200 (15)0.10747 (13)0.0178 (5)
H20.64821.04430.07220.021*
C10.4393 (4)0.74052 (17)0.13319 (15)0.0148 (5)
C20.3514 (4)0.80926 (17)0.07365 (16)0.0165 (5)
H2A0.21810.79510.03680.020*
C30.6333 (4)0.91502 (18)0.11831 (15)0.0147 (5)
C40.7300 (4)0.84807 (18)0.18126 (16)0.0177 (5)
H40.86170.86370.21860.021*
C50.6323 (4)0.76009 (18)0.18814 (16)0.0182 (6)
H50.69580.71380.22970.022*
C60.9380 (4)1.02800 (18)0.15245 (16)0.0176 (6)
H6A1.04360.98030.13870.021*
H6B0.94321.02630.21520.021*
C70.9971 (4)1.12777 (17)0.12650 (15)0.0154 (5)
C80.8867 (4)1.20894 (18)0.14866 (15)0.0153 (5)
H80.77671.20070.18140.018*
C90.9355 (4)1.30058 (17)0.12366 (15)0.0144 (5)
C101.0981 (4)1.31318 (18)0.07442 (15)0.0148 (5)
C111.2084 (4)1.23269 (18)0.05377 (16)0.0175 (6)
H111.31981.24040.02170.021*
C121.1576 (4)1.14027 (18)0.07967 (16)0.0175 (6)
H121.23421.08560.06490.021*
C130.6735 (4)1.37654 (19)0.19176 (17)0.0209 (6)
H13A0.56051.33290.16270.031*
H13B0.61161.44070.19790.031*
H13C0.73471.35060.24870.031*
C141.2631 (4)1.41893 (19)0.01160 (17)0.0214 (6)
H14A1.21021.37720.06110.032*
H14B1.41261.40180.01300.032*
H14C1.25641.48680.03010.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02543 (15)0.01635 (15)0.02437 (16)0.00657 (11)0.00660 (11)0.00055 (11)
O10.0203 (9)0.0166 (9)0.0204 (10)0.0020 (7)0.0109 (8)0.0025 (8)
O20.0218 (9)0.0140 (9)0.0227 (10)0.0044 (7)0.0116 (8)0.0004 (7)
N10.0156 (10)0.0169 (11)0.0153 (11)0.0021 (9)0.0002 (9)0.0000 (9)
N20.0173 (10)0.0137 (11)0.0193 (12)0.0020 (9)0.0044 (9)0.0042 (9)
C10.0196 (12)0.0115 (13)0.0146 (13)0.0018 (10)0.0067 (11)0.0018 (10)
C20.0154 (12)0.0180 (13)0.0155 (14)0.0032 (10)0.0017 (11)0.0036 (11)
C30.0146 (12)0.0162 (13)0.0131 (13)0.0010 (10)0.0024 (10)0.0010 (10)
C40.0163 (12)0.0185 (13)0.0161 (14)0.0007 (10)0.0021 (11)0.0030 (11)
C50.0194 (13)0.0185 (14)0.0167 (14)0.0007 (11)0.0037 (11)0.0045 (11)
C60.0136 (12)0.0178 (14)0.0194 (14)0.0014 (10)0.0014 (11)0.0006 (11)
C70.0145 (12)0.0159 (13)0.0135 (13)0.0030 (10)0.0034 (10)0.0010 (10)
C80.0136 (12)0.0197 (14)0.0124 (13)0.0030 (10)0.0019 (10)0.0018 (10)
C90.0121 (12)0.0176 (13)0.0129 (13)0.0002 (10)0.0008 (10)0.0018 (11)
C100.0138 (12)0.0168 (13)0.0129 (13)0.0033 (10)0.0000 (10)0.0018 (10)
C110.0145 (12)0.0213 (14)0.0180 (14)0.0034 (11)0.0061 (11)0.0018 (11)
C120.0157 (12)0.0150 (14)0.0212 (14)0.0003 (10)0.0018 (11)0.0039 (11)
C130.0179 (12)0.0259 (15)0.0206 (14)0.0019 (11)0.0076 (11)0.0013 (12)
C140.0215 (13)0.0210 (14)0.0236 (15)0.0048 (11)0.0095 (12)0.0014 (12)
Geometric parameters (Å, º) top
Br1—C11.897 (2)C6—H6B0.9900
O1—C91.366 (3)C6—C71.504 (3)
O1—C131.427 (3)C7—C81.399 (3)
O2—C101.355 (3)C7—C121.377 (3)
O2—C141.432 (3)C8—H80.9500
N1—C21.334 (3)C8—C91.377 (3)
N1—C31.353 (3)C9—C101.414 (3)
N2—H20.8800C10—C111.383 (3)
N2—C31.350 (3)C11—H110.9500
N2—C61.457 (3)C11—C121.395 (3)
C1—C21.378 (3)C12—H120.9500
C1—C51.384 (3)C13—H13A0.9800
C2—H2A0.9500C13—H13B0.9800
C3—C41.411 (3)C13—H13C0.9800
C4—H40.9500C14—H14A0.9800
C4—C51.375 (3)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—H6A0.9900
C9—O1—C13117.18 (18)C12—C7—C8119.3 (2)
C10—O2—C14116.51 (18)C7—C8—H8119.6
C2—N1—C3118.3 (2)C9—C8—C7120.8 (2)
C3—N2—H2119.0C9—C8—H8119.6
C3—N2—C6122.0 (2)O1—C9—C8125.6 (2)
C6—N2—H2119.0O1—C9—C10114.5 (2)
C2—C1—Br1119.77 (18)C8—C9—C10119.8 (2)
C2—C1—C5119.3 (2)O2—C10—C9115.4 (2)
C5—C1—Br1120.93 (18)O2—C10—C11125.6 (2)
N1—C2—C1123.2 (2)C11—C10—C9118.9 (2)
N1—C2—H2A118.4C10—C11—H11119.7
C1—C2—H2A118.4C10—C11—C12120.6 (2)
N1—C3—C4121.1 (2)C12—C11—H11119.7
N2—C3—N1116.5 (2)C7—C12—C11120.5 (2)
N2—C3—C4122.4 (2)C7—C12—H12119.8
C3—C4—H4120.2C11—C12—H12119.8
C5—C4—C3119.5 (2)O1—C13—H13A109.5
C5—C4—H4120.2O1—C13—H13B109.5
C1—C5—H5120.7O1—C13—H13C109.5
C4—C5—C1118.5 (2)H13A—C13—H13B109.5
C4—C5—H5120.7H13A—C13—H13C109.5
N2—C6—H6A109.6H13B—C13—H13C109.5
N2—C6—H6B109.6O2—C14—H14A109.5
N2—C6—C7110.42 (19)O2—C14—H14B109.5
H6A—C6—H6B108.1O2—C14—H14C109.5
C7—C6—H6A109.6H14A—C14—H14B109.5
C7—C6—H6B109.6H14A—C14—H14C109.5
C8—C7—C6120.1 (2)H14B—C14—H14C109.5
C12—C7—C6120.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.313.090 (3)149
C2—H2A···Cgi0.952.503.397 (3)158
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H15BrN2O2
Mr323.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)6.3202 (2), 13.7940 (4), 15.8582 (6)
β (°) 100.961 (4)
V3)1357.31 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.03
Crystal size (mm)0.42 × 0.30 × 0.15
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.509, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8188, 2384, 2055
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.060, 1.03
No. of reflections2384
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.49

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.882.313.090 (3)148.5
C2—H2A···Cgi0.952.503.397 (3)158
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCho, S. Y., Kang, S. K., Kim, S. S., Cheon, H. G., Choi, J. K. & Yun, E. K. (2001). Bull. Korean Chem. Soc. 22, 1217–1223.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKovala-Demertzi, D., Boccarelli, A. M. A., Demertzis, M. A. & Coluccia, M. (2007). Chemotherapy, 53, 148–152.  Web of Science PubMed CAS Google Scholar
First citationMavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeong, W. J., Weon, B. I., Jae, K. R., Shim, M. J., Won, B. K. & Eung, C. C. (2004). Bioorg. Med. Chem. 12, 5909–5915.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1405
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds