organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1428

Benzo[1,2-b:4,5-b′]di­thio­phene-4,8-dione

aDepartment of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA, and bDepartment of Chemistry, The College of New Jersey, Ewing, NJ 08628, USA
*Correspondence e-mail: ddelill@fau.edu

(Received 21 September 2011; accepted 11 April 2012; online 18 April 2012)

The title mol­ecule, C10H4O2S2, is situated on a crystallographic center of inversion. In the crystal, weak hydrogen bonding contributes to the packing of the mol­ecules.

Related literature

This dione was synthesized according to modified literature procedures, see: Beimlung & Kossmehl (1986[Beimlung, P. & Kossmehl, G. (1986). Chem. Ber. 119, 3198-3203.]); Slocum & Gierer (1976[Slocum, D. W. & Gierer, P. L. (1976). J. Org. Chem. 41, 3668-3673.]). It is a precursor to many different semiconducting polymeric compounds and the structure is important in that it appears as crystalline products in poorly purified materials, see: Hundt et al. (2009[Hundt, N., Palaniappan, K., Servello, J., Dei, D. K., Stefan, M. C. & Biewer, M. C. (2009). Org. Lett. 11, 4422-4425.]); Subramaniyan et al. (2011[Subramaniyan, S., Xin, H., Kim, F. S. & Jenekhe, S. A. (2011). Macromolecules, 44, 6245-6248.]); Yamamoto et al. (2011[Yamamoto, T., Tokimitsu, R., Asao, T., Iijima, T., Fukumoto, H., Koizumi, T., Fukuda, T. & Ushijima, H. (2011). Macromol. Chem. Phys. 212, 2406-2416.]). For weak inter­molecular inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-2896.]); Sinnokrot et al. (2002[Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4O2S2

  • Mr = 220.25

  • Monoclinic, P 21 /n

  • a = 5.6402 (5) Å

  • b = 5.7745 (5) Å

  • c = 13.6223 (12) Å

  • β = 97.371 (1)°

  • V = 440.00 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.08 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.978

  • 4888 measured reflections

  • 1062 independent reflections

  • 815 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.238

  • S = 1.09

  • 1062 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.44 3.319 (4) 158
Symmetry code: (i) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzodithiophene-4,8-dione (BDTD) is a common precursor for the construction of semiconducting organic monomers. Given our interest in this field, we have isolated single crystals of this compound for structural determination. This structure is important in that it appears as crystalline products in poorly purified materials.

A thermal ellipsoid plot (Fig. 1) displays the molecular structure of the title compound.

Figure 2 shows a packing diagram of the crystal structure. Weak intermolecular interactions attribute to the packing of this compound, see: Sinnokrot et al. (2002); Janiak (2000). The closest CH···centroid distance is C1—H1···Cg1 at 3.715 (4) Å between a hydrogen atom and the center of a neighboring thiophene ring. No classic hydrogen bonds were found, but a weak hydrogen bond from C5—H5···O1 is present at 3.319 (4) Å D—A distance.

Related literature top

This dione was synthesized according to modified literature procedures, see: Beimlung & Kossmehl (1986); Slocum & Gierer (1976). It is a precursor to many different semiconducting polymeric compounds, see: Hundt et al. (2009); Subramaniyan et al. (2011); Yamamoto et al. (2011). This structure is important in that it appears as crystalline products in poorly purified materials. For weak intermolecular interactions, see: Janiak (2000); Sinnokrot et al. (2002).

Experimental top

The title compound was prepared according to a modified literature procedure (Beimlung & Kossmehl, 1986). In a typical reaction, 2 g of 3-theonic acid was reacted with excess thionyl chloride (50 ml) at reflux temperature overnight to produce the resulting acid chloride. Upon removal of the thionyl chloride, the acid chloride was dissolved in toluene (minimum amount). The acid chloride was then added to excess diethylamine (approximately 42 ml) to produce the thiophene amide. The product was isolated in diethyl ether, concentrated, and then re-dissolved in ether (30 ml). The amide was then cyclized with excess n-butyl lithium (1.6 M in hexane, approximately 7 ml) added dropwise and allowed to stir overnight. The reaction was quenched with water, filtered, and recrystallized from glacial acetic acid in a 31–45% yield depending on reaction.

Upon isolation of the final compound, crystals suitable for X-ray diffraction were obtained from slow evaporation of approximately 20 mg of product in approximately 5 ml of chloroform. Clear, yellow block crystals formed overnight.

Refinement top

Crystallography. Hydrogen atom positions were placed in calculated positions and allowed to ride on the coordinates of the parent atom [C—H distances at 0.93 Å and Uiso(H)=1.2Uiso(C)].

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Thermal ellipsoid plot (50% probablility) of title compound. Hydrogen atoms are omitted. Symmetry operator: i=-x + 2, -y + 1, -z + 2.
[Figure 2] Fig. 2. : Packing diagram of title compound down [010]. Hydrogen atoms were removed for clarity.
Benzo[1,2-b:4,5-b']dithiophene-4,8-dione top
Crystal data top
C10H4O2S2F(000) = 224
Mr = 220.25Dx = 1.662 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6402 (5) ÅCell parameters from 2545 reflections
b = 5.7745 (5) Åθ = 6.0–55.2°
c = 13.6223 (12) ŵ = 0.57 mm1
β = 97.371 (1)°T = 296 K
V = 440.00 (7) Å3Prismatic block, clear yellow
Z = 20.08 × 0.06 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
1062 independent reflections
Radiation source: fine-focus sealed tube815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Fixed Chi scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 77
Tmin = 0.955, Tmax = 0.978k = 77
4888 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1499P)2 + 0.2282P]
where P = (Fo2 + 2Fc2)/3
1062 reflections(Δ/σ)max < 0.001
64 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C10H4O2S2V = 440.00 (7) Å3
Mr = 220.25Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.6402 (5) ŵ = 0.57 mm1
b = 5.7745 (5) ÅT = 296 K
c = 13.6223 (12) Å0.08 × 0.06 × 0.04 mm
β = 97.371 (1)°
Data collection top
Bruker APEXII
diffractometer
1062 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
815 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.978Rint = 0.072
4888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.09Δρmax = 0.78 e Å3
1062 reflectionsΔρmin = 0.57 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13427 (18)0.25931 (18)0.81226 (8)0.0558 (5)
O10.3782 (5)0.6780 (5)0.9199 (2)0.0540 (8)
C10.0936 (7)0.0712 (6)0.8176 (3)0.0517 (9)
H10.12610.04670.77140.062*
C20.0689 (6)0.3977 (5)0.9156 (2)0.0379 (7)
C30.2074 (6)0.5981 (5)0.9569 (2)0.0390 (8)
C40.1243 (5)0.3053 (5)0.9539 (2)0.0366 (7)
C50.2363 (6)0.1035 (5)0.8983 (2)0.0421 (8)
H50.36750.01740.91200.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (8)0.0612 (8)0.0549 (8)0.0008 (4)0.0137 (5)0.0091 (4)
O10.0442 (14)0.0666 (17)0.0540 (15)0.0147 (12)0.0175 (11)0.0106 (13)
C10.0493 (19)0.0468 (19)0.058 (2)0.0021 (15)0.0037 (16)0.0143 (16)
C20.0371 (15)0.0388 (16)0.0384 (15)0.0010 (12)0.0079 (12)0.0028 (12)
C30.0345 (15)0.0416 (16)0.0413 (16)0.0041 (13)0.0066 (12)0.0096 (13)
C40.0339 (16)0.0348 (15)0.0406 (17)0.0034 (12)0.0037 (13)0.0043 (12)
C50.0534 (19)0.0295 (14)0.0394 (16)0.0089 (13)0.0091 (14)0.0053 (12)
Geometric parameters (Å, º) top
S1—C11.691 (4)C2—C31.467 (5)
S1—C21.700 (3)C3—C4i1.468 (5)
O1—C31.232 (4)C4—C3i1.468 (5)
C1—C51.455 (5)C4—C51.486 (4)
C1—H10.9300C5—H50.9300
C2—C41.374 (4)
C1—S1—C291.10 (17)O1—C3—C4i123.0 (3)
C5—C1—S1116.6 (3)C2—C3—C4i114.0 (3)
C5—C1—H1121.7C2—C4—C3i121.3 (3)
S1—C1—H1121.7C2—C4—C5114.7 (3)
C4—C2—C3124.7 (3)C3i—C4—C5124.0 (3)
C4—C2—S1113.5 (3)C1—C5—C4104.2 (3)
C3—C2—S1121.8 (2)C1—C5—H5127.9
O1—C3—C2123.0 (3)C4—C5—H5127.9
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1ii0.932.443.319 (4)158
Symmetry code: (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC10H4O2S2
Mr220.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.6402 (5), 5.7745 (5), 13.6223 (12)
β (°) 97.371 (1)
V3)440.00 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.955, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4888, 1062, 815
Rint0.072
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.238, 1.09
No. of reflections1062
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.57

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.443.319 (4)158
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

The authors gratefully acknowledge Florida Atlantic University for funding and the National Science Foundation Major Research Instrumentation Grant (No. 0922931).

References

First citationBeimlung, P. & Kossmehl, G. (1986). Chem. Ber. 119, 3198–3203.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHundt, N., Palaniappan, K., Servello, J., Dei, D. K., Stefan, M. C. & Biewer, M. C. (2009). Org. Lett. 11, 4422-4425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–2896.  Web of Science CrossRef Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSlocum, D. W. & Gierer, P. L. (1976). J. Org. Chem. 41, 3668–3673.  CrossRef CAS Web of Science Google Scholar
First citationSubramaniyan, S., Xin, H., Kim, F. S. & Jenekhe, S. A. (2011). Macromolecules, 44, 6245–6248.  Web of Science CrossRef CAS Google Scholar
First citationYamamoto, T., Tokimitsu, R., Asao, T., Iijima, T., Fukumoto, H., Koizumi, T., Fukuda, T. & Ushijima, H. (2011). Macromol. Chem. Phys. 212, 2406–2416.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds