organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1363

2-[7-Chloro-1,1-dioxo-2-(2,4,5-tri­fluoro­benz­yl)-3,4-di­hydro-2H-1,2,4-benzo­thia­diazin-4-yl]acetic acid

aDepartment of Applied Chemistry, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, People's Republic of China, and bDepartment of Chemistry and Environmental Engineering, Anyang Institute of Technology, Henan 455000, People's Republic of China
*Correspondence e-mail: zcj@bit.edu.cn

(Received 11 March 2012; accepted 3 April 2012; online 13 April 2012)

In the mol­ecule of the title compound, C16H12ClF3N2O4S, the thia­diazine ring adopts a half-chair conformation. The dihedral angle between the benzene ring of the benzothia­diazine ring system and trifluoro­phenyl group is 15.02 (7)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers via pairs of O—H⋯O hydrogen bonds, generating R22(8) ring motifs. The dimers are further connected into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature

For the pharmacological properties of benzothia­diazine derivatives, see: Longman & Hamilton (1992[Longman, S. D. & Hamilton, T. C. (1992). Med. Res. Rev. 12, 73-148.]); Buckheit et al. (1994[Buckheit, R. W. Jr, Fliakas-Boltz, V., Decker, W. D., Roberson, J. L., Pyle, C. A., White, E. L., Bowdon, B. J., McMahon, J. B., Boyd, M. R., Bader, J. P., Nickell, D. G., Barth, H. & Antonucci, T. K. (1994). Antivir. Res. 25, 43-56.]); Yamada & Tang (1993[Yamada, K. A. & Tang, C. M. (1993). J. Neurosci. 13, 3904-3915.]); Phillips et al. (2002[Phillips, D., Sonnenberg, J., Arai, A. C., Vaswani, R., Krutzik, P. O., Kleisli, T., Kessler, M., Granger, R., Lynch, G. & Chamberlin, A. R. (2002). Bioorg. Med. Chem. 10, 1229-1248.]); Braghiroli et al. (2002[Braghiroli, D., Puia, G., Cannazza, G., Tait, A., Parenti, C., Losi, G. & Baraldi, M. (2002). J. Med. Chem. 45, 2355-2357.]); Pirotte et al. (1998[Pirotte, B., Podona, T., Diouf, O., de Tullio, P., Lebrun, P., Dupont, L., Somers, F., Delarge, J., Morain, P., Lestage, P., Lepagnol, J. & Spedding, M. (1998). J. Med. Chem. 41, 2946-2959.]); Francotte et al. (2007[Francotte, P., de Tullio, P., Goffin, E., Dintilhac, G., Graindorge, E., Fraikin, P., Lestage, P., Danober, L., Thomas, J.-Y., Caignard, D.-H. & Pirotte, B. (2007). J. Med. Chem. 50, 3153-3157.]). For the biological properties and synthetic details of the title compound, see: Chen et al. (2010[Chen, X., Zhu, C. J., Guo, F., Qiu, X. W., Yang, Y. C., Zhang, S. Z., He, M. L., Parveen, S., Jing, C. J., Li, Y. & Ma, B. (2010). J. Med. Chem. 53, 8330-8344.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClF3N2O4S

  • Mr = 420.79

  • Monoclinic, P 21 /c

  • a = 9.3628 (2) Å

  • b = 12.3134 (2) Å

  • c = 15.5597 (3) Å

  • β = 105.996 (1)°

  • V = 1724.39 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 15140 measured reflections

  • 4293 independent reflections

  • 3302 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.04

  • 4293 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.86 2.676 (2) 171
C3—H3⋯O1ii 0.93 2.47 3.391 (3) 169
C16—H16⋯O2iii 0.93 2.46 3.387 (2) 172
C13—H13⋯O3iv 0.93 2.51 3.307 (3) 144
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiadiazine derivatives have attracted considerable attention because they are endowed with a large spectrum of properties. Since the 1950's, various pharmacological investigations of newly synthesized benzothiadiazines demonstrated interesting pharmacological activities and showed great potential for the development of new medications for treating diseases (Longman & Hamilton, 1992; Buckheit et al., 1994; Yamada & Tang, 1993; Phillips et al., 2002; Braghiroli et al., 2002; Pirotte et al., 1998; Francotte et al., 2007). The title compound, whose structure is reported herein, was synthesized and used as an aldose reductase inhibitor (Chen et al., 2010).

In the molecule of the title compound (Fig. 1), the thiadiazine ring (C7/N1/C4/C5/S1/N2) adopts a half-chair conformation, with puckering parameters QT = 0.5164 (19) Å, θ = 47.5 (2)° and ϕ = -25.9 (3)°. The deviation of the S1, N1 and N2 atoms from the plane of the benzene ring of the benzothiadiazin ring system are -0.0726 (6), 0.0305 (19) and 0.2655 (18) Å, respectively. The dihedral angle formed by the two six-membered aromatic rings C1–C6 and C11–C16 is 15.02 (7)°. In the crystal, centrosymmetrically related molecules interact to form dimers through pairs of O—H···O hydrogen bonds (Table 1) generating a R22(8) ring motif. The dimers are further linked into a three-dimensional network by intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For the pharmacological properties of benzothiadiazine derivatives, see: Longman & Hamilton (1992); Buckheit et al. (1994); Yamada & Tang (1993); Phillips et al. (2002); Braghiroli et al. (2002); Pirotte et al. (1998); Francotte et al. (2007). For the biological properties and synthetic details of the title compound, see: Chen et al. (2010).

Experimental top

A mixture of methyl 2-(7-chloro-1,1-dioxido-2-(2,4,5-trifluorobenzyl)-2H-benzo[e][1,2,4]thiadiazin-4(3H)-yl)acetate (1 mmol), 1,4-dioxane (5 ml) and saturated aqueous sodium hydroxide (5 ml) was stirred at room temperature for 2 h. The alkaline suspension was adjusted to be acidic with 0.1 molar HCl and extracted with ethyl acetate (3 × 20 ml). The combined organic layers were dried over MgSO4 and filtered. The filtrate was concentrated to dryness under reduced pressure. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution of the compound (yield: 76%).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% probability displacement ellipsoids.
2-[7-Chloro-1,1-dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H- 1,2,4-benzothiadiazin-4-yl]acetic acid top
Crystal data top
C16H12ClF3N2O4SF(000) = 856
Mr = 420.79Dx = 1.621 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4599 reflections
a = 9.3628 (2) Åθ = 2.8–28.3°
b = 12.3134 (2) ŵ = 0.40 mm1
c = 15.5597 (3) ÅT = 296 K
β = 105.996 (1)°Block, colourless
V = 1724.39 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 28.3°, θmin = 2.1°
ϕ and ω scansh = 1212
15140 measured reflectionsk = 1615
4293 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 1.0199P]
where P = (Fo2 + 2Fc2)/3
4293 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C16H12ClF3N2O4SV = 1724.39 (6) Å3
Mr = 420.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3628 (2) ŵ = 0.40 mm1
b = 12.3134 (2) ÅT = 296 K
c = 15.5597 (3) Å0.20 × 0.20 × 0.20 mm
β = 105.996 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3302 reflections with I > 2σ(I)
15140 measured reflectionsRint = 0.027
4293 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.73 e Å3
4293 reflectionsΔρmin = 0.82 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45256 (6)0.88685 (5)0.08722 (3)0.04077 (16)
Cl10.00328 (10)0.62773 (8)0.09172 (6)0.0872 (3)
C110.8849 (2)0.89923 (18)0.16523 (14)0.0394 (5)
C50.3729 (2)0.79827 (17)0.14930 (12)0.0350 (4)
N20.62050 (19)0.90503 (15)0.15259 (11)0.0387 (4)
F21.26561 (18)1.08588 (15)0.23239 (13)0.0768 (5)
O10.46125 (19)0.83390 (17)0.00742 (10)0.0607 (5)
F31.0586 (2)1.12091 (14)0.07690 (12)0.0729 (5)
C120.9947 (3)0.88393 (19)0.24347 (15)0.0458 (5)
C60.2388 (2)0.75123 (19)0.10327 (14)0.0449 (5)
H60.19850.76480.04260.054*
N10.5746 (2)0.82433 (15)0.28393 (11)0.0392 (4)
F10.97529 (19)0.80656 (14)0.30117 (11)0.0714 (5)
O20.37472 (19)0.98763 (15)0.07985 (13)0.0597 (5)
C40.4382 (2)0.77835 (16)0.24064 (12)0.0341 (4)
C70.6157 (2)0.92240 (18)0.24459 (13)0.0400 (5)
H7A0.71260.94660.28020.048*
H7B0.54450.97920.24560.048*
C30.3601 (3)0.70893 (18)0.28347 (14)0.0435 (5)
H30.39960.69320.34380.052*
C20.2264 (3)0.66393 (19)0.23789 (16)0.0484 (5)
H20.17610.61920.26790.058*
C10.1662 (3)0.6843 (2)0.14823 (16)0.0489 (5)
C90.5751 (3)0.8936 (2)0.43292 (13)0.0447 (5)
C80.6382 (3)0.8131 (2)0.37949 (13)0.0462 (5)
H8A0.74490.82320.39350.055*
H8B0.62000.74000.39720.055*
C190.7430 (2)0.8351 (2)0.14144 (16)0.0468 (5)
H19A0.72130.81020.08000.056*
H19B0.75310.77200.18000.056*
C160.9087 (2)0.98074 (19)0.10813 (15)0.0442 (5)
H160.83760.99390.05420.053*
C151.0367 (3)1.0414 (2)0.13140 (16)0.0482 (5)
C141.1431 (3)1.0230 (2)0.21047 (18)0.0506 (6)
C131.1245 (3)0.9440 (2)0.26747 (17)0.0527 (6)
H131.19680.93070.32090.063*
O40.6474 (2)0.89659 (17)0.51717 (10)0.0651 (6)
H40.60530.93800.54350.098*
O30.4682 (2)0.95079 (17)0.39943 (11)0.0645 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0349 (3)0.0559 (3)0.0303 (2)0.0079 (2)0.00703 (18)0.0092 (2)
Cl10.0666 (5)0.1026 (7)0.0868 (6)0.0466 (5)0.0117 (4)0.0042 (5)
C110.0321 (10)0.0454 (12)0.0418 (11)0.0012 (9)0.0122 (8)0.0088 (9)
C50.0337 (10)0.0405 (11)0.0317 (9)0.0010 (8)0.0107 (7)0.0047 (8)
N20.0305 (8)0.0499 (10)0.0360 (8)0.0045 (7)0.0095 (7)0.0032 (7)
F20.0449 (9)0.0762 (11)0.1085 (14)0.0195 (8)0.0196 (9)0.0269 (10)
O10.0554 (10)0.0992 (15)0.0291 (7)0.0253 (10)0.0143 (7)0.0050 (8)
F30.0804 (12)0.0682 (11)0.0810 (11)0.0100 (9)0.0403 (10)0.0087 (8)
C120.0422 (12)0.0479 (13)0.0464 (12)0.0040 (10)0.0108 (9)0.0000 (10)
C60.0404 (12)0.0546 (14)0.0376 (10)0.0088 (10)0.0072 (9)0.0050 (9)
N10.0435 (10)0.0441 (10)0.0272 (8)0.0020 (8)0.0052 (7)0.0012 (7)
F10.0715 (11)0.0740 (11)0.0638 (10)0.0000 (9)0.0101 (8)0.0207 (8)
O20.0453 (10)0.0598 (11)0.0706 (11)0.0027 (8)0.0101 (8)0.0289 (9)
C40.0403 (11)0.0337 (10)0.0292 (9)0.0057 (8)0.0110 (8)0.0000 (7)
C70.0384 (11)0.0444 (12)0.0362 (10)0.0029 (9)0.0084 (8)0.0067 (8)
C30.0597 (14)0.0408 (12)0.0341 (10)0.0057 (10)0.0195 (9)0.0073 (8)
C20.0582 (14)0.0397 (12)0.0555 (13)0.0028 (11)0.0295 (11)0.0075 (10)
C10.0440 (13)0.0486 (13)0.0552 (13)0.0125 (10)0.0154 (10)0.0009 (10)
C90.0438 (12)0.0551 (14)0.0305 (9)0.0077 (10)0.0025 (8)0.0027 (9)
C80.0468 (12)0.0566 (14)0.0310 (10)0.0132 (11)0.0036 (8)0.0007 (9)
C190.0383 (12)0.0501 (13)0.0527 (13)0.0044 (10)0.0138 (9)0.0133 (10)
C160.0386 (11)0.0549 (14)0.0402 (11)0.0035 (10)0.0124 (9)0.0059 (9)
C150.0477 (13)0.0486 (13)0.0544 (13)0.0009 (10)0.0243 (11)0.0043 (10)
C140.0335 (11)0.0531 (14)0.0666 (15)0.0051 (10)0.0160 (10)0.0196 (12)
C130.0352 (12)0.0634 (16)0.0525 (13)0.0073 (11)0.0005 (9)0.0104 (12)
O40.0648 (12)0.0852 (14)0.0333 (8)0.0296 (10)0.0066 (8)0.0137 (8)
O30.0606 (11)0.0843 (14)0.0379 (8)0.0325 (10)0.0042 (7)0.0133 (8)
Geometric parameters (Å, º) top
S1—O11.4245 (17)C4—C31.407 (3)
S1—O21.4277 (19)C7—H7A0.9700
S1—N21.6357 (18)C7—H7B0.9700
S1—C51.7540 (19)C3—C21.374 (3)
Cl1—C11.734 (2)C3—H30.9300
C11—C121.373 (3)C2—C11.376 (3)
C11—C161.398 (3)C2—H20.9300
C11—C191.502 (3)C9—O31.217 (3)
C5—C61.389 (3)C9—O41.300 (2)
C5—C41.405 (3)C9—C81.514 (3)
N2—C71.460 (2)C8—H8A0.9700
N2—C191.482 (3)C8—H8B0.9700
F2—C141.347 (3)C19—H19A0.9700
F3—C151.347 (3)C19—H19B0.9700
C12—F11.355 (3)C16—C151.374 (3)
C12—C131.383 (3)C16—H160.9300
C6—C11.376 (3)C15—C141.372 (4)
C6—H60.9300C14—C131.360 (4)
N1—C41.389 (3)C13—H130.9300
N1—C81.448 (2)O4—H40.8200
N1—C71.453 (3)
O1—S1—O2118.58 (12)C4—C3—H3119.4
O1—S1—N2109.19 (10)C3—C2—C1120.7 (2)
O2—S1—N2108.23 (11)C3—C2—H2119.7
O1—S1—C5109.30 (11)C1—C2—H2119.7
O2—S1—C5107.43 (10)C6—C1—C2120.2 (2)
N2—S1—C5102.98 (9)C6—C1—Cl1119.63 (19)
C12—C11—C16116.8 (2)C2—C1—Cl1120.18 (18)
C12—C11—C19122.8 (2)O3—C9—O4123.6 (2)
C16—C11—C19120.4 (2)O3—C9—C8122.87 (19)
C6—C5—C4121.91 (19)O4—C9—C8113.50 (19)
C6—C5—S1115.88 (15)N1—C8—C9112.90 (18)
C4—C5—S1122.18 (16)N1—C8—H8A109.0
C7—N2—C19115.69 (18)C9—C8—H8A109.0
C7—N2—S1110.23 (13)N1—C8—H8B109.0
C19—N2—S1119.35 (14)C9—C8—H8B109.0
F1—C12—C11118.7 (2)H8A—C8—H8B107.8
F1—C12—C13117.7 (2)N2—C19—C11109.07 (18)
C11—C12—C13123.6 (2)N2—C19—H19A109.9
C1—C6—C5119.4 (2)C11—C19—H19A109.9
C1—C6—H6120.3N2—C19—H19B109.9
C5—C6—H6120.3C11—C19—H19B109.9
C4—N1—C8121.46 (18)H19A—C19—H19B108.3
C4—N1—C7116.70 (16)C15—C16—C11120.2 (2)
C8—N1—C7115.48 (18)C15—C16—H16119.9
N1—C4—C5120.34 (18)C11—C16—H16119.9
N1—C4—C3123.12 (18)F3—C15—C14119.1 (2)
C5—C4—C3116.53 (19)F3—C15—C16120.2 (2)
N1—C7—N2112.00 (17)C14—C15—C16120.8 (2)
N1—C7—H7A109.2F2—C14—C13120.0 (2)
N2—C7—H7A109.2F2—C14—C15119.3 (2)
N1—C7—H7B109.2C13—C14—C15120.7 (2)
N2—C7—H7B109.2C14—C13—C12117.9 (2)
H7A—C7—H7B107.9C14—C13—H13121.1
C2—C3—C4121.29 (19)C12—C13—H13121.1
C2—C3—H3119.4C9—O4—H4109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.862.676 (2)171
C3—H3···O1ii0.932.473.391 (3)169
C16—H16···O2iii0.932.463.387 (2)172
C13—H13···O3iv0.932.513.307 (3)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H12ClF3N2O4S
Mr420.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.3628 (2), 12.3134 (2), 15.5597 (3)
β (°) 105.996 (1)
V3)1724.39 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15140, 4293, 3302
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.04
No. of reflections4293
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.82

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.862.676 (2)170.6
C3—H3···O1ii0.932.473.391 (3)169
C16—H16···O2iii0.932.463.387 (2)172
C13—H13···O3iv0.932.513.307 (3)144
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (No. 7102091) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20111101110042).

References

First citationBraghiroli, D., Puia, G., Cannazza, G., Tait, A., Parenti, C., Losi, G. & Baraldi, M. (2002). J. Med. Chem. 45, 2355–2357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuckheit, R. W. Jr, Fliakas-Boltz, V., Decker, W. D., Roberson, J. L., Pyle, C. A., White, E. L., Bowdon, B. J., McMahon, J. B., Boyd, M. R., Bader, J. P., Nickell, D. G., Barth, H. & Antonucci, T. K. (1994). Antivir. Res. 25, 43–56.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, X., Zhu, C. J., Guo, F., Qiu, X. W., Yang, Y. C., Zhang, S. Z., He, M. L., Parveen, S., Jing, C. J., Li, Y. & Ma, B. (2010). J. Med. Chem. 53, 8330–8344.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFrancotte, P., de Tullio, P., Goffin, E., Dintilhac, G., Graindorge, E., Fraikin, P., Lestage, P., Danober, L., Thomas, J.-Y., Caignard, D.-H. & Pirotte, B. (2007). J. Med. Chem. 50, 3153–3157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLongman, S. D. & Hamilton, T. C. (1992). Med. Res. Rev. 12, 73–148.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPhillips, D., Sonnenberg, J., Arai, A. C., Vaswani, R., Krutzik, P. O., Kleisli, T., Kessler, M., Granger, R., Lynch, G. & Chamberlin, A. R. (2002). Bioorg. Med. Chem. 10, 1229–1248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPirotte, B., Podona, T., Diouf, O., de Tullio, P., Lebrun, P., Dupont, L., Somers, F., Delarge, J., Morain, P., Lestage, P., Lepagnol, J. & Spedding, M. (1998). J. Med. Chem. 41, 2946–2959.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, K. A. & Tang, C. M. (1993). J. Neurosci. 13, 3904–3915.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1363
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds