organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1381

1-Methyl-2,3-di­hydro-1H-benzimidazole-2-selone

aBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St, Nizhny Novgorod, 603950, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: gunka479@mail.ru

(Received 23 March 2012; accepted 29 March 2012; online 13 April 2012)

The title compound C8H8N2Se, is the product of the reaction of 2-chloro-1-methyl­benzimidazole with sodium hydro­selenide. The mol­ecule is almost planar (r.m.s. deviation = 0.041 Å) owing to the presence of the long chain of conjugated bonds (Se=C—NMe—C=C—C=C—C=C—NH). The C=Se bond length [1.838 (2) Å] corresponds well to those found in the close analogs and indicates its pronounced double-bond character. In the crystal, mol­ecules form helicoidal chains along the b axis by means of N—H⋯Se hydrogen bonds.

Related literature

For selones as potential anti­thyroid drugs, see: Taurog et al. (1994[Taurog, A., Dorris, M. L., Guziec, L. J. & Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447-1453.]); Roy & Mugesh (2005[Roy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207-15217.], 2006[Roy, G. & Mugesh, G. (2006). Bioorg. Chem. Appl. pp. 1-9.]); Roy et al. (2007[Roy, G., Das, D. & Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303-316.], 2011[Roy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279-2286.]). For related compounds, see: Guziec & Guziec (1994[Guziec, L. J. & Guziec, F. S. (1994). J. Org. Chem. 59, 4691-4692.]); Husebye et al. (1997[Husebye, S., Lindeman, S. V. & Rudd, M. D. (1997). Acta Cryst. C53, 809-811.]); Aydin et al. (1999[Aydin, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295-296.]); Akkurt et al. (2004[Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263-o1265.], 2011[Akkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1179.]); Landry et al. (2006[Landry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490-12497.]); Nakanishi et al. (2008[Nakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. & Tokitoh, N. (2008). New J. Chem. 32, 1881-1889.]); Mammadova et al. (2011[Mammadova, G. Z., Matsulevich, Z. V., Osmanov, V. K., Borisov, A. V. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3050.]). For hypervalent adducts of selones with dihalogens and inter­halogens, see: Aragoni et al. (2001[Aragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lelj, F., Lippolis, V. & Verani, G. (2001). Chem. Eur. J. 7, 3122-3133.]); Boyle & Godfrey (2001[Boyle, P. D. & Godfrey, S. M. (2001). Coord. Chem. Rev. 223, 265-299.]); Roy et al. (2011[Roy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279-2286.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2Se

  • Mr = 211.12

  • Monoclinic, P 21 /n

  • a = 9.9434 (13) Å

  • b = 5.8472 (8) Å

  • c = 13.6387 (18) Å

  • β = 95.360 (2)°

  • V = 789.50 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.69 mm−1

  • T = 100 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 0.454

  • 9470 measured reflections

  • 2304 independent reflections

  • 1941 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.00

  • 2304 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯Se1i 0.91 2.58 3.471 (2) 168
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last years, the selone derivatives have attracted considerable attention owing to their antithyroid properties (Taurog et al., 1994; Roy & Mugesh, 2005, 2006; Roy et al., 2007, 2011) as well as selone-selenol tautomerism (Guziec & Guziec, 1994; Husebye et al., 1997; Landry et al., 2006; Mammadova et al., 2011). Moreover, they are used as substrates in the preparation of hypervalent adducts in reactions with dihalogens and interhalogens (Aydin et al., 1999; Aragoni et al., 2001; Boyle & Godfrey, 2001; Akkurt et al., 2004, 2011; Roy et al., 2011).

The title compound - 1-methyl-2,3-dihydro-1H-benzimidazole-2-selone, I was obtained by a reaction of 2-chloro-1-methylbenzimidazole with sodium hydroselenide (Fig. 1). The molecule of I is almost planar (r.m.s. deviation = 0.041Å) owing to the presence of the long chain of conjugated bonds (SeC—NMe—CC—CC—CC—NH) (Fig. 2). The length of the CSe bond (1.838 (2)Å) corresponds well to those found in the closer analogs of I - 1,3-dimethylbenzimidazole-2-selone (1.825 (7)Å) (Aydin et al., 1999), 1-ethyl-3-(2-phenylethyl)benzimidazole-2-selone (1.829 (3)Å) (Akkurt et al., 2004) and 1,3-bis(3-phenylpropyl)-1H-1,3-benzimidazole-2(3H)-selone (1.828 (2)Å) (Akkurt et al., 2011) indicating its pronounced double character.

In the crystal, molecules form helicoidal chains along the b axis by means of intermolecular N—H···Sei hydrogen bonds (Fig. 3, Table 1). Symmetry code: (i) -x+1/2, y+1/2, -z+3/2.

Related literature top

For selones as potential antithyroid drugs, see: Taurog et al. (1994); Roy & Mugesh (2005, 2006); Roy et al. (2007, 2011). For related compounds, see: Guziec & Guziec (1994); Husebye et al. (1997); Aydin et al. (1999); Akkurt et al. (2004, 2011); Landry et al. (2006); Nakanishi et al. (2008); Mammadova et al. (2011). For hypervalent adducts of selones with dihalogens and interhalogens, see: Aragoni et al. (2001); Boyle & Godfrey (2001); Roy et al. (2011).

Experimental top

A solution of NaBH4 (3.83 g, 100.0 mmol) in water (25 ml) was added to a suspension of selenium (3.77 g, 47.7 mmol) in water (30 ml) with stirring at room temperature under argon. After 15 min, a solution of 2-chloro-1-methylbenzimidazole (6.60 g, 39.6 mmol) in C2H5OH (25 ml) was added. The resulting mixture was refluxed for 5 h. At the end of the reaction the solvents were evaporated in vacuo, and formed precipitate was extracted with CH2Cl2. Then the extract was dried over MgSO4. Further crystallization from CH2Cl2 gives the selone I as colourless crystals. Yield is 7.81 g (93%). M.p. = 470-471 K. IR(KBr), ν/cm-1: 3095, 1618, 1438, 1382, 11330, 1223, 1091, 746, 709. 1H NMR (DMSO-d6, 600 MHz, 303 K): δ = 3.63 (s, 3H, Me), 7.15 (t, 1H, H6, J = 7.1), 7.19 (t, 1H, H5, J = 7.1), 7.37 (d, 1H, H4, J = 7.1), 7.43 (d, 1H, H7, J = 7.1), 13.25 (s, 1H, H3). Anal. Calc. for C8H8N2Se: C, 45.53; H, 3.82; N, 13.27. Found: C, 45.43; H, 2.78; N, 13.19.

Refinement top

The hydrogen atom of the amino group was localized in the difference-Fourier map and included in the refinement with fixed positional and isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl group and 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 2-chloro-1-methylbenzimidazole with sodium hydroselenide.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. The helicoidal chains of I along the b axis. Dashed lines indicate the intermolecular N–H···Se hydrogen bonds.
1-Methyl-2,3-dihydro-1H-benzimidazole-2-selone top
Crystal data top
C8H8N2SeF(000) = 416
Mr = 211.12Dx = 1.776 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3916 reflections
a = 9.9434 (13) Åθ = 2.4–32.5°
b = 5.8472 (8) ŵ = 4.69 mm1
c = 13.6387 (18) ÅT = 100 K
β = 95.360 (2)°Prism, yellow
V = 789.50 (18) Å30.24 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Radiation source: fine-focus sealed tube1941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ– and ω–scansθmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.399, Tmax = 0.454k = 88
9470 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.068H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.745P]
where P = (Fo2 + 2Fc2)/3
2304 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H8N2SeV = 789.50 (18) Å3
Mr = 211.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9434 (13) ŵ = 4.69 mm1
b = 5.8472 (8) ÅT = 100 K
c = 13.6387 (18) Å0.24 × 0.20 × 0.20 mm
β = 95.360 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1941 reflections with I > 2σ(I)
Tmin = 0.399, Tmax = 0.454Rint = 0.030
9470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.00Δρmax = 1.10 e Å3
2304 reflectionsΔρmin = 0.28 e Å3
101 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.26128 (2)1.12016 (4)0.878637 (16)0.02213 (7)
N10.47551 (17)0.8571 (3)0.80856 (13)0.0200 (3)
C20.3951 (2)1.0457 (4)0.79997 (16)0.0203 (4)
N30.43002 (18)1.1660 (3)0.72130 (13)0.0209 (3)
H3N0.38921.29870.70050.025*
C3A0.5294 (2)1.0505 (4)0.67611 (16)0.0206 (4)
C40.5950 (2)1.0978 (4)0.59324 (16)0.0224 (4)
H40.57851.23500.55680.027*
C50.6860 (2)0.9352 (4)0.56600 (17)0.0242 (4)
H50.73200.96110.50900.029*
C60.7122 (2)0.7339 (4)0.62006 (16)0.0240 (4)
H60.77450.62600.59860.029*
C70.6488 (2)0.6890 (4)0.70443 (16)0.0220 (4)
H70.66740.55390.74190.026*
C7A0.5571 (2)0.8506 (3)0.73148 (15)0.0200 (4)
C80.4688 (2)0.6817 (4)0.88271 (17)0.0255 (4)
H8A0.45780.75330.94640.038*
H8B0.55240.59190.88760.038*
H8C0.39180.58100.86440.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02158 (11)0.02058 (11)0.02486 (11)0.00119 (8)0.00548 (7)0.00250 (8)
N10.0202 (8)0.0177 (8)0.0225 (8)0.0010 (6)0.0030 (6)0.0026 (6)
C20.0191 (9)0.0196 (9)0.0219 (9)0.0018 (7)0.0011 (7)0.0011 (7)
N30.0219 (8)0.0174 (8)0.0236 (8)0.0020 (6)0.0037 (6)0.0018 (6)
C3A0.0195 (9)0.0184 (9)0.0236 (10)0.0006 (7)0.0007 (7)0.0000 (7)
C40.0227 (9)0.0221 (10)0.0222 (9)0.0013 (8)0.0017 (7)0.0027 (8)
C50.0231 (10)0.0272 (11)0.0227 (10)0.0019 (8)0.0037 (8)0.0019 (8)
C60.0204 (10)0.0242 (10)0.0274 (11)0.0021 (8)0.0029 (8)0.0023 (8)
C70.0200 (9)0.0192 (9)0.0263 (10)0.0007 (7)0.0005 (8)0.0008 (8)
C7A0.0184 (9)0.0199 (9)0.0216 (9)0.0015 (7)0.0009 (7)0.0005 (7)
C80.0258 (10)0.0237 (10)0.0275 (11)0.0005 (8)0.0058 (8)0.0063 (8)
Geometric parameters (Å, º) top
Se1—C21.838 (2)C4—H40.9500
N1—C21.361 (3)C5—C61.400 (3)
N1—C7A1.387 (3)C5—H50.9500
N1—C81.446 (3)C6—C71.388 (3)
C2—N31.355 (3)C6—H60.9500
N3—C3A1.388 (3)C7—C7A1.387 (3)
N3—H3N0.9090C7—H70.9500
C3A—C41.385 (3)C8—H8A0.9800
C3A—C7A1.405 (3)C8—H8B0.9800
C4—C51.387 (3)C8—H8C0.9800
C2—N1—C7A109.74 (17)C6—C5—H5119.0
C2—N1—C8124.74 (18)C7—C6—C5121.3 (2)
C7A—N1—C8125.35 (18)C7—C6—H6119.4
N3—C2—N1107.24 (18)C5—C6—H6119.4
N3—C2—Se1126.35 (16)C7A—C7—C6116.9 (2)
N1—C2—Se1126.40 (16)C7A—C7—H7121.5
C2—N3—C3A110.20 (18)C6—C7—H7121.5
C2—N3—H3N123.4C7—C7A—N1131.8 (2)
C3A—N3—H3N126.3C7—C7A—C3A121.6 (2)
C4—C3A—N3132.4 (2)N1—C7A—C3A106.60 (18)
C4—C3A—C7A121.4 (2)N1—C8—H8A109.5
N3—C3A—C7A106.12 (18)N1—C8—H8B109.5
C3A—C4—C5116.8 (2)H8A—C8—H8B109.5
C3A—C4—H4121.6N1—C8—H8C109.5
C5—C4—H4121.6H8A—C8—H8C109.5
C4—C5—C6121.9 (2)H8B—C8—H8C109.5
C4—C5—H5119.0
C7A—N1—C2—N33.4 (2)C5—C6—C7—C7A1.1 (3)
C8—N1—C2—N3178.94 (19)C6—C7—C7A—N1178.4 (2)
C7A—N1—C2—Se1175.35 (15)C6—C7—C7A—C3A0.0 (3)
C8—N1—C2—Se10.2 (3)C2—N1—C7A—C7175.6 (2)
N1—C2—N3—C3A2.5 (2)C8—N1—C7A—C70.1 (4)
Se1—C2—N3—C3A176.20 (15)C2—N1—C7A—C3A2.9 (2)
C2—N3—C3A—C4178.0 (2)C8—N1—C7A—C3A178.45 (19)
C2—N3—C3A—C7A0.7 (2)C4—C3A—C7A—C71.5 (3)
N3—C3A—C4—C5176.7 (2)N3—C3A—C7A—C7177.40 (19)
C7A—C3A—C4—C51.9 (3)C4—C3A—C7A—N1179.74 (19)
C3A—C4—C5—C60.8 (3)N3—C3A—C7A—N11.3 (2)
C4—C5—C6—C70.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Se1i0.912.583.471 (2)168
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8N2Se
Mr211.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.9434 (13), 5.8472 (8), 13.6387 (18)
β (°) 95.360 (2)
V3)789.50 (18)
Z4
Radiation typeMo Kα
µ (mm1)4.69
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.399, 0.454
No. of measured, independent and
observed [I > 2σ(I)] reflections
9470, 2304, 1941
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.00
No. of reflections2304
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···Se1i0.912.583.471 (2)168
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationAkkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1263–o1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAragoni, M. C., Arca, M., Demartin, F., Devillanova, F. A., Garau, A., Isaia, F., Lelj, F., Lippolis, V. & Verani, G. (2001). Chem. Eur. J. 7, 3122–3133.  CrossRef PubMed CAS Google Scholar
First citationAydin, A., Soylu, H., Küçükbay, H., Akkurt, M. & Ercan, F. (1999). Z. Kristallogr. New Cryst. Struct. 214, 295–296.  CAS Google Scholar
First citationBoyle, P. D. & Godfrey, S. M. (2001). Coord. Chem. Rev. 223, 265–299.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuziec, L. J. & Guziec, F. S. (1994). J. Org. Chem. 59, 4691–4692.  CrossRef CAS Web of Science Google Scholar
First citationHusebye, S., Lindeman, S. V. & Rudd, M. D. (1997). Acta Cryst. C53, 809–811.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLandry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490–12497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMammadova, G. Z., Matsulevich, Z. V., Osmanov, V. K., Borisov, A. V. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. & Tokitoh, N. (2008). New J. Chem. 32, 1881–1889.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279–2286.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G., Das, D. & Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207–15217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoy, G. & Mugesh, G. (2006). Bioorg. Chem. Appl. pp. 1–9.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaurog, A., Dorris, M. L., Guziec, L. J. & Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447–1453.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds