metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­quinoline-κ2N,N′)di­bromidopalladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 4 April 2012; accepted 9 April 2012; online 18 April 2012)

The PdII ion in the title complex, [PdBr2(C18H12N2)], is four-coordinated in a distorted square-planar environment by the two N atoms from the chelating 2,2′-biquinoline (Biqu) ligand and two mutually cis Br anions. The Biqu ligand is not planar, the dihedral angle between the quinoline systems being 17.2 (2)°. In the crystal, the complex mol­ecules are connected by C—H⋯Br hydrogen bonds, forming chains along the c axis. When viewed down the b axis, successive chains are stacked in opposite directions. Intra­molecular C—H⋯Br hydrogen bonds are also observed.

Related literature

For the crystal structure of the related chlorido PdII complex [PdCl2(Biqu)], see: Muranishi et al. (2005[Muranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307-m310.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C18H12N2)]

  • Mr = 522.50

  • Triclinic, [P \overline 1]

  • a = 8.9390 (5) Å

  • b = 9.2187 (5) Å

  • c = 11.1486 (6) Å

  • α = 72.398 (1)°

  • β = 69.318 (1)°

  • γ = 87.258 (1)°

  • V = 817.47 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.02 mm−1

  • T = 200 K

  • 0.17 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.813, Tmax = 1.000

  • 5100 measured reflections

  • 3126 independent reflections

  • 2612 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.070

  • S = 1.12

  • 3126 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br1 0.95 2.73 3.252 (5) 116
C14—H14⋯Br1i 0.95 2.90 3.754 (5) 150
C17—H17⋯Br2 0.95 2.85 3.261 (5) 107
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PdBr2(C18H12N2)], crystallized in the triclinic space group P1, whereas the analogous chlorido PdII complex [PdCl2(C18H12N2)] crystallized in the monoclinic space group P21/c (Muranishi et al., 2005).

The central PdII ion is four-coordinated in a distorted square-planar environment by the two N atoms from the chelating 2,2'-biquinoline (Biqu) ligand and two mutually cis Br- anions (Fig. 1). The main contribution to the distortion is the tight N1-Pd1-N2 chelate angle of 78.90 (15)°, which results in non-linear trans axes [angle Br1–Pd1-N2 = 169.85 (10)° and angle Br2–Pd1-N1 = 167.99 (11)°]. The pairs of Pd-N and Pd–Br bond lengths are nearly equivalent [Pd-N = 2.064 (4)Å and 2.073 (4)Å; Pd–Br = 2.4113 (6)Å and 2.4151 (6)Å]. In the crystal structure, the Biqu ligand is not planar. The dihedral angle between the least-squares planes of the quinoline rings is 17.2 (2)°. The quinoline rings are inclined considerably to the least-squares plane of the PdBr2N2 unit [maximum deviation = 0.162 (1)Å], making dihedral angles of 41.46 (8)° and 44.33 (8)°. In the crystal, the complex molecules are connected by intermolecular C–H···Br hydrogen bonds, forming chains along the c axis (Fig. 2 and Table 1). When viewed down the b axis, successive chains are stacked in opposite directions. Intramolecular C–H···Br hydrogen bonds are also observed (Table 1). In addition, intermolecular π···π interactions between the six-membered rings are present, the shortest ring centroid-centroid distance being 3.753 (3)Å between pyridine rings.

Related literature top

For the crystal structure of the related chlorido PdII complex [PdCl2(Biqu)], see: Muranishi et al. (2005).

Experimental top

To a solution of K2PdBr4 (0.1507 g, 0.299 mmol) in MeOH (20 ml) was added 2,2'-biquinoline (0.0772 g, 0.301 mmol) and stirred for 3 h at room temperature. After addition of H2O (30 ml) to the reaction mixture, the formed precipitate was separated by filtration and washed with H2O and acetone, and dried at 323 K, to give a pale red powder (0.1305 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C–H = 0.95Å with Uiso(H) = 1.2Ueq(C). The highest peak (0.67eÅ-3) and the deepest hole (-0.65eÅ-3) in the difference Fourier map are located 0.86Å and 0.84Å, respectively, from the atoms H14 and Pd1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular structure of the title complex with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex. Intermolecular C–H···Br H-bond interactions are drawn with dashed lines.
(2,2'-Biquinoline-κ2N,N')dibromidopalladium(II) top
Crystal data top
[PdBr2(C18H12N2)]Z = 2
Mr = 522.50F(000) = 500
Triclinic, P1Dx = 2.123 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9390 (5) ÅCell parameters from 3201 reflections
b = 9.2187 (5) Åθ = 2.6–26.0°
c = 11.1486 (6) ŵ = 6.02 mm1
α = 72.398 (1)°T = 200 K
β = 69.318 (1)°Block, red
γ = 87.258 (1)°0.17 × 0.12 × 0.11 mm
V = 817.47 (8) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3126 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.813, Tmax = 1.000k = 1110
5100 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0152P)2 + 2.2618P]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[PdBr2(C18H12N2)]γ = 87.258 (1)°
Mr = 522.50V = 817.47 (8) Å3
Triclinic, P1Z = 2
a = 8.9390 (5) ÅMo Kα radiation
b = 9.2187 (5) ŵ = 6.02 mm1
c = 11.1486 (6) ÅT = 200 K
α = 72.398 (1)°0.17 × 0.12 × 0.11 mm
β = 69.318 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3126 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2612 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.018
5100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.12Δρmax = 0.67 e Å3
3126 reflectionsΔρmin = 0.65 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.18588 (4)0.23543 (4)0.12682 (3)0.02511 (10)
Br10.27983 (6)0.30923 (6)0.27917 (5)0.03917 (15)
Br20.46432 (6)0.24992 (6)0.01469 (5)0.03636 (14)
N10.0535 (4)0.2651 (4)0.2177 (4)0.0272 (8)
N20.0935 (4)0.2114 (4)0.0130 (4)0.0262 (8)
C10.1396 (6)0.2604 (5)0.3488 (5)0.0298 (11)
C20.0886 (6)0.1742 (6)0.4531 (5)0.0355 (11)
H20.00830.12390.43330.043*
C30.1800 (7)0.1634 (6)0.5841 (5)0.0429 (13)
H30.14710.10230.65460.051*
C40.3222 (7)0.2412 (7)0.6164 (6)0.0492 (15)
H40.38210.23550.70730.059*
C50.3710 (7)0.3236 (7)0.5160 (6)0.0488 (15)
H50.46610.37620.53750.059*
C60.2853 (6)0.3342 (6)0.3796 (5)0.0340 (11)
C70.3393 (6)0.4086 (6)0.2740 (6)0.0428 (13)
H70.43150.46590.29090.051*
C80.2613 (6)0.3996 (5)0.1484 (6)0.0350 (12)
H80.30320.44270.07890.042*
C90.1173 (6)0.3254 (5)0.1219 (5)0.0297 (11)
C100.0315 (5)0.2984 (5)0.0078 (5)0.0267 (10)
C110.0841 (6)0.3520 (5)0.1181 (5)0.0358 (12)
H110.17390.41250.11250.043*
C120.0034 (6)0.3152 (6)0.2328 (5)0.0386 (13)
H120.03030.35880.31080.046*
C130.1192 (6)0.2134 (6)0.2371 (5)0.0367 (12)
C140.1985 (7)0.1614 (7)0.3494 (5)0.0426 (14)
H140.17460.20130.42920.051*
C150.3082 (7)0.0553 (6)0.3442 (6)0.0432 (13)
H150.35970.02060.42000.052*
C160.3463 (6)0.0038 (6)0.2269 (5)0.0390 (12)
H160.42140.08000.22350.047*
C170.2771 (6)0.0469 (5)0.1187 (5)0.0327 (11)
H170.30490.00660.04080.039*
C180.1640 (6)0.1591 (5)0.1213 (5)0.0293 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02232 (19)0.03082 (19)0.02356 (19)0.00450 (14)0.01142 (15)0.00677 (15)
Br10.0325 (3)0.0603 (3)0.0312 (3)0.0010 (2)0.0168 (2)0.0163 (3)
Br20.0241 (3)0.0522 (3)0.0343 (3)0.0056 (2)0.0098 (2)0.0166 (2)
N10.021 (2)0.030 (2)0.031 (2)0.0009 (16)0.0103 (17)0.0085 (17)
N20.023 (2)0.031 (2)0.023 (2)0.0006 (16)0.0107 (16)0.0026 (17)
C10.024 (2)0.031 (2)0.037 (3)0.003 (2)0.011 (2)0.012 (2)
C20.034 (3)0.040 (3)0.031 (3)0.001 (2)0.011 (2)0.008 (2)
C30.041 (3)0.049 (3)0.032 (3)0.009 (3)0.007 (2)0.008 (3)
C40.042 (3)0.061 (4)0.035 (3)0.009 (3)0.006 (3)0.021 (3)
C50.028 (3)0.053 (3)0.062 (4)0.002 (3)0.000 (3)0.032 (3)
C60.021 (2)0.035 (3)0.043 (3)0.002 (2)0.006 (2)0.015 (2)
C70.029 (3)0.038 (3)0.067 (4)0.010 (2)0.017 (3)0.026 (3)
C80.028 (3)0.032 (3)0.050 (3)0.004 (2)0.021 (2)0.012 (2)
C90.028 (3)0.026 (2)0.041 (3)0.002 (2)0.020 (2)0.010 (2)
C100.026 (2)0.023 (2)0.033 (3)0.0025 (19)0.015 (2)0.005 (2)
C110.033 (3)0.034 (3)0.048 (3)0.001 (2)0.027 (3)0.008 (2)
C120.046 (3)0.042 (3)0.032 (3)0.008 (3)0.026 (3)0.001 (2)
C130.037 (3)0.043 (3)0.030 (3)0.006 (2)0.015 (2)0.007 (2)
C140.046 (3)0.058 (4)0.023 (3)0.018 (3)0.013 (2)0.007 (2)
C150.040 (3)0.053 (3)0.037 (3)0.007 (3)0.004 (3)0.025 (3)
C160.035 (3)0.038 (3)0.045 (3)0.005 (2)0.009 (2)0.018 (3)
C170.033 (3)0.035 (3)0.030 (3)0.000 (2)0.010 (2)0.011 (2)
C180.031 (3)0.033 (3)0.027 (3)0.005 (2)0.013 (2)0.009 (2)
Geometric parameters (Å, º) top
Pd1—N12.064 (4)C7—H70.9500
Pd1—N22.073 (4)C8—C91.407 (7)
Pd1—Br12.4113 (6)C8—H80.9500
Pd1—Br22.4151 (6)C9—C101.468 (7)
N1—C91.349 (6)C10—C111.413 (6)
N1—C11.378 (6)C11—C121.363 (7)
N2—C101.339 (6)C11—H110.9500
N2—C181.369 (6)C12—C131.405 (7)
C1—C21.405 (7)C12—H120.9500
C1—C61.421 (7)C13—C141.415 (7)
C2—C31.373 (7)C13—C181.425 (6)
C2—H20.9500C14—C151.355 (8)
C3—C41.416 (8)C14—H140.9500
C3—H30.9500C15—C161.411 (8)
C4—C51.350 (8)C15—H150.9500
C4—H40.9500C16—C171.357 (7)
C5—C61.415 (7)C16—H160.9500
C5—H50.9500C17—C181.413 (7)
C6—C71.404 (7)C17—H170.9500
C7—C81.352 (7)
N1—Pd1—N278.90 (15)C7—C8—C9119.2 (5)
N1—Pd1—Br196.71 (11)C7—C8—H8120.4
N2—Pd1—Br1169.85 (10)C9—C8—H8120.4
N1—Pd1—Br2167.99 (11)N1—C9—C8121.8 (5)
N2—Pd1—Br296.02 (11)N1—C9—C10114.9 (4)
Br1—Pd1—Br286.49 (2)C8—C9—C10123.1 (4)
C9—N1—C1119.3 (4)N2—C10—C11121.6 (4)
C9—N1—Pd1109.1 (3)N2—C10—C9116.2 (4)
C1—N1—Pd1130.2 (3)C11—C10—C9122.1 (4)
C10—N2—C18120.3 (4)C12—C11—C10118.7 (5)
C10—N2—Pd1107.9 (3)C12—C11—H11120.7
C18—N2—Pd1129.2 (3)C10—C11—H11120.7
N1—C1—C2119.9 (4)C11—C12—C13120.8 (5)
N1—C1—C6120.1 (4)C11—C12—H12119.6
C2—C1—C6119.9 (5)C13—C12—H12119.6
C3—C2—C1119.4 (5)C12—C13—C14123.4 (5)
C3—C2—H2120.3C12—C13—C18117.9 (5)
C1—C2—H2120.3C14—C13—C18118.7 (5)
C2—C3—C4121.6 (5)C15—C14—C13120.7 (5)
C2—C3—H3119.2C15—C14—H14119.6
C4—C3—H3119.2C13—C14—H14119.6
C5—C4—C3118.8 (5)C14—C15—C16120.3 (5)
C5—C4—H4120.6C14—C15—H15119.9
C3—C4—H4120.6C16—C15—H15119.9
C4—C5—C6122.2 (5)C17—C16—C15120.9 (5)
C4—C5—H5118.9C17—C16—H16119.6
C6—C5—H5118.9C15—C16—H16119.6
C7—C6—C5123.6 (5)C16—C17—C18120.4 (5)
C7—C6—C1118.3 (5)C16—C17—H17119.8
C5—C6—C1118.0 (5)C18—C17—H17119.8
C8—C7—C6120.6 (5)N2—C18—C17121.0 (4)
C8—C7—H7119.7N2—C18—C13120.1 (4)
C6—C7—H7119.7C17—C18—C13118.9 (4)
N2—Pd1—N1—C929.4 (3)C1—N1—C9—C10168.6 (4)
Br1—Pd1—N1—C9141.3 (3)Pd1—N1—C9—C1023.2 (5)
Br2—Pd1—N1—C936.4 (7)C7—C8—C9—N11.0 (7)
N2—Pd1—N1—C1164.1 (4)C7—C8—C9—C10174.6 (5)
Br1—Pd1—N1—C125.1 (4)C18—N2—C10—C116.7 (7)
Br2—Pd1—N1—C1130.0 (5)Pd1—N2—C10—C11156.5 (4)
N1—Pd1—N2—C1030.8 (3)C18—N2—C10—C9169.1 (4)
Br1—Pd1—N2—C1034.3 (8)Pd1—N2—C10—C927.7 (4)
Br2—Pd1—N2—C10138.2 (3)N1—C9—C10—N23.3 (6)
N1—Pd1—N2—C18168.0 (4)C8—C9—C10—N2172.6 (4)
Br1—Pd1—N2—C18126.9 (5)N1—C9—C10—C11179.1 (4)
Br2—Pd1—N2—C1823.0 (4)C8—C9—C10—C113.1 (7)
C9—N1—C1—C2168.6 (4)N2—C10—C11—C120.9 (7)
Pd1—N1—C1—C226.1 (6)C9—C10—C11—C12176.4 (4)
C9—N1—C1—C67.3 (6)C10—C11—C12—C136.4 (7)
Pd1—N1—C1—C6158.0 (3)C11—C12—C13—C14174.8 (5)
N1—C1—C2—C3176.4 (4)C11—C12—C13—C184.5 (7)
C6—C1—C2—C30.5 (7)C12—C13—C14—C15175.5 (5)
C1—C2—C3—C42.1 (8)C18—C13—C14—C153.8 (8)
C2—C3—C4—C52.2 (8)C13—C14—C15—C160.7 (8)
C3—C4—C5—C60.3 (9)C14—C15—C16—C171.6 (8)
C4—C5—C6—C7174.7 (5)C15—C16—C17—C180.6 (7)
C4—C5—C6—C12.8 (8)C10—N2—C18—C17169.1 (4)
N1—C1—C6—C71.1 (7)Pd1—N2—C18—C1731.7 (6)
C2—C1—C6—C7174.7 (4)C10—N2—C18—C138.5 (6)
N1—C1—C6—C5178.7 (4)Pd1—N2—C18—C13150.7 (4)
C2—C1—C6—C52.9 (7)C16—C17—C18—N2179.9 (4)
C5—C6—C7—C8172.2 (5)C16—C17—C18—C132.5 (7)
C1—C6—C7—C85.3 (7)C12—C13—C18—N23.0 (7)
C6—C7—C8—C95.3 (8)C14—C13—C18—N2177.7 (4)
C1—N1—C9—C87.4 (7)C12—C13—C18—C17174.7 (4)
Pd1—N1—C9—C8160.8 (4)C14—C13—C18—C174.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br10.952.733.252 (5)116
C14—H14···Br1i0.952.903.754 (5)150
C17—H17···Br20.952.853.261 (5)107
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formula[PdBr2(C18H12N2)]
Mr522.50
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.9390 (5), 9.2187 (5), 11.1486 (6)
α, β, γ (°)72.398 (1), 69.318 (1), 87.258 (1)
V3)817.47 (8)
Z2
Radiation typeMo Kα
µ (mm1)6.02
Crystal size (mm)0.17 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5100, 3126, 2612
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.12
No. of reflections3126
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br10.952.733.252 (5)115.5
C14—H14···Br1i0.952.903.754 (5)149.9
C17—H17···Br20.952.853.261 (5)107.1
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMuranishi, Y., Wang, Y., Odoko, M. & Okabe, N. (2005). Acta Cryst. C61, m307–m310.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds