organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1401

Ethyl (E)-3-[1′-ethyl-2-oxo-4′-(phenyl­sulfon­yl)-2H-spiro­[ace­naphthyl­ene-1,2′-pyrrolidine]-3′-yl]acrylate

aDepartment of Chemistry, Pachaiyappas College, Chennai 600 030, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 24 March 2012; accepted 12 April 2012; online 18 April 2012)

In the title compound, C28H27NO5S, the five-membered pyrrolidine ring, which exhibits an envelope conformation (the C atom at the spiral junction being the flap atom), makes dihedral angles of 57.37 (10) and 86.84 (8)°, respectively, with the phenyl ring and the acenaphthyl­ene ring system. In the crystal, mol­ecules associate via two C—H⋯O hydrogen bonds, forming R22(20) and R22(10) graph-set motifs.

Related literature

For the biological activity of spiro compounds, see: Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1114.]); Obniska et al. (2003[Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszynska, B., Klodzinska, A., Tatarczynska, E. & Chojnacka-Wojcik, E. (2003). Pol. J. Pharmacol. 55, 553-557.]); Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H27NO5S

  • Mr = 489.58

  • Triclinic, [P \overline 1]

  • a = 11.1917 (8) Å

  • b = 11.7778 (9) Å

  • c = 12.1511 (9) Å

  • α = 93.572 (3)°

  • β = 115.911 (3)°

  • γ = 114.134 (3)°

  • V = 1256.82 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 295 K

  • 0.26 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.967

  • 19294 measured reflections

  • 6053 independent reflections

  • 4834 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.127

  • S = 1.04

  • 6053 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21A⋯O1i 0.97 2.53 3.452 (3) 160
C28—H28⋯O5ii 0.93 2.55 3.336 (3) 142
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). In view of this importance, the crystal structure of the title compound, has been determined and the results are presented here.

The pyrrolidine ring makes dihedral angles of 57.37 (10)° and 86.84 (8)° with the phenyl ring and the acenaphthylene ring system, respectively. The sum of the angles at N1 of the pyrrolidine ring - 335.5 (3)°) is in accordance with sp3 hybridization. The pyrrolidine ring adopts an envelope conformation with C8 deviating from the plane defined by the rest of the atoms of the ring by -0.2603 (2)Å. The puckering parameters (Cremer & Pople, 1975) of this ring are QT= 0.4137 (2)Å and ϕ2 = 30.3 (3)°.

The crystal packing is stabilized by C—H···O intermolecular interactions. Atom C21 acts as a donor to O1i and atom C28 acts as a donor to O5ii, generating R22(20) and R22(10) graph set motifs, respectively. Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1.

Related literature top

For the biological activity of spiro compounds, see: Kobayashi et al. (1991); James et al. (1991); Obniska et al. (2003); Peddi et al. (2004). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The mixture of (2E,4E)–ethyl–5–(phenyl–sulfonyl)penta–2,4–dienoate (1 g, 3.8 mmol), N–ethyl glycine (0.43 g 4.1 mmol) and acenapthoquinone (0.75 g 4.1 mmol) in dry 1,4–dioxane (20 ml) was refluxed for 5 hr under N2 atm. The reaction mixture was concentreated to remove the solvent and then purified by column chromatography to yield the required title compound as a coloureless solid. The solvent accessible void 47Å3 is found in crystal.

Refinement top

The C bound H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed along the a–axis; H–bonds are shown as dashed lines forms R22(20) and R22(10) graph set motifs. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted.
Ethyl (E)-3-[1'-ethyl-2-oxo-4'-(phenylsulfonyl)-2H- spiro[acenaphthylene-1,2'-pyrrolidine]-3'-yl]acrylate top
Crystal data top
C28H27NO5SZ = 2
Mr = 489.58F(000) = 516
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1917 (8) ÅCell parameters from 1225 reflections
b = 11.7778 (9) Åθ = 2.0–28.3°
c = 12.1511 (9) ŵ = 0.17 mm1
α = 93.572 (3)°T = 295 K
β = 115.911 (3)°Block, colourless
γ = 114.134 (3)°0.26 × 0.23 × 0.20 mm
V = 1256.82 (17) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
6053 independent reflections
Radiation source: fine–focus sealed tube4834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.957, Tmax = 0.967k = 1315
19294 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2849P]
where P = (Fo2 + 2Fc2)/3
6053 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C28H27NO5Sγ = 114.134 (3)°
Mr = 489.58V = 1256.82 (17) Å3
Triclinic, P1Z = 2
a = 11.1917 (8) ÅMo Kα radiation
b = 11.7778 (9) ŵ = 0.17 mm1
c = 12.1511 (9) ÅT = 295 K
α = 93.572 (3)°0.26 × 0.23 × 0.20 mm
β = 115.911 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4834 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.967Rint = 0.027
19294 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
6053 reflectionsΔρmin = 0.30 e Å3
318 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice o f reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2133 (2)0.56954 (17)1.03581 (16)0.0564 (4)
H11.15350.60951.02090.068*
C21.3587 (2)0.6248 (2)1.14553 (18)0.0677 (5)
H21.39550.70311.20300.081*
C31.4474 (2)0.5662 (2)1.16999 (17)0.0661 (5)
H31.54280.60571.24380.079*
C41.39774 (18)0.44698 (17)1.08589 (14)0.0515 (4)
C51.25279 (16)0.39499 (15)0.97617 (13)0.0423 (3)
C61.16211 (17)0.45494 (15)0.95136 (14)0.0441 (3)
C71.02002 (16)0.37311 (15)0.82823 (14)0.0420 (3)
C81.02678 (15)0.24970 (14)0.78074 (13)0.0385 (3)
C91.18392 (16)0.27742 (14)0.88182 (13)0.0410 (3)
C101.26179 (18)0.21055 (17)0.89651 (16)0.0515 (4)
H101.21950.13280.83560.062*
C111.4085 (2)0.2614 (2)1.00628 (18)0.0601 (4)
H111.46140.21551.01600.072*
C121.47483 (19)0.3748 (2)1.09791 (16)0.0596 (5)
H121.57110.40471.16850.071*
C130.8902 (2)0.12685 (18)0.88435 (17)0.0578 (4)
H13A0.85060.18420.89290.069*
H13B0.98990.15990.95950.069*
C140.7862 (3)0.0082 (2)0.8781 (2)0.0868 (7)
H14A0.68550.03860.80750.130*
H14B0.78420.00570.95640.130*
H14C0.82300.06600.86640.130*
C150.76449 (17)0.09965 (17)0.65328 (15)0.0534 (4)
H15A0.71270.14050.67120.064*
H15B0.69620.00660.61630.064*
C160.81788 (15)0.15707 (14)0.56245 (13)0.0407 (3)
H160.78470.22150.53880.049*
C170.99379 (15)0.22744 (13)0.64103 (13)0.0368 (3)
H171.02830.16730.62500.044*
C181.06771 (15)0.34865 (13)0.60997 (12)0.0370 (3)
H181.03830.41150.61310.044*
C191.17266 (15)0.37120 (14)0.57825 (13)0.0389 (3)
H191.20630.31100.57780.047*
C201.23705 (16)0.49004 (15)0.54361 (14)0.0414 (3)
C211.3948 (2)0.5929 (2)0.4584 (2)0.0715 (6)
H21A1.31870.61740.40980.086*
H21B1.42360.56470.40180.086*
C221.5286 (3)0.7062 (2)0.5650 (4)0.1173 (11)
H22A1.49800.74060.61540.176*
H22B1.57490.77180.53190.176*
H22C1.60030.68030.61760.176*
C230.81600 (17)0.11501 (15)0.33263 (14)0.0450 (3)
C240.7631 (2)0.1943 (2)0.27206 (18)0.0645 (5)
H240.68080.19730.27090.077*
C250.8334 (3)0.2684 (3)0.2137 (2)0.0886 (7)
H250.79950.32280.17400.106*
C260.9531 (3)0.2626 (3)0.2136 (2)0.0865 (7)
H261.00040.31350.17440.104*
C271.0036 (2)0.1820 (2)0.2713 (2)0.0739 (6)
H271.08320.17690.26890.089*
C280.9364 (2)0.10824 (18)0.33293 (17)0.0564 (4)
H280.97180.05510.37380.068*
N10.90471 (14)0.12794 (12)0.77021 (12)0.0458 (3)
O10.91411 (13)0.39290 (12)0.77286 (11)0.0570 (3)
O21.20878 (15)0.57760 (12)0.54698 (14)0.0612 (3)
O31.33098 (13)0.48649 (11)0.50468 (12)0.0549 (3)
O40.57643 (13)0.01410 (13)0.35199 (13)0.0698 (4)
O50.78909 (16)0.06088 (11)0.45257 (13)0.0680 (4)
S10.73711 (4)0.03210 (4)0.41992 (4)0.04772 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0689 (11)0.0555 (10)0.0484 (9)0.0283 (9)0.0346 (8)0.0137 (8)
C20.0720 (12)0.0613 (11)0.0463 (9)0.0173 (10)0.0278 (9)0.0002 (8)
C30.0547 (10)0.0728 (12)0.0385 (8)0.0146 (9)0.0155 (8)0.0035 (8)
C40.0432 (8)0.0612 (10)0.0355 (7)0.0160 (7)0.0171 (6)0.0156 (7)
C50.0405 (7)0.0466 (8)0.0346 (7)0.0155 (6)0.0196 (6)0.0162 (6)
C60.0487 (8)0.0464 (8)0.0374 (7)0.0201 (7)0.0245 (6)0.0152 (6)
C70.0440 (7)0.0482 (8)0.0390 (7)0.0225 (7)0.0242 (6)0.0190 (6)
C80.0356 (7)0.0390 (7)0.0366 (7)0.0151 (6)0.0171 (6)0.0151 (6)
C90.0385 (7)0.0427 (7)0.0364 (7)0.0167 (6)0.0171 (6)0.0169 (6)
C100.0489 (8)0.0492 (9)0.0508 (9)0.0242 (7)0.0204 (7)0.0176 (7)
C110.0498 (9)0.0730 (12)0.0603 (10)0.0359 (9)0.0230 (8)0.0315 (10)
C120.0404 (8)0.0778 (12)0.0447 (9)0.0239 (8)0.0131 (7)0.0228 (9)
C130.0596 (10)0.0599 (10)0.0485 (9)0.0185 (8)0.0319 (8)0.0239 (8)
C140.0939 (16)0.0752 (14)0.0774 (14)0.0158 (12)0.0540 (13)0.0389 (12)
C150.0374 (7)0.0598 (10)0.0474 (8)0.0108 (7)0.0207 (7)0.0195 (8)
C160.0334 (6)0.0406 (7)0.0392 (7)0.0133 (6)0.0156 (6)0.0131 (6)
C170.0333 (6)0.0363 (7)0.0355 (6)0.0140 (5)0.0158 (5)0.0123 (5)
C180.0344 (6)0.0368 (7)0.0339 (6)0.0145 (5)0.0151 (5)0.0122 (5)
C190.0332 (6)0.0379 (7)0.0386 (7)0.0147 (6)0.0152 (6)0.0113 (6)
C200.0352 (7)0.0451 (8)0.0433 (7)0.0182 (6)0.0202 (6)0.0161 (6)
C210.0734 (12)0.0852 (14)0.0947 (15)0.0458 (11)0.0623 (12)0.0546 (13)
C220.0925 (19)0.0644 (15)0.186 (3)0.0142 (14)0.086 (2)0.0329 (18)
C230.0461 (8)0.0407 (8)0.0350 (7)0.0187 (6)0.0134 (6)0.0051 (6)
C240.0807 (13)0.0763 (13)0.0578 (10)0.0510 (11)0.0382 (10)0.0317 (10)
C250.132 (2)0.0989 (17)0.0813 (15)0.0738 (17)0.0701 (16)0.0562 (14)
C260.1058 (18)0.0906 (16)0.0697 (13)0.0378 (15)0.0579 (14)0.0316 (12)
C270.0615 (11)0.0879 (15)0.0614 (11)0.0273 (11)0.0338 (10)0.0014 (11)
C280.0532 (9)0.0541 (10)0.0500 (9)0.0267 (8)0.0178 (8)0.0031 (8)
N10.0395 (6)0.0447 (7)0.0412 (6)0.0105 (5)0.0197 (5)0.0180 (5)
O10.0546 (7)0.0699 (8)0.0529 (7)0.0385 (6)0.0244 (6)0.0199 (6)
O20.0699 (8)0.0539 (7)0.0907 (9)0.0373 (6)0.0559 (7)0.0374 (7)
O30.0505 (6)0.0576 (7)0.0732 (8)0.0278 (5)0.0415 (6)0.0305 (6)
O40.0377 (6)0.0700 (8)0.0584 (7)0.0078 (6)0.0094 (5)0.0079 (6)
O50.0770 (9)0.0391 (6)0.0711 (8)0.0264 (6)0.0260 (7)0.0188 (6)
S10.0393 (2)0.0385 (2)0.0427 (2)0.01109 (16)0.01077 (16)0.00891 (15)
Geometric parameters (Å, º) top
C1—C61.373 (2)C15—H15B0.9700
C1—C21.406 (3)C16—C171.5488 (18)
C1—H10.9300C16—S11.7914 (16)
C2—C31.371 (3)C16—H160.9800
C2—H20.9300C17—C181.4963 (18)
C3—C41.418 (3)C17—H170.9800
C3—H30.9300C18—C191.3236 (19)
C4—C51.407 (2)C18—H180.9300
C4—C121.412 (3)C19—C201.473 (2)
C5—C61.402 (2)C19—H190.9300
C5—C91.408 (2)C20—O21.1993 (19)
C6—C71.478 (2)C20—O31.3411 (18)
C7—O11.2085 (18)C21—O31.451 (2)
C7—C81.573 (2)C21—C221.468 (4)
C8—N11.4703 (17)C21—H21A0.9700
C8—C91.5168 (19)C21—H21B0.9700
C8—C171.5506 (19)C22—H22A0.9600
C9—C101.362 (2)C22—H22B0.9600
C10—C111.420 (2)C22—H22C0.9600
C10—H100.9300C23—C281.381 (2)
C11—C121.363 (3)C23—C241.386 (2)
C11—H110.9300C23—S11.7609 (16)
C12—H120.9300C24—C251.373 (3)
C13—N11.465 (2)C24—H240.9300
C13—C141.511 (3)C25—C261.369 (4)
C13—H13A0.9700C25—H250.9300
C13—H13B0.9700C26—C271.373 (3)
C14—H14A0.9600C26—H260.9300
C14—H14B0.9600C27—C281.386 (3)
C14—H14C0.9600C27—H270.9300
C15—N11.469 (2)C28—H280.9300
C15—C161.540 (2)O4—S11.4345 (12)
C15—H15A0.9700O5—S11.4383 (13)
C6—C1—C2118.18 (18)C17—C16—S1113.76 (10)
C6—C1—H1120.9C15—C16—H16108.8
C2—C1—H1120.9C17—C16—H16108.8
C3—C2—C1121.68 (18)S1—C16—H16108.8
C3—C2—H2119.2C18—C17—C16113.82 (11)
C1—C2—H2119.2C18—C17—C8114.52 (11)
C2—C3—C4121.80 (17)C16—C17—C8102.29 (10)
C2—C3—H3119.1C18—C17—H17108.6
C4—C3—H3119.1C16—C17—H17108.6
C5—C4—C12116.31 (16)C8—C17—H17108.6
C5—C4—C3115.20 (17)C19—C18—C17123.55 (13)
C12—C4—C3128.50 (16)C19—C18—H18118.2
C6—C5—C4122.94 (15)C17—C18—H18118.2
C6—C5—C9113.52 (13)C18—C19—C20121.14 (14)
C4—C5—C9123.54 (15)C18—C19—H19119.4
C1—C6—C5120.19 (15)C20—C19—H19119.4
C1—C6—C7132.45 (16)O2—C20—O3123.92 (14)
C5—C6—C7107.36 (13)O2—C20—C19125.58 (13)
O1—C7—C6127.61 (15)O3—C20—C19110.49 (13)
O1—C7—C8124.66 (14)O3—C21—C22111.1 (2)
C6—C7—C8107.71 (12)O3—C21—H21A109.4
N1—C8—C9112.97 (11)C22—C21—H21A109.4
N1—C8—C17101.47 (11)O3—C21—H21B109.4
C9—C8—C17115.83 (11)C22—C21—H21B109.4
N1—C8—C7112.47 (12)H21A—C21—H21B108.0
C9—C8—C7102.36 (11)C21—C22—H22A109.5
C17—C8—C7112.18 (11)C21—C22—H22B109.5
C10—C9—C5118.51 (14)H22A—C22—H22B109.5
C10—C9—C8132.53 (14)C21—C22—H22C109.5
C5—C9—C8108.93 (13)H22A—C22—H22C109.5
C9—C10—C11118.95 (16)H22B—C22—H22C109.5
C9—C10—H10120.5C28—C23—C24120.76 (17)
C11—C10—H10120.5C28—C23—S1120.03 (13)
C12—C11—C10122.53 (17)C24—C23—S1119.04 (13)
C12—C11—H11118.7C25—C24—C23119.33 (19)
C10—C11—H11118.7C25—C24—H24120.3
C11—C12—C4120.15 (15)C23—C24—H24120.3
C11—C12—H12119.9C26—C25—C24120.4 (2)
C4—C12—H12119.9C26—C25—H25119.8
N1—C13—C14111.99 (16)C24—C25—H25119.8
N1—C13—H13A109.2C25—C26—C27120.3 (2)
C14—C13—H13A109.2C25—C26—H26119.8
N1—C13—H13B109.2C27—C26—H26119.8
C14—C13—H13B109.2C26—C27—C28120.3 (2)
H13A—C13—H13B107.9C26—C27—H27119.8
C13—C14—H14A109.5C28—C27—H27119.8
C13—C14—H14B109.5C23—C28—C27118.84 (18)
H14A—C14—H14B109.5C23—C28—H28120.6
C13—C14—H14C109.5C27—C28—H28120.6
H14A—C14—H14C109.5C13—N1—C15113.66 (13)
H14B—C14—H14C109.5C13—N1—C8114.79 (13)
N1—C15—C16104.64 (11)C15—N1—C8107.01 (11)
N1—C15—H15A110.8C20—O3—C21116.87 (13)
C16—C15—H15A110.8O4—S1—O5118.19 (8)
N1—C15—H15B110.8O4—S1—C23109.19 (8)
C16—C15—H15B110.8O5—S1—C23108.26 (8)
H15A—C15—H15B108.9O4—S1—C16107.00 (8)
C15—C16—C17105.89 (11)O5—S1—C16109.48 (8)
C15—C16—S1110.67 (10)C23—S1—C16103.78 (7)
C6—C1—C2—C31.0 (3)S1—C16—C17—C8142.41 (10)
C1—C2—C3—C40.2 (3)N1—C8—C17—C18162.09 (12)
C2—C3—C4—C50.6 (3)C9—C8—C17—C1875.18 (16)
C2—C3—C4—C12179.67 (18)C7—C8—C17—C1841.83 (16)
C12—C4—C5—C6179.53 (14)N1—C8—C17—C1638.46 (13)
C3—C4—C5—C60.7 (2)C9—C8—C17—C16161.19 (12)
C12—C4—C5—C90.4 (2)C7—C8—C17—C1681.79 (13)
C3—C4—C5—C9179.81 (14)C16—C17—C18—C19127.00 (14)
C2—C1—C6—C50.9 (2)C8—C17—C18—C19115.79 (15)
C2—C1—C6—C7178.66 (15)C17—C18—C19—C20177.52 (12)
C4—C5—C6—C10.0 (2)C18—C19—C20—O24.1 (2)
C9—C5—C6—C1179.14 (13)C18—C19—C20—O3174.71 (13)
C4—C5—C6—C7179.61 (13)C28—C23—C24—C251.1 (3)
C9—C5—C6—C71.21 (16)S1—C23—C24—C25174.11 (17)
C1—C6—C7—O11.0 (3)C23—C24—C25—C261.0 (4)
C5—C6—C7—O1178.59 (14)C24—C25—C26—C270.4 (4)
C1—C6—C7—C8177.43 (16)C25—C26—C27—C281.7 (4)
C5—C6—C7—C82.98 (15)C24—C23—C28—C270.1 (3)
O1—C7—C8—N160.44 (18)S1—C23—C28—C27175.30 (13)
C6—C7—C8—N1118.04 (12)C26—C27—C28—C231.5 (3)
O1—C7—C8—C9178.03 (14)C14—C13—N1—C1568.2 (2)
C6—C7—C8—C93.49 (13)C14—C13—N1—C8168.20 (17)
O1—C7—C8—C1753.20 (18)C16—C15—N1—C13158.39 (14)
C6—C7—C8—C17128.32 (12)C16—C15—N1—C830.61 (17)
C6—C5—C9—C10179.75 (13)C9—C8—N1—C1364.42 (18)
C4—C5—C9—C100.6 (2)C17—C8—N1—C13170.90 (13)
C6—C5—C9—C81.16 (16)C7—C8—N1—C1350.85 (17)
C4—C5—C9—C8178.02 (13)C9—C8—N1—C15168.47 (13)
N1—C8—C9—C1059.9 (2)C17—C8—N1—C1543.79 (15)
C17—C8—C9—C1056.5 (2)C7—C8—N1—C1576.27 (15)
C7—C8—C9—C10178.87 (16)O2—C20—O3—C213.2 (2)
N1—C8—C9—C5118.37 (13)C19—C20—O3—C21175.66 (14)
C17—C8—C9—C5125.19 (13)C22—C21—O3—C2082.8 (2)
C7—C8—C9—C52.81 (14)C28—C23—S1—O4145.29 (14)
C5—C9—C10—C110.3 (2)C24—C23—S1—O439.47 (16)
C8—C9—C10—C11177.86 (15)C28—C23—S1—O515.38 (15)
C9—C10—C11—C120.0 (3)C24—C23—S1—O5169.37 (14)
C10—C11—C12—C40.2 (3)C28—C23—S1—C16100.88 (14)
C5—C4—C12—C110.1 (2)C24—C23—S1—C1674.36 (15)
C3—C4—C12—C11179.79 (17)C15—C16—S1—O466.64 (13)
N1—C15—C16—C174.79 (17)C17—C16—S1—O4174.29 (10)
N1—C15—C16—S1118.93 (12)C15—C16—S1—O562.57 (13)
C15—C16—C17—C18144.74 (13)C17—C16—S1—O556.50 (12)
S1—C16—C17—C1893.50 (13)C15—C16—S1—C23177.97 (11)
C15—C16—C17—C820.65 (15)C17—C16—S1—C2358.90 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O1i0.972.533.452 (3)160
C28—H28···O5ii0.932.553.336 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H27NO5S
Mr489.58
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)11.1917 (8), 11.7778 (9), 12.1511 (9)
α, β, γ (°)93.572 (3), 115.911 (3), 114.134 (3)
V3)1256.82 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.26 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.957, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
19294, 6053, 4834
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.04
No. of reflections6053
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21A···O1i0.972.533.452 (3)160
C28—H28···O5ii0.932.553.336 (3)142
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1.
 

Acknowledgements

The authors thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SS and DV thank the University Grants Commission (UGC & SAP) for financial support.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1114.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationObniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszynska, B., Klodzinska, A., Tatarczynska, E. & Chojnacka–Wojcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.  Web of Science PubMed CAS Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds