organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1273

(E)-Methyl 2-benzyl-3-o-tolyl­acrylate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 23 March 2012; accepted 28 March 2012; online 4 April 2012)

In the title compound, C18H18O2, the methyl acrylate substituent adopts an extended E conformation with all torsion angles close to 180°. The mean plane of the acrylate unit and the phenyl ring are approximately orthogonal to each other, making a dihedral angle of 81.40 (6)°. The position of the carbonyl group with respect to the olefinic double bond is typically S-trans. The crystal packing is stabilized by inter­molecular C—H⋯π inter­actions.

Related literature

For applications of acrylate derivatives, see: Xiao et al. (2008[Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828-1836.]); De Fraine & Martin, (1991[De Fraine, P. J. & Martin, A. (1991). US Patent 5 055 471.]). For a related structure, see: Madhanraj et al. (2011[Madhanraj, R., Vijayakumar, S., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2812.]). For E-conformation aspects, see: Dunitz & Schweizer (1982[Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547-1554.]). For resonance effects in acrylate, see: Merlino (1971[Merlino, S. (1971). Acta Cryst. B27, 2491-2492.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544-1546.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O2

  • Mr = 266.32

  • Monoclinic, P 21 /c

  • a = 7.6277 (3) Å

  • b = 16.2167 (7) Å

  • c = 11.7990 (5) Å

  • β = 92.419 (2)°

  • V = 1458.19 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 16396 measured reflections

  • 3397 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.03

  • 3397 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.87 3.7809 (17) 165
Symmetry code: (i) [x+1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl acrylate and its derivatives are important compounds because of their agrochemical and medicinal applications (De Fraine & Martin, 1991). Phenyl acrylates show considerable antibacterial activities against Staphylococcus Aureus (Xiao et al., 2008).

In the title compound C18H18O2, the methyl acrylate is essentially planar with a maximum deviation of -0.0207 (14)Å for the C9 atom and forms a dihedral angle of 40.66 (6)° and 81.40 (6)° with two phenyl rings (C2-C7) and (C13-C18), respectively. The interplanar angle between the two phenyl rings (C2-C7) and (C13-C18) is 67.69 (7)°. The title molecule exhibits structural similarities with the already reported related structure (Madhanraj et al., 2011).

The significant difference in the length of the C10–O1 = 1.3307 (19) Å and C11–O1 = 1.4368 (18)Å bond is attributed to a partial contribution from O-–CO+–C resonance structure of the O2C10–O1–C11 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340Å and 1.447Å respectively for these bonds (Varghese et al., 1986).

The configuration of the keto-group with respect to the olefinic double bond is typically S-trans, with O2C10–C9C8 torsion angle 176.88 (16)°. The methyl acrylate adopts an extended E-configuration with the torsion angles C8C9–C10O2 = 176.88 (16)°, C8C9–C10–O1 = -2.2 (2)°, C9–C10–O1–C11 = 179.81 (14)° and C12–C9–C10–O1 = -179.66 (12)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably expanded (Dunitz & Schweizer, 1982).

The crystal packing is stabilized by intermolecular C–H···π interaction, between a methyl benzene H atom and the benzene ring (C13-C18) of an adjacent molecule, with a C3–H3···Cg1i seperation of 2.87Å. Cg1 is the centroid of the benzene ring (C13-C18). Symmetry code: (i) x+1, -y-1/2, z-3/2.

Related literature top

For applications of acrylate derivatives, see: Xiao et al. (2008); De Fraine & Martin, (1991). For a related structure, see: Madhanraj et al. (2011). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects in acrylate, see: Merlino (1971); Varghese et al. (1986).

Experimental top

To a stirred solution of methyl 2-(hydroxy(o-tolyl)methyl)acrylate (0.21 g, 1 mmol) in dichloromethane (10 mL), benzene (0.31 g, 4 mmol) was added at room temperature. After stirring for about 10 minutes at 273 K, catalytic amount of concentrated H2SO4 was added drop wise. Then the reaction mixture was stirred at room temperature for 6 h. After completion of reaction, the mixture was poured into water and aqueous layer was extracted with ethyl acetate (3×10 ml). The combined organic layer was washed with brine (20 mL), and dried over anhydrous Na2SO4. The crude product thus obtained was purified by column chromatography (2% EtOAc / hexanes) to provide the desired compound (E)-methyl-2-benzyl-3-o-tolyl acrylate in 80% yield, as a colourless solid.

Refinement top

All the hydrogen atoms of the compound are fixed geometrically and allowed to ride on their parent atoms with C–H distance in the range 0.93Å to 0.97Å and with Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for all other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitary radius.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down c axis. The dashed line indicate C3–H3···Cg1i intermolecular interaction. Cg1 is the centroid of the benzene ring (C13-C18). Symmetry code: (i) x+1, -y-1/2, z-3/2.
(E)-Methyl 2-benzyl-3-o-tolylacrylate top
Crystal data top
C18H18O2F(000) = 568
Mr = 266.32Dx = 1.213 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3397 reflections
a = 7.6277 (3) Åθ = 2.1–27.7°
b = 16.2167 (7) ŵ = 0.08 mm1
c = 11.7990 (5) ÅT = 295 K
β = 92.419 (2)°Block, colourless
V = 1458.19 (11) Å30.28 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.7°, θmin = 2.1°
ω and ϕ scansh = 69
16396 measured reflectionsk = 2120
3397 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.1449P]
where P = (Fo2 + 2Fc2)/3
3397 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H18O2V = 1458.19 (11) Å3
Mr = 266.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6277 (3) ŵ = 0.08 mm1
b = 16.2167 (7) ÅT = 295 K
c = 11.7990 (5) Å0.28 × 0.25 × 0.23 mm
β = 92.419 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2183 reflections with I > 2σ(I)
16396 measured reflectionsRint = 0.033
3397 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
3397 reflectionsΔρmin = 0.20 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7834 (3)0.43187 (11)0.45429 (16)0.0774 (6)
H1A0.67420.46140.44860.116*
H1B0.85770.45000.39560.116*
H1C0.84020.44220.52700.116*
C20.74883 (18)0.34125 (10)0.44130 (12)0.0506 (4)
C30.8329 (2)0.29632 (11)0.35940 (14)0.0621 (4)
H30.90750.32350.31150.075*
C40.8091 (2)0.21326 (12)0.34737 (15)0.0675 (5)
H40.86730.18460.29190.081*
C50.6995 (2)0.17216 (11)0.41701 (15)0.0682 (5)
H50.68440.11550.40980.082*
C60.6119 (2)0.21510 (10)0.49768 (14)0.0578 (4)
H60.53720.18690.54450.069*
C70.63261 (17)0.29962 (9)0.51076 (11)0.0456 (3)
C80.54009 (18)0.34614 (9)0.59692 (12)0.0473 (3)
H80.60460.38740.63420.057*
C90.37474 (18)0.33670 (9)0.62856 (12)0.0467 (3)
C100.3070 (2)0.39142 (9)0.71775 (14)0.0547 (4)
C110.3689 (3)0.49930 (12)0.84739 (16)0.0810 (6)
H11A0.28010.53560.81580.122*
H11B0.46700.53120.87620.122*
H11C0.32170.46790.90800.122*
C120.24399 (19)0.27684 (9)0.57786 (13)0.0533 (4)
H12A0.27570.26530.50070.064*
H12B0.13000.30340.57380.064*
C130.22600 (17)0.19546 (9)0.63919 (12)0.0441 (3)
C140.1264 (2)0.13340 (10)0.58785 (13)0.0585 (4)
H140.07260.14260.51680.070*
C150.1058 (2)0.05841 (10)0.64005 (15)0.0628 (4)
H150.03900.01750.60380.075*
C160.1829 (2)0.04364 (10)0.74494 (14)0.0578 (4)
H160.16780.00680.78060.069*
C170.2824 (2)0.10417 (10)0.79654 (13)0.0573 (4)
H170.33550.09460.86770.069*
C180.30491 (19)0.17931 (9)0.74421 (12)0.0512 (4)
H180.37410.21950.78020.061*
O10.42556 (14)0.44424 (7)0.76084 (9)0.0645 (3)
O20.15923 (17)0.38981 (8)0.74826 (13)0.0893 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0861 (13)0.0688 (12)0.0800 (12)0.0192 (10)0.0347 (10)0.0019 (9)
C20.0454 (8)0.0596 (9)0.0473 (8)0.0022 (7)0.0069 (6)0.0007 (7)
C30.0513 (9)0.0832 (13)0.0529 (9)0.0022 (8)0.0148 (7)0.0043 (8)
C40.0553 (10)0.0832 (13)0.0644 (10)0.0093 (9)0.0075 (8)0.0217 (9)
C50.0640 (10)0.0587 (10)0.0824 (12)0.0037 (8)0.0077 (9)0.0152 (9)
C60.0576 (9)0.0523 (9)0.0644 (10)0.0009 (7)0.0137 (8)0.0010 (7)
C70.0424 (7)0.0508 (8)0.0437 (8)0.0006 (6)0.0050 (6)0.0005 (6)
C80.0509 (8)0.0461 (8)0.0455 (8)0.0028 (6)0.0093 (6)0.0035 (6)
C90.0485 (8)0.0449 (8)0.0475 (8)0.0012 (6)0.0099 (6)0.0085 (6)
C100.0562 (9)0.0488 (9)0.0607 (9)0.0010 (7)0.0203 (8)0.0087 (7)
C110.0874 (13)0.0835 (14)0.0743 (12)0.0042 (10)0.0280 (10)0.0253 (10)
C120.0499 (9)0.0599 (9)0.0502 (8)0.0003 (7)0.0028 (7)0.0097 (7)
C130.0374 (7)0.0516 (8)0.0438 (7)0.0019 (6)0.0083 (6)0.0011 (6)
C140.0546 (9)0.0716 (11)0.0489 (8)0.0106 (8)0.0030 (7)0.0000 (8)
C150.0607 (10)0.0588 (10)0.0692 (11)0.0163 (8)0.0066 (8)0.0077 (8)
C160.0636 (10)0.0472 (9)0.0637 (10)0.0007 (7)0.0172 (8)0.0039 (8)
C170.0668 (10)0.0565 (10)0.0488 (9)0.0022 (8)0.0035 (7)0.0073 (7)
C180.0555 (9)0.0517 (9)0.0461 (8)0.0068 (7)0.0011 (7)0.0004 (7)
O10.0613 (7)0.0686 (7)0.0651 (7)0.0003 (6)0.0204 (5)0.0162 (6)
O20.0663 (8)0.0823 (9)0.1234 (11)0.0109 (6)0.0506 (8)0.0197 (8)
Geometric parameters (Å, º) top
C1—C21.500 (2)C10—O11.3307 (19)
C1—H1A0.9600C11—O11.4368 (18)
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C2—C31.389 (2)C11—H11C0.9600
C2—C71.4051 (19)C12—C131.514 (2)
C3—C41.366 (2)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.370 (2)C13—C181.380 (2)
C4—H40.9300C13—C141.385 (2)
C5—C61.375 (2)C14—C151.375 (2)
C5—H50.9300C14—H140.9300
C6—C71.388 (2)C15—C161.369 (2)
C6—H60.9300C15—H150.9300
C7—C81.4701 (19)C16—C171.368 (2)
C8—C91.3390 (18)C16—H160.9300
C8—H80.9300C17—C181.380 (2)
C9—C101.486 (2)C17—H170.9300
C9—C121.498 (2)C18—H180.9300
C10—O21.1981 (17)
C2—C1—H1A109.5O1—C10—C9113.84 (12)
C2—C1—H1B109.5O1—C11—H11A109.5
H1A—C1—H1B109.5O1—C11—H11B109.5
C2—C1—H1C109.5H11A—C11—H11B109.5
H1A—C1—H1C109.5O1—C11—H11C109.5
H1B—C1—H1C109.5H11A—C11—H11C109.5
C3—C2—C7118.37 (14)H11B—C11—H11C109.5
C3—C2—C1120.06 (14)C9—C12—C13116.50 (12)
C7—C2—C1121.57 (13)C9—C12—H12A108.2
C4—C3—C2121.76 (15)C13—C12—H12A108.2
C4—C3—H3119.1C9—C12—H12B108.2
C2—C3—H3119.1C13—C12—H12B108.2
C3—C4—C5119.96 (15)H12A—C12—H12B107.3
C3—C4—H4120.0C18—C13—C14117.74 (13)
C5—C4—H4120.0C18—C13—C12123.35 (13)
C4—C5—C6119.70 (16)C14—C13—C12118.91 (13)
C4—C5—H5120.1C15—C14—C13121.19 (15)
C6—C5—H5120.1C15—C14—H14119.4
C5—C6—C7121.39 (15)C13—C14—H14119.4
C5—C6—H6119.3C16—C15—C14120.44 (15)
C7—C6—H6119.3C16—C15—H15119.8
C6—C7—C2118.77 (13)C14—C15—H15119.8
C6—C7—C8121.87 (13)C17—C16—C15119.08 (15)
C2—C7—C8119.34 (13)C17—C16—H16120.5
C9—C8—C7128.28 (14)C15—C16—H16120.5
C9—C8—H8115.9C16—C17—C18120.78 (14)
C7—C8—H8115.9C16—C17—H17119.6
C8—C9—C10119.27 (14)C18—C17—H17119.6
C8—C9—C12125.57 (13)C13—C18—C17120.77 (14)
C10—C9—C12115.11 (12)C13—C18—H18119.6
O2—C10—O1122.14 (15)C17—C18—H18119.6
O2—C10—C9124.02 (16)C10—O1—C11116.85 (12)
C7—C2—C3—C41.9 (2)C8—C9—C10—O12.2 (2)
C1—C2—C3—C4177.90 (16)C12—C9—C10—O1179.66 (12)
C2—C3—C4—C50.2 (3)C8—C9—C12—C1396.20 (17)
C3—C4—C5—C61.0 (3)C10—C9—C12—C1386.57 (16)
C4—C5—C6—C70.3 (3)C9—C12—C13—C188.8 (2)
C5—C6—C7—C21.4 (2)C9—C12—C13—C14170.83 (13)
C5—C6—C7—C8179.81 (15)C18—C13—C14—C150.5 (2)
C3—C2—C7—C62.5 (2)C12—C13—C14—C15179.90 (14)
C1—C2—C7—C6177.32 (16)C13—C14—C15—C160.4 (2)
C3—C2—C7—C8179.11 (14)C14—C15—C16—C170.7 (2)
C1—C2—C7—C81.1 (2)C15—C16—C17—C180.2 (2)
C6—C7—C8—C939.7 (2)C14—C13—C18—C171.0 (2)
C2—C7—C8—C9141.93 (15)C12—C13—C18—C17179.36 (13)
C7—C8—C9—C10179.57 (13)C16—C17—C18—C130.7 (2)
C7—C8—C9—C122.4 (2)O2—C10—O1—C110.7 (2)
C8—C9—C10—O2176.88 (16)C9—C10—O1—C11179.81 (14)
C12—C9—C10—O20.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.873.7809 (17)165
Symmetry code: (i) x+1, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC18H18O2
Mr266.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.6277 (3), 16.2167 (7), 11.7990 (5)
β (°) 92.419 (2)
V3)1458.19 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16396, 3397, 2183
Rint0.033
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.03
No. of reflections3397
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.873.7809 (17)165
Symmetry code: (i) x+1, y1/2, z3/2.
 

Acknowledgements

SK and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department for carrying out this work.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Fraine, P. J. & Martin, A. (1991). US Patent 5 055 471.  Google Scholar
First citationDunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMadhanraj, R., Vijayakumar, S., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMerlino, S. (1971). Acta Cryst. B27, 2491–2492.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationXiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1273
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds