organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1373

(E)-Methyl 2-({2-eth­­oxy-6-[(E)-(hy­dr­oxy­imino)­meth­yl]phen­­oxy}meth­yl)-3-phenyl­acrylate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, SMK Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 5 January 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C20H21NO5, the dihedral angle between the mean planes through the two rings is 47.1 (8)°. The enoate group assumes an extended conformation. The hy­droxy­ethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.061 (1) Å for the O atom. In the crystal, mol­ecules are linked into cyclic centrosymmetric dimers with an R22(6) motif via pairs of O—H⋯N hydrogen bonds. Inter­molecular C—H⋯O hydrogen bonds form a C(8) chain along the b axis. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological activity of caffeic acids and their esters, see: Hwang et al. (2001[Hwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429-1437.]); Altug et al. (2008[Altug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135-142.]); Ates et al. (2006[Ates, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283-289.]); Atik et al. (2006[Atik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293-297.]); Chaudhuri (2003[Chaudhuri, P. (2003). Coord. Chem. Rev. 243, 143-168.]); Padinchare et al. (2001[Padinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215-217.]). For a related structure, see: SakthiMurugesan et al. (2011[SakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO5

  • Mr = 355.38

  • Monoclinic, P 21 /n

  • a = 7.4009 (3) Å

  • b = 22.1125 (10) Å

  • c = 11.3681 (5) Å

  • β = 103.561 (1)°

  • V = 1808.55 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 25247 measured reflections

  • 6042 independent reflections

  • 4293 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.167

  • S = 1.02

  • 6042 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.08 2.8121 (15) 149
C4—H4⋯O4ii 0.93 2.59 3.2379 (18) 127
C20—H20⋯O1iii 0.93 2.59 3.466 (2) 157
C9—H9BCg2iv 0.96 2.79 3.616 (2) 145
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1; (iv) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some naturally occurring caffeic acids and their esters attract much attention in biology and medicine (Hwang et al., 2001; Altug et al., 2008). These compounds show antiviral, antibacterial, vasoactive, antiatherogenic, antiproliferative, antioxidant and anti-inflammatory properties (Atik et al., 2006; Padinchare et al., 2001; Ates et al., 2006). Oximes are a classical type of chelating ligand which are widely used in coordination and analytical chemistry (Chaudhuri, 2003).

In the title compound (see Fig. 1) the bond lengths and angles agree with those observed in other acrylate derivatives (SakthiMurugesan et al., 2011). The whole molecule is not planar as the dihedral angle between the two phenyl rings is 47.1 (8)°. The oxime C—N has an E configuration. The hydroxyethanimine group is essentially coplanar with the benzene ring, the largest deviation from the mean plane being 0.004 (1) Å for the C2 atom.

The ether group assumes an extended conformation as can be seen from torsion angles C11—C12—O5—C13 [-174.7 (1) °] and C10—C11—C12—O5 [170.7 (1) °]. C—H···O hydrogen bonds (see Table 1) form C(8) chains along (Bernstein et al. 1995) the b axis. The hydroxyethanimine group in the molecules are linked into cyclic centrosymmetric dimers via O—H···N hydrogen bonds with the R22(6) motif. The closest C—H-centroid separation is 3.6 Å therefore there are not significant C—H···π interactions. In addition to van der Waals interactions the crystal packing is stabilized by C–H···O and O–H···N interactions.

Related literature top

For the biological activity of caffeic acids and their esters, see: Hwang et al. (2001); Altug et al. (2008); Ates et al. (2006); Atik et al. (2006); Chaudhuri (2003); Padinchare et al. (2001). For a related structure, see: SakthiMurugesan et al. (2011). For graph-set analysis of hydrogen bonds, see; Bernstein et al. (1995).

Experimental top

To a stirred solution of (E)-methyl 2-((2-ethoxy-6-formylphenoxy)methyl) -3-phenylacrylate (4 mmol) in 10 ml of EtOH/H2O mixture (1:1) was added NH2OH.HCl (6 mmol) in the presence of 50% NaOH at room temperature. Then the reaction mixture was allowed to stir at room temperature for 1.5 h. After completion of the reaction, solvent was removed and the crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (2 x 10 ml) and dried over anhydrous Na2SO4 and then evaporated under reduced pressure to obtain (E)-methyl2-((2-ethoxy- 6-((E)-(hydroxyimino)methyl)phenoxy)methyl)-3-phenylacrylate as a colourless solid.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labelling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(6). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (2-x, -y, 2-z). The dashed lines indicate the hydrogen bonds.
(E)-Methyl 2-({2-ethoxy-6-[(E)-(hydroxyimino)methyl]phenoxy}methyl)-3-phenylacrylate top
Crystal data top
C20H21NO5F(000) = 752
Mr = 355.38Dx = 1.305 Mg m3
Dm = 1.375 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6042 reflections
a = 7.4009 (3) Åθ = 1.8–31.6°
b = 22.1125 (10) ŵ = 0.09 mm1
c = 11.3681 (5) ÅT = 293 K
β = 103.561 (1)°Block, white crystalline
V = 1808.55 (14) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
6042 independent reflections
Radiation source: fine-focus sealed tube4293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 31.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.978, Tmax = 0.983k = 3232
25247 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.3814P]
where P = (Fo2 + 2Fc2)/3
6042 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H21NO5V = 1808.55 (14) Å3
Mr = 355.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4009 (3) ŵ = 0.09 mm1
b = 22.1125 (10) ÅT = 293 K
c = 11.3681 (5) Å0.25 × 0.22 × 0.19 mm
β = 103.561 (1)°
Data collection top
Bruker APEXII CCD area detector
diffractometer
6042 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4293 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.027
25247 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
6042 reflectionsΔρmin = 0.24 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66305 (18)0.04722 (6)0.86324 (12)0.0369 (3)
H10.63480.04140.77990.044*
C20.52766 (17)0.07679 (6)0.91943 (11)0.0313 (2)
C30.5530 (2)0.08059 (6)1.04563 (12)0.0385 (3)
H30.65890.06411.09600.046*
C40.4225 (2)0.10847 (7)1.09493 (12)0.0423 (3)
H40.43920.10971.17860.051*
C50.2661 (2)0.13482 (7)1.02182 (13)0.0415 (3)
H50.17910.15391.05630.050*
C60.23961 (18)0.13273 (6)0.89702 (11)0.0337 (3)
C70.36826 (16)0.10210 (5)0.84560 (10)0.0291 (2)
C80.0070 (3)0.20593 (10)0.86177 (17)0.0632 (5)
H8A0.07400.22930.92500.076*
H8B0.10260.18720.89510.076*
C90.0933 (3)0.24597 (10)0.7579 (2)0.0772 (6)
H9A0.00130.26080.72020.116*
H9B0.15320.27950.78670.116*
H9C0.18340.22340.70000.116*
C100.17647 (18)0.06976 (7)0.65716 (11)0.0372 (3)
H10A0.07620.09890.63490.045*
H10B0.14010.03930.70850.045*
C110.21243 (17)0.04080 (6)0.54594 (11)0.0329 (3)
C120.28726 (19)0.02179 (7)0.56460 (13)0.0388 (3)
C130.3504 (3)0.11301 (8)0.4760 (2)0.0604 (5)
H13A0.46690.11610.53460.091*
H13B0.36420.12830.39960.091*
H13C0.25800.13620.50280.091*
C140.17680 (17)0.06620 (6)0.43559 (11)0.0335 (3)
H140.20150.04210.37420.040*
C150.10419 (17)0.12684 (6)0.39869 (11)0.0335 (3)
C160.1278 (2)0.17773 (7)0.47358 (14)0.0432 (3)
H160.19680.17470.55310.052*
C170.0490 (2)0.23275 (7)0.43013 (16)0.0513 (4)
H170.06510.26630.48080.062*
C180.0529 (2)0.23794 (8)0.31254 (17)0.0531 (4)
H180.10720.27470.28440.064*
C190.0744 (2)0.18858 (8)0.23667 (15)0.0522 (4)
H190.14200.19210.15700.063*
C200.0045 (2)0.13382 (7)0.27890 (13)0.0422 (3)
H200.00910.10090.22660.051*
N10.81897 (15)0.02940 (6)0.92689 (10)0.0383 (3)
O10.92841 (16)0.00226 (6)0.85611 (10)0.0534 (3)
H1A1.02540.01010.90010.080*
O20.09792 (15)0.16043 (5)0.81645 (9)0.0468 (3)
O30.34510 (11)0.09991 (4)0.72187 (7)0.0319 (2)
O40.3345 (2)0.04452 (6)0.66304 (12)0.0700 (4)
O50.29384 (17)0.05077 (5)0.46293 (10)0.0503 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (6)0.0413 (7)0.0303 (6)0.0062 (5)0.0017 (5)0.0023 (5)
C20.0332 (5)0.0295 (6)0.0281 (5)0.0018 (4)0.0011 (4)0.0014 (4)
C30.0446 (7)0.0380 (7)0.0282 (6)0.0048 (5)0.0008 (5)0.0006 (5)
C40.0565 (8)0.0434 (7)0.0256 (6)0.0044 (6)0.0067 (5)0.0007 (5)
C50.0496 (8)0.0433 (7)0.0336 (7)0.0087 (6)0.0140 (6)0.0007 (5)
C60.0362 (6)0.0328 (6)0.0312 (6)0.0052 (5)0.0061 (5)0.0005 (5)
C70.0319 (5)0.0292 (5)0.0247 (5)0.0005 (4)0.0038 (4)0.0003 (4)
C80.0637 (10)0.0767 (13)0.0540 (10)0.0377 (10)0.0236 (8)0.0090 (9)
C90.0768 (14)0.0746 (14)0.0834 (15)0.0377 (11)0.0253 (12)0.0154 (11)
C100.0307 (6)0.0521 (8)0.0277 (6)0.0065 (5)0.0046 (4)0.0026 (5)
C110.0293 (5)0.0399 (6)0.0274 (6)0.0034 (5)0.0021 (4)0.0004 (5)
C120.0347 (6)0.0416 (7)0.0364 (7)0.0033 (5)0.0007 (5)0.0059 (5)
C130.0545 (9)0.0386 (8)0.0902 (14)0.0061 (7)0.0213 (9)0.0016 (8)
C140.0353 (6)0.0363 (6)0.0275 (6)0.0001 (5)0.0044 (5)0.0028 (5)
C150.0321 (5)0.0375 (6)0.0300 (6)0.0007 (5)0.0058 (4)0.0004 (5)
C160.0461 (7)0.0426 (8)0.0376 (7)0.0019 (6)0.0030 (6)0.0063 (6)
C170.0570 (9)0.0411 (8)0.0550 (9)0.0062 (7)0.0117 (7)0.0097 (7)
C180.0524 (9)0.0442 (8)0.0607 (10)0.0163 (7)0.0091 (7)0.0044 (7)
C190.0556 (9)0.0531 (9)0.0410 (8)0.0107 (7)0.0023 (7)0.0050 (7)
C200.0507 (8)0.0405 (7)0.0318 (6)0.0032 (6)0.0023 (6)0.0018 (5)
N10.0344 (5)0.0451 (6)0.0338 (5)0.0073 (4)0.0043 (4)0.0037 (5)
O10.0444 (6)0.0776 (8)0.0371 (5)0.0225 (5)0.0070 (4)0.0060 (5)
O20.0454 (5)0.0547 (6)0.0384 (5)0.0229 (5)0.0059 (4)0.0001 (4)
O30.0299 (4)0.0403 (5)0.0238 (4)0.0013 (3)0.0032 (3)0.0005 (3)
O40.0975 (11)0.0573 (8)0.0452 (7)0.0093 (7)0.0035 (7)0.0172 (6)
O50.0609 (7)0.0410 (6)0.0482 (6)0.0104 (5)0.0109 (5)0.0010 (5)
Geometric parameters (Å, º) top
C1—N11.2723 (16)C10—H10B0.9700
C1—C21.4627 (18)C11—C141.3429 (18)
C1—H10.9300C11—C121.487 (2)
C2—C71.3947 (16)C12—O41.2014 (17)
C2—C31.4051 (18)C12—O51.3324 (19)
C3—C41.371 (2)C13—O51.436 (2)
C3—H30.9300C13—H13A0.9600
C4—C51.385 (2)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.3866 (19)C14—C151.4687 (18)
C5—H50.9300C14—H140.9300
C6—O21.3650 (15)C15—C201.3970 (18)
C6—C71.4029 (17)C15—C161.3971 (19)
C7—O31.3774 (14)C16—C171.389 (2)
C8—O21.4382 (19)C16—H160.9300
C8—C91.494 (3)C17—C181.377 (2)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.377 (2)
C9—H9A0.9600C18—H180.9300
C9—H9B0.9600C19—C201.381 (2)
C9—H9C0.9600C19—H190.9300
C10—O31.4536 (15)C20—H200.9300
C10—C111.4957 (18)N1—O11.4034 (15)
C10—H10A0.9700O1—H1A0.8200
N1—C1—C2120.86 (12)C14—C11—C12120.50 (12)
N1—C1—H1119.6C14—C11—C10125.14 (13)
C2—C1—H1119.6C12—C11—C10114.32 (11)
C7—C2—C3118.81 (12)O4—C12—O5123.03 (15)
C7—C2—C1119.08 (11)O4—C12—C11122.64 (15)
C3—C2—C1122.11 (11)O5—C12—C11114.32 (12)
C4—C3—C2120.40 (12)O5—C13—H13A109.5
C4—C3—H3119.8O5—C13—H13B109.5
C2—C3—H3119.8H13A—C13—H13B109.5
C3—C4—C5120.89 (12)O5—C13—H13C109.5
C3—C4—H4119.6H13A—C13—H13C109.5
C5—C4—H4119.6H13B—C13—H13C109.5
C4—C5—C6119.84 (13)C11—C14—C15128.85 (12)
C4—C5—H5120.1C11—C14—H14115.6
C6—C5—H5120.1C15—C14—H14115.6
O2—C6—C5125.00 (12)C20—C15—C16117.84 (13)
O2—C6—C7115.26 (11)C20—C15—C14116.97 (12)
C5—C6—C7119.70 (12)C16—C15—C14125.18 (12)
O3—C7—C2119.05 (11)C17—C16—C15120.45 (14)
O3—C7—C6120.55 (10)C17—C16—H16119.8
C2—C7—C6120.27 (11)C15—C16—H16119.8
O2—C8—C9107.33 (15)C18—C17—C16120.46 (15)
O2—C8—H8A110.2C18—C17—H17119.8
C9—C8—H8A110.2C16—C17—H17119.8
O2—C8—H8B110.2C17—C18—C19119.90 (15)
C9—C8—H8B110.2C17—C18—H18120.1
H8A—C8—H8B108.5C19—C18—H18120.1
C8—C9—H9A109.5C18—C19—C20120.01 (15)
C8—C9—H9B109.5C18—C19—H19120.0
H9A—C9—H9B109.5C20—C19—H19120.0
C8—C9—H9C109.5C19—C20—C15121.30 (14)
H9A—C9—H9C109.5C19—C20—H20119.4
H9B—C9—H9C109.5C15—C20—H20119.4
O3—C10—C11108.81 (10)C1—N1—O1112.01 (11)
O3—C10—H10A109.9N1—O1—H1A109.5
C11—C10—H10A109.9C6—O2—C8117.90 (12)
O3—C10—H10B109.9C7—O3—C10114.80 (9)
C11—C10—H10B109.9C12—O5—C13116.09 (14)
H10A—C10—H10B108.3
N1—C1—C2—C7172.39 (13)C12—C11—C14—C15179.71 (12)
N1—C1—C2—C37.6 (2)C10—C11—C14—C152.7 (2)
C7—C2—C3—C40.3 (2)C11—C14—C15—C20152.45 (14)
C1—C2—C3—C4179.74 (14)C11—C14—C15—C1627.8 (2)
C2—C3—C4—C51.8 (2)C20—C15—C16—C171.9 (2)
C3—C4—C5—C60.5 (2)C14—C15—C16—C17178.35 (14)
C4—C5—C6—O2175.45 (14)C15—C16—C17—C180.2 (3)
C4—C5—C6—C72.2 (2)C16—C17—C18—C191.1 (3)
C3—C2—C7—O3178.30 (11)C17—C18—C19—C200.7 (3)
C1—C2—C7—O31.65 (18)C18—C19—C20—C151.1 (3)
C3—C2—C7—C62.38 (19)C16—C15—C20—C192.4 (2)
C1—C2—C7—C6177.57 (12)C14—C15—C20—C19177.90 (15)
O2—C6—C7—O31.64 (18)C2—C1—N1—O1179.96 (12)
C5—C6—C7—O3179.51 (12)C5—C6—O2—C814.9 (2)
O2—C6—C7—C2174.22 (12)C7—C6—O2—C8162.82 (15)
C5—C6—C7—C23.7 (2)C9—C8—O2—C6156.80 (17)
O3—C10—C11—C1493.89 (15)C2—C7—O3—C10122.08 (13)
O3—C10—C11—C1288.35 (13)C6—C7—O3—C1062.01 (15)
C14—C11—C12—O4174.10 (15)C11—C10—O3—C7149.29 (11)
C10—C11—C12—O48.0 (2)O4—C12—O5—C133.8 (2)
C14—C11—C12—O57.17 (18)C11—C12—O5—C13174.95 (13)
C10—C11—C12—O5170.71 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.082.8121 (15)149
C4—H4···O4ii0.932.593.2379 (18)127
C20—H20···O1iii0.932.593.466 (2)157
C9—H9B···Cg2iv0.962.793.616 (2)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x3/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H21NO5
Mr355.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4009 (3), 22.1125 (10), 11.3681 (5)
β (°) 103.561 (1)
V3)1808.55 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
25247, 6042, 4293
Rint0.027
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.167, 1.02
No. of reflections6042
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.082.8121 (15)149.1
C4—H4···O4ii0.932.593.2379 (18)127.1
C20—H20···O1iii0.932.593.466 (2)157.2
C9—H9B···Cg2iv0.962.793.616 (2)145
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y, z+1; (iv) x3/2, y1/2, z1/2.
 

Acknowledgements

EG and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAltug, M. E., Serarslan, Y. & Bal, R. (2008). Brain Res. 1201, 135–142.  Web of Science PubMed CAS Google Scholar
First citationAtes, B., Dogru, M. I. & Gul, M. (2006). Fundam. Clin. Pharmacol. 20, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAtik, E., Goeruer, S. & Kiper, A. N. (2006). Pharmacol. Res. 54, 293–297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhuri, P. (2003). Coord. Chem. Rev. 243, 143–168.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, D. J., Kim, S. N. & Choi, J. H. (2001). Bioorg. Med. Chem. 9, 1429–1437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadinchare, R., Irina, V., Paul, C., Dirk, V. B., Koen, A. & Achiel, H. (2001). Bioorg. Med. Chem. Lett. 11, 215–217.  Web of Science PubMed Google Scholar
First citationSakthiMurugesan, K., Govindan, E., Srinivasan, J., Bakthadoss, M. & SubbiahPandi, A. (2011). Acta Cryst. E67, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds