organic compounds
1-Methyl-2,3-dihydro-1H-benzimidazole-2-selone
aBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St, Nizhny Novgorod, 603950, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: gunka479@mail.ru
The title compound C8H8N2Se, is the product of the reaction of 2-chloro-1-methylbenzimidazole with sodium hydroselenide. The molecule is almost planar (r.m.s. deviation = 0.041 Å) owing to the presence of the long chain of conjugated bonds (Se=C—NMe—C=C—C=C—C=C—NH). The C=Se bond length [1.838 (2) Å] corresponds well to those found in the close analogs and indicates its pronounced double-bond character. In the crystal, molecules form helicoidal chains along the b axis by means of N—H⋯Se hydrogen bonds.
Related literature
For et al. (1994); Roy & Mugesh (2005, 2006); Roy et al. (2007, 2011). For related compounds, see: Guziec & Guziec (1994); Husebye et al. (1997); Aydin et al. (1999); Akkurt et al. (2004, 2011); Landry et al. (2006); Nakanishi et al. (2008); Mammadova et al. (2011). For hypervalent adducts of with dihalogens and interhalogens, see: Aragoni et al. (2001); Boyle & Godfrey (2001); Roy et al. (2011).
as potential antithyroid drugs, see: TaurogExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812013700/rk2347sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013700/rk2347Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812013700/rk2347Isup3.cml
A solution of NaBH4 (3.83 g, 100.0 mmol) in water (25 ml) was added to a suspension of selenium (3.77 g, 47.7 mmol) in water (30 ml) with stirring at room temperature under argon. After 15 min, a solution of 2-chloro-1-methylbenzimidazole (6.60 g, 39.6 mmol) in C2H5OH (25 ml) was added. The resulting mixture was refluxed for 5 h. At the end of the reaction the solvents were evaporated in vacuo, and formed precipitate was extracted with CH2Cl2. Then the extract was dried over MgSO4. Further crystallization from CH2Cl2 gives the selone I as colourless crystals. Yield is 7.81 g (93%). M.p. = 470-471 K. IR(KBr), ν/cm-1: 3095, 1618, 1438, 1382, 11330, 1223, 1091, 746, 709. 1H NMR (DMSO-d6, 600 MHz, 303 K): δ = 3.63 (s, 3H, Me), 7.15 (t, 1H, H6, J = 7.1), 7.19 (t, 1H, H5, J = 7.1), 7.37 (d, 1H, H4, J = 7.1), 7.43 (d, 1H, H7, J = 7.1), 13.25 (s, 1H, H3). Anal. Calc. for C8H8N2Se: C, 45.53; H, 3.82; N, 13.27. Found: C, 45.43; H, 2.78; N, 13.19.
The hydrogen atom of the amino group was localized in the difference-Fourier map and included in the
with fixed positional and isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H8N2Se | F(000) = 416 |
Mr = 211.12 | Dx = 1.776 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3916 reflections |
a = 9.9434 (13) Å | θ = 2.4–32.5° |
b = 5.8472 (8) Å | µ = 4.69 mm−1 |
c = 13.6387 (18) Å | T = 100 K |
β = 95.360 (2)° | Prism, yellow |
V = 789.50 (18) Å3 | 0.24 × 0.20 × 0.20 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2304 independent reflections |
Radiation source: fine-focus sealed tube | 1941 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ϕ– and ω–scans | θmax = 30.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −13→13 |
Tmin = 0.399, Tmax = 0.454 | k = −8→8 |
9470 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0345P)2 + 0.745P] where P = (Fo2 + 2Fc2)/3 |
2304 reflections | (Δ/σ)max = 0.001 |
101 parameters | Δρmax = 1.10 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C8H8N2Se | V = 789.50 (18) Å3 |
Mr = 211.12 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.9434 (13) Å | µ = 4.69 mm−1 |
b = 5.8472 (8) Å | T = 100 K |
c = 13.6387 (18) Å | 0.24 × 0.20 × 0.20 mm |
β = 95.360 (2)° |
Bruker APEXII CCD diffractometer | 2304 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1941 reflections with I > 2σ(I) |
Tmin = 0.399, Tmax = 0.454 | Rint = 0.030 |
9470 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.00 | Δρmax = 1.10 e Å−3 |
2304 reflections | Δρmin = −0.28 e Å−3 |
101 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.26128 (2) | 1.12016 (4) | 0.878637 (16) | 0.02213 (7) | |
N1 | 0.47551 (17) | 0.8571 (3) | 0.80856 (13) | 0.0200 (3) | |
C2 | 0.3951 (2) | 1.0457 (4) | 0.79997 (16) | 0.0203 (4) | |
N3 | 0.43002 (18) | 1.1660 (3) | 0.72130 (13) | 0.0209 (3) | |
H3N | 0.3892 | 1.2987 | 0.7005 | 0.025* | |
C3A | 0.5294 (2) | 1.0505 (4) | 0.67611 (16) | 0.0206 (4) | |
C4 | 0.5950 (2) | 1.0978 (4) | 0.59324 (16) | 0.0224 (4) | |
H4 | 0.5785 | 1.2350 | 0.5568 | 0.027* | |
C5 | 0.6860 (2) | 0.9352 (4) | 0.56600 (17) | 0.0242 (4) | |
H5 | 0.7320 | 0.9611 | 0.5090 | 0.029* | |
C6 | 0.7122 (2) | 0.7339 (4) | 0.62006 (16) | 0.0240 (4) | |
H6 | 0.7745 | 0.6260 | 0.5986 | 0.029* | |
C7 | 0.6488 (2) | 0.6890 (4) | 0.70443 (16) | 0.0220 (4) | |
H7 | 0.6674 | 0.5539 | 0.7419 | 0.026* | |
C7A | 0.5571 (2) | 0.8506 (3) | 0.73148 (15) | 0.0200 (4) | |
C8 | 0.4688 (2) | 0.6817 (4) | 0.88271 (17) | 0.0255 (4) | |
H8A | 0.4578 | 0.7533 | 0.9464 | 0.038* | |
H8B | 0.5524 | 0.5919 | 0.8876 | 0.038* | |
H8C | 0.3918 | 0.5810 | 0.8644 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.02158 (11) | 0.02058 (11) | 0.02486 (11) | −0.00119 (8) | 0.00548 (7) | −0.00250 (8) |
N1 | 0.0202 (8) | 0.0177 (8) | 0.0225 (8) | −0.0010 (6) | 0.0030 (6) | 0.0026 (6) |
C2 | 0.0191 (9) | 0.0196 (9) | 0.0219 (9) | −0.0018 (7) | 0.0011 (7) | −0.0011 (7) |
N3 | 0.0219 (8) | 0.0174 (8) | 0.0236 (8) | 0.0020 (6) | 0.0037 (6) | 0.0018 (6) |
C3A | 0.0195 (9) | 0.0184 (9) | 0.0236 (10) | −0.0006 (7) | 0.0007 (7) | 0.0000 (7) |
C4 | 0.0227 (9) | 0.0221 (10) | 0.0222 (9) | −0.0013 (8) | 0.0017 (7) | 0.0027 (8) |
C5 | 0.0231 (10) | 0.0272 (11) | 0.0227 (10) | −0.0019 (8) | 0.0037 (8) | −0.0019 (8) |
C6 | 0.0204 (10) | 0.0242 (10) | 0.0274 (11) | 0.0021 (8) | 0.0029 (8) | −0.0023 (8) |
C7 | 0.0200 (9) | 0.0192 (9) | 0.0263 (10) | 0.0007 (7) | 0.0005 (8) | −0.0008 (8) |
C7A | 0.0184 (9) | 0.0199 (9) | 0.0216 (9) | −0.0015 (7) | 0.0009 (7) | −0.0005 (7) |
C8 | 0.0258 (10) | 0.0237 (10) | 0.0275 (11) | 0.0005 (8) | 0.0058 (8) | 0.0063 (8) |
Se1—C2 | 1.838 (2) | C4—H4 | 0.9500 |
N1—C2 | 1.361 (3) | C5—C6 | 1.400 (3) |
N1—C7A | 1.387 (3) | C5—H5 | 0.9500 |
N1—C8 | 1.446 (3) | C6—C7 | 1.388 (3) |
C2—N3 | 1.355 (3) | C6—H6 | 0.9500 |
N3—C3A | 1.388 (3) | C7—C7A | 1.387 (3) |
N3—H3N | 0.9090 | C7—H7 | 0.9500 |
C3A—C4 | 1.385 (3) | C8—H8A | 0.9800 |
C3A—C7A | 1.405 (3) | C8—H8B | 0.9800 |
C4—C5 | 1.387 (3) | C8—H8C | 0.9800 |
C2—N1—C7A | 109.74 (17) | C6—C5—H5 | 119.0 |
C2—N1—C8 | 124.74 (18) | C7—C6—C5 | 121.3 (2) |
C7A—N1—C8 | 125.35 (18) | C7—C6—H6 | 119.4 |
N3—C2—N1 | 107.24 (18) | C5—C6—H6 | 119.4 |
N3—C2—Se1 | 126.35 (16) | C7A—C7—C6 | 116.9 (2) |
N1—C2—Se1 | 126.40 (16) | C7A—C7—H7 | 121.5 |
C2—N3—C3A | 110.20 (18) | C6—C7—H7 | 121.5 |
C2—N3—H3N | 123.4 | C7—C7A—N1 | 131.8 (2) |
C3A—N3—H3N | 126.3 | C7—C7A—C3A | 121.6 (2) |
C4—C3A—N3 | 132.4 (2) | N1—C7A—C3A | 106.60 (18) |
C4—C3A—C7A | 121.4 (2) | N1—C8—H8A | 109.5 |
N3—C3A—C7A | 106.12 (18) | N1—C8—H8B | 109.5 |
C3A—C4—C5 | 116.8 (2) | H8A—C8—H8B | 109.5 |
C3A—C4—H4 | 121.6 | N1—C8—H8C | 109.5 |
C5—C4—H4 | 121.6 | H8A—C8—H8C | 109.5 |
C4—C5—C6 | 121.9 (2) | H8B—C8—H8C | 109.5 |
C4—C5—H5 | 119.0 | ||
C7A—N1—C2—N3 | −3.4 (2) | C5—C6—C7—C7A | 1.1 (3) |
C8—N1—C2—N3 | −178.94 (19) | C6—C7—C7A—N1 | 178.4 (2) |
C7A—N1—C2—Se1 | 175.35 (15) | C6—C7—C7A—C3A | 0.0 (3) |
C8—N1—C2—Se1 | −0.2 (3) | C2—N1—C7A—C7 | −175.6 (2) |
N1—C2—N3—C3A | 2.5 (2) | C8—N1—C7A—C7 | −0.1 (4) |
Se1—C2—N3—C3A | −176.20 (15) | C2—N1—C7A—C3A | 2.9 (2) |
C2—N3—C3A—C4 | 178.0 (2) | C8—N1—C7A—C3A | 178.45 (19) |
C2—N3—C3A—C7A | −0.7 (2) | C4—C3A—C7A—C7 | −1.5 (3) |
N3—C3A—C4—C5 | −176.7 (2) | N3—C3A—C7A—C7 | 177.40 (19) |
C7A—C3A—C4—C5 | 1.9 (3) | C4—C3A—C7A—N1 | 179.74 (19) |
C3A—C4—C5—C6 | −0.8 (3) | N3—C3A—C7A—N1 | −1.3 (2) |
C4—C5—C6—C7 | −0.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Se1i | 0.91 | 2.58 | 3.471 (2) | 168 |
Symmetry code: (i) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C8H8N2Se |
Mr | 211.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.9434 (13), 5.8472 (8), 13.6387 (18) |
β (°) | 95.360 (2) |
V (Å3) | 789.50 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.69 |
Crystal size (mm) | 0.24 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.399, 0.454 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9470, 2304, 1941 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.068, 1.00 |
No. of reflections | 2304 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.10, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···Se1i | 0.91 | 2.58 | 3.471 (2) | 168 |
Symmetry code: (i) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.
References
Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263–o1265. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lelj, F., Lippolis, V. & Verani, G. (2001). Chem. Eur. J. 7, 3122–3133. CrossRef PubMed CAS Google Scholar
Aydin, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295–296. CAS Google Scholar
Boyle, P. D. & Godfrey, S. M. (2001). Coord. Chem. Rev. 223, 265–299. Web of Science CrossRef CAS Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Guziec, L. J. & Guziec, F. S. (1994). J. Org. Chem. 59, 4691–4692. CrossRef CAS Web of Science Google Scholar
Husebye, S., Lindeman, S. V. & Rudd, M. D. (1997). Acta Cryst. C53, 809–811. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Landry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490–12497. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mammadova, G. Z., Matsulevich, Z. V., Osmanov, V. K., Borisov, A. V. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3050. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. & Tokitoh, N. (2008). New J. Chem. 32, 1881–1889. Web of Science CSD CrossRef CAS Google Scholar
Roy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279–2286. Web of Science CSD CrossRef CAS Google Scholar
Roy, G., Das, D. & Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303–316. Web of Science CSD CrossRef CAS Google Scholar
Roy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207–15217. Web of Science CrossRef PubMed CAS Google Scholar
Roy, G. & Mugesh, G. (2006). Bioorg. Chem. Appl. pp. 1–9. Google Scholar
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taurog, A., Dorris, M. L., Guziec, L. J. & Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447–1453. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last years, the selone derivatives have attracted considerable attention owing to their antithyroid properties (Taurog et al., 1994; Roy & Mugesh, 2005, 2006; Roy et al., 2007, 2011) as well as selone-selenol tautomerism (Guziec & Guziec, 1994; Husebye et al., 1997; Landry et al., 2006; Mammadova et al., 2011). Moreover, they are used as substrates in the preparation of hypervalent adducts in reactions with dihalogens and interhalogens (Aydin et al., 1999; Aragoni et al., 2001; Boyle & Godfrey, 2001; Akkurt et al., 2004, 2011; Roy et al., 2011).
The title compound - 1-methyl-2,3-dihydro-1H-benzimidazole-2-selone, I was obtained by a reaction of 2-chloro-1-methylbenzimidazole with sodium hydroselenide (Fig. 1). The molecule of I is almost planar (r.m.s. deviation = 0.041Å) owing to the presence of the long chain of conjugated bonds (Se═C—NMe—C═C—C═C—C═C—NH) (Fig. 2). The length of the C═Se bond (1.838 (2)Å) corresponds well to those found in the closer analogs of I - 1,3-dimethylbenzimidazole-2-selone (1.825 (7)Å) (Aydin et al., 1999), 1-ethyl-3-(2-phenylethyl)benzimidazole-2-selone (1.829 (3)Å) (Akkurt et al., 2004) and 1,3-bis(3-phenylpropyl)-1H-1,3-benzimidazole-2(3H)-selone (1.828 (2)Å) (Akkurt et al., 2011) indicating its pronounced double character.
In the crystal, molecules form helicoidal chains along the b axis by means of intermolecular N—H···Sei hydrogen bonds (Fig. 3, Table 1). Symmetry code: (i) -x+1/2, y+1/2, -z+3/2.