organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1382

4-[(2′-Cyano­bi­phenyl-4-yl)meth­yl]morpholin-4-ium hexa­fluoridophosphate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: xuehuayu@njcc.edu.cn

(Received 20 March 2012; accepted 29 March 2012; online 13 April 2012)

In the cation of the title compound, C18H19N2O+·PF6, the morpholine ring adopts the usual chair conformation and the dihedral angle between the benzene rings is 67.55 (11)°. The F atoms of the anion are disordered over two orientations with a refined occupancy ratio of 0.65 (2):0.35 (2). In the crystal, inter­molecular N—H⋯N hydrogen bonds link the cations into chains parallel to the c axis. The crystal packing is further enforced by inter­ionic C—H⋯F hydrogen bonds.

Related literature

For the screening of mol­ecular salts with physicochemical properties, see: Tong & Whitesell (1998[Tong, W. & Whitesell, G. (1998). Pharm. Dev. Technol. A3, 215-223.]); Shanker (1994[Shanker, R. (1994). Pharm. Res. A11, S-236.]). For the structures of related salts, see: SiMa (2010[SiMa, W. (2010). Acta Cryst. E66, o2042.]); Li et al. (2011[Li, X., Huang, X. & Li, K. (2011). Acta Cryst. E67, o1061.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N2O+·PF6

  • Mr = 424.32

  • Monoclinic, C 2/c

  • a = 24.912 (11) Å

  • b = 10.757 (5) Å

  • c = 14.925 (7) Å

  • β = 91.07 (3)°

  • V = 3999 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 1.000

  • 21155 measured reflections

  • 4512 independent reflections

  • 3216 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.218

  • S = 1.19

  • 4512 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.91 2.04 2.942 (4) 171
C10—H10A⋯F1ii 0.93 2.43 3.296 (9) 155
C14—H14A⋯F3 0.97 2.39 3.355 (12) 171
C15—H15A⋯F6 0.97 2.46 3.377 (8) 158
C15—H15B⋯F3ii 0.97 2.48 3.412 (10) 161
C15—H15B⋯F3′ii 0.97 2.54 3.51 (2) 172
C10—H10A⋯F1′ii 0.93 2.45 3.26 (2) 145
C14—H14B⋯F1′ii 0.97 2.38 3.097 (16) 130
C5—H5A⋯F2′iii 0.93 2.48 3.41 (2) 178
C17—H17B⋯F6′iv 0.97 2.47 3.29 (3) 143
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structure of protonated amines. The importance of molecular salts in pharmaceutical formulations is well known. For a given active ingredient, the isolation and selection of a salt with the appropriate physicochemical properties involves significant screening activity, as discussed at some length in the literature (Tong & Whitesell, 1998; Shanker, 1994). Here we report the synthesis and crystal structure of the title compound, 4-[(2'-cyanobiphenyl-4-yl)methyl]morpholin-4-ium hexafluorophosphate.

In the title compound (Fig. 1), bond distances and angles agree very well with those reported for a closely related nitrate (SiMa, 2010) and tetrafluoridoborate (Li et al., 2011) derivatives. In the cation, the morpholine ring adopts the usual chair conformation, and the dihedral angle formed by the phenyl rings is 67.55 (11)°. The hexafluorophosphate anion displays a distorted octahedral geometry, the fluorine atoms being disordered over two orientations with site occupancies of 0.65 (2) and 0.35 (2) for the major and minor components of disorder, respectively. In the structure, the cations interact through intermolecular N–H···N hydrogen bonds (Table 1) to form chains parallel to the c axis (Fig. 2). Crystal packing is further consolidated by interionic C–H···O hydrogen bonds.

Related literature top

For the screening of molecular salts with physicochemical properties, see: Tong & Whitesell (1998); Shanker (1994). For the structures of related salts, see: SiMa (2010); Li et al. (2011).

Experimental top

To a stirred solution of 4'-(morpholinomethyl)biphenyl-2-carbonitrile (5.56 g, 0.02 mol) in methanol (30 mL), hexafluorophosphoric acid (4.17 g, 0.02 mol) was added at the room temperature. The precipitate was filtered and washed with a small amount of ethanol 95%. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with N—H = 0.91 Å, C—H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(N, C). The fluorine atoms of the anion are disoreder over two orientations with a refined occupancy ratio of 0.65 (2):0.35 (2).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing a chain of cations interacting via intermolecular N—H···N hydrogen bonds (dashed lines).
4-[(2'-Cyanobiphenyl-4-yl)methyl]morpholin-4-ium hexafluoridophosphate top
Crystal data top
C18H19N2O+·PF6F(000) = 1744
Mr = 424.32Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4512 reflections
a = 24.912 (11) Åθ = 2.6–27.4°
b = 10.757 (5) ŵ = 0.20 mm1
c = 14.925 (7) ÅT = 293 K
β = 91.07 (3)°Prism, colourless
V = 3999 (3) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
4512 independent reflections
Radiation source: fine-focus sealed tube3216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.1°
CCD_Profile_fitting scansh = 3231
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.813, Tmax = 1.000l = 1919
21155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0935P)2 + 1.2795P]
where P = (Fo2 + 2Fc2)/3
4512 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H19N2O+·PF6V = 3999 (3) Å3
Mr = 424.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.912 (11) ŵ = 0.20 mm1
b = 10.757 (5) ÅT = 293 K
c = 14.925 (7) Å0.20 × 0.20 × 0.20 mm
β = 91.07 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4512 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3216 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.052
21155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.19Δρmax = 0.16 e Å3
4512 reflectionsΔρmin = 0.17 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N20.32167 (9)0.0538 (2)0.37953 (14)0.0586 (6)
H2A0.35330.01430.39180.070*
C110.36122 (12)0.1175 (3)0.23215 (17)0.0587 (7)
C20.49042 (11)0.2243 (3)0.01594 (18)0.0597 (7)
C80.44407 (11)0.2199 (3)0.13211 (17)0.0568 (7)
N10.42775 (12)0.0475 (3)0.07023 (19)0.0804 (8)
C10.48586 (12)0.2708 (3)0.07186 (18)0.0598 (7)
C30.52800 (13)0.2724 (3)0.0749 (2)0.0750 (9)
H3A0.53020.24110.13280.090*
C150.27767 (13)0.0213 (3)0.4206 (2)0.0729 (9)
H15A0.24310.01450.40410.088*
H15B0.27870.10560.39770.088*
C70.45498 (12)0.1267 (3)0.04641 (19)0.0624 (7)
C100.40494 (13)0.0482 (3)0.21080 (19)0.0679 (8)
H10A0.40720.03410.22960.082*
C90.44606 (13)0.0986 (3)0.16145 (19)0.0685 (8)
H9A0.47560.04970.14780.082*
C140.31444 (13)0.0585 (3)0.27939 (19)0.0697 (8)
H14A0.28210.10500.26490.084*
H14B0.30950.02550.25700.084*
C120.35927 (15)0.2401 (3)0.2056 (3)0.0877 (11)
H12A0.33010.28920.22100.105*
O10.28375 (13)0.0972 (4)0.55657 (19)0.1302 (13)
C130.40029 (15)0.2908 (3)0.1561 (3)0.0877 (11)
H13A0.39840.37380.13880.105*
C60.52083 (15)0.3653 (3)0.0969 (2)0.0810 (10)
H6A0.51910.39800.15450.097*
C40.56173 (15)0.3664 (3)0.0467 (3)0.0850 (10)
H4A0.58690.39860.08560.102*
C180.32429 (16)0.1780 (4)0.4223 (3)0.0940 (12)
H18A0.29240.22520.40620.113*
H18B0.35530.22290.40090.113*
C160.28390 (18)0.0235 (5)0.5209 (2)0.1058 (14)
H16A0.25470.07100.54620.127*
H16B0.31740.06440.53730.127*
C50.55830 (15)0.4125 (4)0.0386 (3)0.0916 (11)
H5A0.58130.47590.05740.110*
C170.3284 (2)0.1644 (5)0.5233 (3)0.140 (2)
H17A0.36130.12110.53940.168*
H17B0.32960.24610.55070.168*
P10.15365 (4)0.14226 (9)0.20740 (6)0.0750 (3)
F10.1241 (5)0.2534 (10)0.2540 (7)0.141 (3)0.65 (2)
F20.1364 (4)0.1889 (13)0.1147 (8)0.152 (4)0.65 (2)
F30.2064 (5)0.2159 (11)0.2041 (10)0.136 (4)0.65 (2)
F40.0987 (4)0.0652 (11)0.2203 (5)0.113 (2)0.65 (2)
F50.1803 (6)0.0238 (11)0.1705 (8)0.135 (4)0.65 (2)
F60.1702 (3)0.0918 (8)0.3061 (6)0.108 (2)0.65 (2)
F1'0.1419 (7)0.2894 (14)0.208 (3)0.161 (9)0.35 (2)
F2'0.1432 (9)0.147 (2)0.1016 (11)0.144 (8)0.35 (2)
F3'0.2163 (6)0.186 (2)0.1825 (12)0.106 (5)0.35 (2)
F4'0.0981 (6)0.116 (3)0.2162 (15)0.168 (10)0.35 (2)
F5'0.1754 (15)0.0133 (19)0.192 (2)0.183 (12)0.35 (2)
F6'0.1687 (9)0.147 (4)0.3025 (11)0.185 (10)0.35 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0516 (13)0.0768 (16)0.0475 (12)0.0046 (12)0.0073 (9)0.0004 (11)
C110.0619 (17)0.0708 (18)0.0434 (14)0.0016 (14)0.0008 (12)0.0058 (12)
C20.0577 (16)0.0639 (17)0.0575 (16)0.0037 (13)0.0061 (13)0.0023 (13)
C80.0634 (17)0.0610 (17)0.0461 (14)0.0001 (13)0.0020 (12)0.0002 (12)
N10.0799 (19)0.094 (2)0.0675 (17)0.0107 (16)0.0001 (14)0.0165 (15)
C10.0620 (17)0.0611 (17)0.0566 (16)0.0026 (14)0.0022 (13)0.0024 (13)
C30.072 (2)0.084 (2)0.070 (2)0.0006 (17)0.0195 (16)0.0039 (16)
C150.071 (2)0.085 (2)0.0637 (18)0.0106 (17)0.0155 (15)0.0033 (15)
C70.0638 (18)0.076 (2)0.0481 (15)0.0040 (16)0.0055 (13)0.0039 (14)
C100.087 (2)0.0641 (17)0.0537 (16)0.0120 (16)0.0176 (15)0.0115 (13)
C90.077 (2)0.0720 (19)0.0575 (17)0.0198 (16)0.0156 (15)0.0090 (14)
C140.0677 (19)0.091 (2)0.0504 (16)0.0039 (17)0.0038 (13)0.0087 (15)
C120.078 (2)0.085 (2)0.101 (3)0.0250 (19)0.032 (2)0.026 (2)
O10.123 (2)0.188 (3)0.0812 (18)0.057 (2)0.0535 (16)0.049 (2)
C130.097 (3)0.0618 (19)0.106 (3)0.0170 (18)0.034 (2)0.0198 (18)
C60.091 (2)0.083 (2)0.069 (2)0.0196 (19)0.0070 (18)0.0045 (17)
C40.077 (2)0.085 (2)0.094 (3)0.0058 (19)0.0180 (19)0.017 (2)
C180.095 (3)0.093 (3)0.096 (3)0.028 (2)0.040 (2)0.034 (2)
C160.103 (3)0.153 (4)0.062 (2)0.017 (3)0.027 (2)0.012 (2)
C50.080 (2)0.088 (3)0.107 (3)0.029 (2)0.001 (2)0.011 (2)
C170.140 (4)0.196 (5)0.085 (3)0.075 (4)0.052 (3)0.065 (3)
P10.0695 (6)0.0775 (6)0.0778 (6)0.0104 (4)0.0032 (4)0.0038 (4)
F10.158 (7)0.082 (4)0.184 (7)0.038 (4)0.042 (4)0.015 (4)
F20.140 (5)0.199 (9)0.116 (7)0.038 (6)0.024 (4)0.072 (6)
F30.095 (5)0.089 (4)0.223 (10)0.024 (4)0.005 (5)0.038 (5)
F40.097 (4)0.146 (6)0.096 (4)0.045 (4)0.004 (3)0.003 (3)
F50.157 (6)0.112 (7)0.138 (5)0.028 (6)0.075 (5)0.029 (5)
F60.095 (4)0.136 (5)0.093 (4)0.011 (3)0.012 (2)0.032 (4)
F1'0.129 (10)0.071 (7)0.28 (3)0.023 (6)0.021 (10)0.022 (10)
F2'0.167 (14)0.198 (15)0.068 (6)0.089 (13)0.002 (7)0.033 (9)
F3'0.061 (5)0.143 (13)0.113 (7)0.024 (6)0.004 (5)0.031 (7)
F4'0.059 (6)0.22 (3)0.224 (16)0.005 (9)0.043 (7)0.003 (13)
F5'0.22 (2)0.063 (8)0.27 (3)0.026 (9)0.080 (17)0.050 (12)
F6'0.195 (14)0.30 (3)0.059 (8)0.041 (16)0.016 (7)0.055 (11)
Geometric parameters (Å, º) top
N2—C181.482 (4)O1—C161.403 (5)
N2—C151.502 (4)O1—C171.423 (5)
N2—C141.503 (3)C13—H13A0.9300
N2—H2A0.9100C6—C51.385 (5)
C11—C101.362 (4)C6—H6A0.9300
C11—C121.378 (4)C4—C51.370 (5)
C11—C141.513 (4)C4—H4A0.9300
C2—C31.396 (4)C18—C171.516 (5)
C2—C11.409 (4)C18—H18A0.9700
C2—C71.440 (4)C18—H18B0.9700
C8—C91.377 (4)C16—H16A0.9700
C8—C131.384 (4)C16—H16B0.9700
C8—C11.492 (4)C5—H5A0.9300
N1—C71.142 (4)C17—H17A0.9700
C1—C61.386 (4)C17—H17B0.9700
C3—C41.375 (5)P1—F4'1.421 (17)
C3—H3A0.9300P1—F6'1.463 (16)
C15—C161.502 (5)P1—F5'1.51 (2)
C15—H15A0.9700P1—F21.527 (8)
C15—H15B0.9700P1—F31.536 (9)
C10—C91.384 (4)P1—F51.543 (9)
C10—H10A0.9300P1—F11.574 (7)
C9—H9A0.9300P1—F2'1.597 (15)
C14—H14A0.9700P1—F1'1.610 (14)
C14—H14B0.9700P1—F41.615 (9)
C12—C131.384 (5)P1—F61.616 (7)
C12—H12A0.9300P1—F3'1.678 (17)
C18—N2—C15109.6 (2)C6—C5—H5A119.8
C18—N2—C14113.7 (3)O1—C17—C18111.0 (3)
C15—N2—C14110.5 (2)O1—C17—H17A109.4
C18—N2—H2A107.6C18—C17—H17A109.4
C15—N2—H2A107.6O1—C17—H17B109.4
C14—N2—H2A107.6C18—C17—H17B109.4
C10—C11—C12118.7 (3)H17A—C17—H17B108.0
C10—C11—C14120.4 (3)F4'—P1—F6'98.6 (13)
C12—C11—C14120.8 (3)F4'—P1—F5'100.7 (18)
C3—C2—C1121.4 (3)F6'—P1—F5'95.1 (17)
C3—C2—C7119.0 (3)F4'—P1—F283.7 (11)
C1—C2—C7119.5 (3)F6'—P1—F2158.7 (14)
C9—C8—C13117.6 (3)F5'—P1—F2105.3 (13)
C9—C8—C1121.2 (3)F4'—P1—F3160.1 (12)
C13—C8—C1121.1 (3)F6'—P1—F379.0 (11)
C6—C1—C2116.7 (3)F5'—P1—F399.2 (14)
C6—C1—C8123.3 (3)F2—P1—F391.6 (6)
C2—C1—C8120.0 (3)F4'—P1—F5107.3 (14)
C4—C3—C2119.5 (3)F6'—P1—F5105.6 (15)
C4—C3—H3A120.2F2—P1—F593.7 (7)
C2—C3—H3A120.2F3—P1—F592.3 (8)
C16—C15—N2110.7 (3)F4'—P1—F169.1 (11)
C16—C15—H15A109.5F6'—P1—F170.1 (14)
N2—C15—H15A109.5F5'—P1—F1159.6 (10)
C16—C15—H15B109.5F2—P1—F191.4 (6)
N2—C15—H15B109.5F3—P1—F191.8 (5)
H15A—C15—H15B108.1F5—P1—F1173.4 (5)
N1—C7—C2178.5 (3)F4'—P1—F2'87.5 (11)
C11—C10—C9120.9 (3)F6'—P1—F2'173.3 (14)
C11—C10—H10A119.6F5'—P1—F2'86.4 (14)
C9—C10—H10A119.6F3—P1—F2'94.3 (8)
C8—C9—C10121.2 (3)F5—P1—F2'74.8 (10)
C8—C9—H9A119.4F1—P1—F2'110.0 (9)
C10—C9—H9A119.4F4'—P1—F1'90.9 (12)
N2—C14—C11113.5 (2)F6'—P1—F1'90.5 (12)
N2—C14—H14A108.9F5'—P1—F1'166.2 (12)
C11—C14—H14A108.9F2—P1—F1'68.3 (10)
N2—C14—H14B108.9F3—P1—F1'69.4 (7)
C11—C14—H14B108.9F5—P1—F1'153.1 (13)
H14A—C14—H14B107.7F2'—P1—F1'86.7 (11)
C11—C12—C13120.6 (3)F6'—P1—F496.0 (13)
C11—C12—H12A119.7F5'—P1—F481.5 (13)
C13—C12—H12A119.7F2—P1—F493.0 (6)
C16—O1—C17109.3 (3)F3—P1—F4175.0 (6)
C8—C13—C12120.9 (3)F5—P1—F489.4 (7)
C8—C13—H13A119.5F1—P1—F486.1 (6)
C12—C13—H13A119.5F2'—P1—F490.7 (7)
C5—C6—C1121.8 (3)F1'—P1—F4110.5 (8)
C5—C6—H6A119.1F4'—P1—F694.7 (11)
C1—C6—H6A119.1F5'—P1—F674.9 (13)
C5—C4—C3120.1 (3)F2—P1—F6178.3 (5)
C5—C4—H4A119.9F3—P1—F690.0 (5)
C3—C4—H4A119.9F5—P1—F686.8 (6)
N2—C18—C17110.0 (3)F1—P1—F688.0 (4)
N2—C18—H18A109.7F2'—P1—F6161.3 (9)
C17—C18—H18A109.7F1'—P1—F6111.8 (12)
N2—C18—H18B109.7F4—P1—F685.4 (4)
C17—C18—H18B109.7F4'—P1—F3'170.8 (13)
H18A—C18—H18B108.2F6'—P1—F3'89.0 (11)
O1—C16—C15111.3 (3)F5'—P1—F3'83.6 (14)
O1—C16—H16A109.4F2—P1—F3'87.4 (7)
C15—C16—H16A109.4F5—P1—F3'75.2 (9)
O1—C16—H16B109.4F1—P1—F3'109.2 (8)
C15—C16—H16B109.4F2'—P1—F3'84.6 (9)
H16A—C16—H16B108.0F1'—P1—F3'83.9 (9)
C4—C5—C6120.4 (3)F4—P1—F3'164.7 (8)
C4—C5—H5A119.8F6—P1—F3'94.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.912.042.942 (4)171
C10—H10A···F1ii0.932.433.296 (9)155
C14—H14A···F30.972.393.355 (12)171
C15—H15A···F60.972.463.377 (8)158
C15—H15B···F3ii0.972.483.412 (10)161
C15—H15B···F3ii0.972.543.51 (2)172
C10—H10A···F1ii0.932.453.26 (2)145
C14—H14B···F1ii0.972.383.097 (16)130
C5—H5A···F2iii0.932.483.41 (2)178
C17—H17B···F6iv0.972.473.29 (3)143
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H19N2O+·PF6
Mr424.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)24.912 (11), 10.757 (5), 14.925 (7)
β (°) 91.07 (3)
V3)3999 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21155, 4512, 3216
Rint0.052
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.218, 1.19
No. of reflections4512
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.912.042.942 (4)170.5
C10—H10A···F1ii0.932.433.296 (9)155.3
C14—H14A···F30.972.393.355 (12)170.6
C15—H15A···F60.972.463.377 (8)158.2
C15—H15B···F3ii0.972.483.412 (10)161.0
C15—H15B···F3'ii0.972.543.51 (2)172
C10—H10A···F1'ii0.932.453.26 (2)145
C14—H14B···F1'ii0.972.383.097 (16)130
C5—H5A···F2'iii0.932.483.41 (2)178
C17—H17B···F6'iv0.972.473.29 (3)143
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1.
 

References

First citationLi, X., Huang, X. & Li, K. (2011). Acta Cryst. E67, o1061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShanker, R. (1994). Pharm. Res. A11, S–236.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiMa, W. (2010). Acta Cryst. E66, o2042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTong, W. & Whitesell, G. (1998). Pharm. Dev. Technol. A3, 215–223.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1382
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds