organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1296-o1297

1′-Methyl-4′-[4-(tri­fluoro­meth­yl)phen­yl]di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,2′′-indane]-2,1′′(1H)-dione

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 22 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title compound, C31H22F3NO2, the pyrrolidine and cyclo­pentane rings within the dihydro­indene ring system are in envelope conformations, with the N atom and the spiro-C atom at the flap, respectively. An intra­molecular C—H⋯O hydrogen bond forms an S(8) ring motif. The mean plane through the pyrrolidine ring [r.m.s. deviation = 0.179 (2) Å] makes dihedral angles of 86.30 (13), 88.99 (10) and 79.69 (11)° with the benzene ring, the dihydro­acenaphthyl­ene ring and the mean plane of the indane system, respectively. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds into a two-dimensional network parallel to the ac plane. C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For the structures of related heterocyclic compounds with anti­tubercular activity, see: Wei, Ali, Choon et al. (2011[Wei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.], 2012[Wei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012). Acta Cryst. E68, o545-o546.]); Wei, Ali, Ismail et al. (2011[Wei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3293-o3294.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C31H22F3NO2

  • Mr = 497.50

  • Monoclinic, P 21 /c

  • a = 8.8373 (2) Å

  • b = 20.1333 (5) Å

  • c = 13.7129 (3) Å

  • β = 96.243 (1)°

  • V = 2425.39 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 27133 measured reflections

  • 7039 independent reflections

  • 4753 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.186

  • S = 1.10

  • 7039 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O1 0.95 2.29 3.166 (3) 153
C4—H4A⋯O2i 0.95 2.52 3.364 (3) 147
C16—H16A⋯N1ii 0.95 2.51 3.429 (3) 163
C26—H26A⋯O1iii 0.95 2.51 3.324 (3) 144
C5—H5ACg1iv 0.95 2.74 3.417 (3) 129
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing search to discover novel heterocyclic compounds with antitubercular activity (Wei, Ali, Choon et al., 2012; Wei, Ali, Ismail et al., 2011), our group has synthesized the title compound as described below.

The molecular structure is shown in Fig. 1. The bond lengths and angles are within normal ranges and comparable to those found in related structures (Wei, Ali, Choon et al., 2012; Wei, Ali, Ismail et al., 2011; Wei, Ali, Choon et al., 2011). The pyrrolidine ring (N1/C12/C13/C22/C23) and the cyclopentane ring (C13–C15/C20/C21) within the dihydroindene moiety are in envelope conformations, with puckering parameters (Cremer & Pople, 1975) Q = 0.403 (2) Å and ϕ= 3.9 (4)° with atom N1 at the flap, and Q = 0.246 (3) Å and ϕ= 7.8 (6)° with atom C13 at the flap, respectively. An intramolecular C29—H29A···O1 hydrogen bond (Table 1) forms an S(8) ring motif (Bernstein et al., 1995). The dihedral angles between the mean plane through the pyrrolidine ring (N1/C12/C13/C22/C23) [r.m.s deviation of 0.179 (2) Å] with the benzene ring (C24–C29), the dihydroacenaphthylene ring (C1–C10/C12) and the mean plane of the dihydroindene ring (C13–C21) are 86.30 (13), 88.99 (10) and 79.69 (11)°, respectively.

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional layers parallel to ac plane via intermolecular C4—H4A···O2, C16—H16A···N1 and C26—H26A···O1 (Table 1) hydrogen bonds. The crystal structure are further stabilized by intermolecular C5—H5A···Cg1 (Table 1) interactions (Cg1 is the centroid of the C15–C20 ring).

Related literature top

For the structures of related heterocyclic compounds with antitubercular activity, see: Wei, Ali, Choon et al. (2011, 2012); Wei, Ali, Ismail et al. (2011). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (E)-2-[4-(trifluoromethyl)benzylidene]-2,3-dihydro-1H-indene-1-one (0.001 mol), acenaphthenequinone (0.001 mol) and sarcosine (0.002 mol) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the excess solvent was evaporated slowly and the product was separated and recrystallized from methanol to give the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. Eleven outliners (-7 13 13, -6 12 12, -9 10 9, -7 1 17, -6 11 16, -9 11 10, -6 11 15, -5 2 16, -7 9 15, -4 0 18, -7 10 15) were omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
1'-Methyl-4'-[4-(trifluoromethyl)phenyl]dispiro[acenaphthylene- 1,2'-pyrrolidine-3',2''-indane]-2,1''(1H)-dione top
Crystal data top
C31H22F3NO2F(000) = 1032
Mr = 497.50Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5213 reflections
a = 8.8373 (2) Åθ = 2.5–30.1°
b = 20.1333 (5) ŵ = 0.10 mm1
c = 13.7129 (3) ÅT = 100 K
β = 96.243 (1)°Block, yellow
V = 2425.39 (10) Å30.30 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7039 independent reflections
Radiation source: fine-focus sealed tube4753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1012
Tmin = 0.971, Tmax = 0.980k = 2823
27133 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.062P)2 + 2.6644P]
where P = (Fo2 + 2Fc2)/3
7039 reflections(Δ/σ)max < 0.001
335 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C31H22F3NO2V = 2425.39 (10) Å3
Mr = 497.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8373 (2) ŵ = 0.10 mm1
b = 20.1333 (5) ÅT = 100 K
c = 13.7129 (3) Å0.30 × 0.28 × 0.20 mm
β = 96.243 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4753 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.072
27133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.10Δρmax = 0.55 e Å3
7039 reflectionsΔρmin = 0.37 e Å3
335 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0010 (2)0.42817 (7)0.71415 (11)0.0310 (4)
F20.0624 (2)0.49747 (9)0.82994 (11)0.0382 (5)
F30.1474 (2)0.50882 (9)0.73716 (14)0.0416 (5)
O10.6473 (2)0.62588 (9)0.59831 (12)0.0197 (4)
O20.2586 (2)0.76005 (9)0.33429 (12)0.0218 (4)
N10.5391 (2)0.65334 (10)0.38454 (14)0.0159 (4)
C10.6585 (3)0.67919 (12)0.55815 (16)0.0149 (5)
C20.7746 (3)0.73053 (12)0.58287 (16)0.0159 (5)
C30.8914 (3)0.73588 (13)0.65826 (17)0.0189 (5)
H3A0.90550.70310.70830.023*
C40.9887 (3)0.79137 (13)0.65863 (18)0.0220 (6)
H4A1.06810.79630.71070.026*
C50.9720 (3)0.83884 (13)0.58523 (17)0.0206 (5)
H5A1.04040.87540.58770.025*
C60.8547 (3)0.83393 (12)0.50641 (17)0.0181 (5)
C70.8279 (3)0.87667 (13)0.42369 (18)0.0218 (5)
H7A0.88970.91490.41860.026*
C80.7125 (3)0.86261 (13)0.35127 (17)0.0212 (5)
H8A0.69710.89130.29610.025*
C90.6154 (3)0.80682 (13)0.35583 (16)0.0196 (5)
H9A0.53750.79810.30400.024*
C100.6352 (3)0.76561 (12)0.43570 (16)0.0151 (5)
C110.7565 (3)0.77944 (12)0.50919 (16)0.0162 (5)
C120.5532 (3)0.70278 (11)0.46338 (15)0.0146 (5)
C130.3835 (3)0.71004 (12)0.48642 (16)0.0151 (5)
C140.3684 (3)0.73745 (12)0.59096 (16)0.0162 (5)
H14A0.27600.71980.61670.019*
H14B0.45860.72560.63690.019*
C150.3574 (3)0.81157 (12)0.57692 (16)0.0171 (5)
C160.3775 (3)0.86177 (13)0.64670 (18)0.0201 (5)
H16A0.40360.85160.71410.024*
C170.3584 (3)0.92734 (13)0.61549 (19)0.0233 (6)
H17A0.37370.96220.66220.028*
C180.3172 (3)0.94303 (13)0.5170 (2)0.0264 (6)
H18A0.30390.98810.49760.032*
C190.2956 (3)0.89312 (13)0.44737 (18)0.0222 (5)
H19A0.26630.90320.38030.027*
C200.3181 (3)0.82781 (12)0.47853 (16)0.0164 (5)
C210.3106 (3)0.76631 (12)0.41957 (16)0.0159 (5)
C220.3086 (3)0.64178 (12)0.45501 (16)0.0165 (5)
H22A0.22910.65110.39910.020*
C230.4350 (3)0.60207 (12)0.41273 (17)0.0182 (5)
H23A0.48690.57190.46270.022*
H23B0.39340.57560.35510.022*
C240.2298 (3)0.60506 (12)0.53182 (17)0.0167 (5)
C250.0724 (3)0.60120 (13)0.52232 (18)0.0197 (5)
H25A0.01530.62310.46900.024*
C260.0042 (3)0.56580 (13)0.58934 (19)0.0225 (5)
H26A0.11210.56310.58120.027*
C270.0790 (3)0.53456 (12)0.66806 (17)0.0187 (5)
C280.2365 (3)0.53925 (12)0.68008 (17)0.0199 (5)
H28A0.29290.51870.73490.024*
C290.3123 (3)0.57388 (12)0.61240 (17)0.0198 (5)
H29A0.42020.57650.62070.024*
C300.6816 (3)0.62840 (13)0.35438 (18)0.0225 (6)
H30A0.66060.60250.29400.034*
H30B0.73210.60010.40630.034*
H30C0.74810.66590.34260.034*
C310.0011 (3)0.49303 (13)0.73694 (18)0.0217 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0516 (11)0.0162 (8)0.0285 (8)0.0061 (7)0.0187 (7)0.0013 (6)
F20.0565 (12)0.0422 (10)0.0176 (7)0.0214 (9)0.0121 (7)0.0018 (7)
F30.0346 (10)0.0408 (11)0.0548 (11)0.0048 (8)0.0291 (9)0.0143 (9)
O10.0204 (9)0.0198 (9)0.0192 (8)0.0005 (7)0.0044 (7)0.0053 (7)
O20.0281 (10)0.0237 (9)0.0130 (7)0.0003 (8)0.0002 (7)0.0007 (7)
N10.0189 (11)0.0157 (10)0.0141 (9)0.0004 (8)0.0060 (8)0.0035 (7)
C10.0160 (11)0.0183 (12)0.0115 (10)0.0010 (9)0.0068 (8)0.0005 (9)
C20.0178 (12)0.0172 (11)0.0136 (10)0.0009 (10)0.0060 (9)0.0023 (9)
C30.0195 (12)0.0242 (13)0.0139 (10)0.0012 (10)0.0053 (9)0.0015 (9)
C40.0187 (13)0.0274 (14)0.0197 (11)0.0005 (11)0.0014 (9)0.0060 (10)
C50.0190 (13)0.0225 (13)0.0212 (12)0.0035 (10)0.0055 (9)0.0054 (10)
C60.0200 (12)0.0194 (12)0.0162 (11)0.0006 (10)0.0082 (9)0.0038 (9)
C70.0267 (14)0.0195 (12)0.0206 (12)0.0056 (11)0.0094 (10)0.0012 (10)
C80.0282 (14)0.0228 (13)0.0142 (11)0.0025 (11)0.0090 (10)0.0026 (10)
C90.0237 (13)0.0241 (13)0.0118 (10)0.0001 (11)0.0053 (9)0.0001 (9)
C100.0163 (11)0.0175 (11)0.0125 (10)0.0012 (9)0.0067 (8)0.0023 (9)
C110.0179 (12)0.0194 (12)0.0121 (10)0.0021 (10)0.0051 (8)0.0023 (9)
C120.0172 (12)0.0157 (11)0.0111 (9)0.0002 (9)0.0025 (8)0.0008 (8)
C130.0182 (12)0.0157 (11)0.0118 (10)0.0012 (9)0.0033 (8)0.0004 (8)
C140.0211 (12)0.0165 (11)0.0116 (10)0.0007 (10)0.0053 (8)0.0005 (9)
C150.0162 (12)0.0215 (12)0.0142 (10)0.0018 (10)0.0051 (9)0.0015 (9)
C160.0202 (13)0.0236 (13)0.0174 (11)0.0003 (10)0.0067 (9)0.0021 (10)
C170.0272 (14)0.0216 (13)0.0228 (12)0.0023 (11)0.0105 (10)0.0073 (10)
C180.0336 (16)0.0173 (13)0.0298 (13)0.0024 (11)0.0093 (11)0.0036 (10)
C190.0263 (14)0.0213 (13)0.0200 (11)0.0032 (11)0.0072 (10)0.0036 (10)
C200.0176 (12)0.0171 (11)0.0154 (10)0.0010 (10)0.0050 (9)0.0012 (9)
C210.0158 (11)0.0188 (12)0.0137 (10)0.0001 (10)0.0045 (8)0.0027 (9)
C220.0179 (12)0.0166 (11)0.0155 (10)0.0015 (9)0.0035 (9)0.0004 (9)
C230.0229 (13)0.0168 (12)0.0156 (10)0.0028 (10)0.0056 (9)0.0019 (9)
C240.0216 (13)0.0134 (11)0.0162 (10)0.0021 (10)0.0076 (9)0.0008 (9)
C250.0204 (13)0.0196 (12)0.0198 (11)0.0015 (10)0.0056 (9)0.0000 (9)
C260.0182 (13)0.0227 (13)0.0280 (13)0.0002 (11)0.0082 (10)0.0002 (10)
C270.0257 (13)0.0157 (11)0.0170 (11)0.0013 (10)0.0129 (9)0.0027 (9)
C280.0259 (14)0.0183 (12)0.0163 (11)0.0009 (10)0.0058 (9)0.0012 (9)
C290.0192 (13)0.0205 (12)0.0203 (11)0.0008 (10)0.0049 (9)0.0001 (10)
C300.0231 (13)0.0237 (13)0.0217 (12)0.0012 (11)0.0069 (10)0.0045 (10)
C310.0250 (14)0.0202 (13)0.0225 (12)0.0011 (11)0.0144 (10)0.0019 (10)
Geometric parameters (Å, º) top
F1—C311.343 (3)C14—H14A0.9900
F2—C311.339 (3)C14—H14B0.9900
F3—C311.332 (3)C15—C161.390 (3)
O1—C11.215 (3)C15—C201.395 (3)
O2—C211.216 (3)C16—C171.392 (4)
N1—C301.457 (3)C16—H16A0.9500
N1—C231.462 (3)C17—C181.397 (4)
N1—C121.465 (3)C17—H17A0.9500
C1—C21.470 (3)C18—C191.385 (4)
C1—C121.586 (3)C18—H18A0.9500
C2—C31.383 (3)C19—C201.390 (3)
C2—C111.408 (3)C19—H19A0.9500
C3—C41.410 (4)C20—C211.476 (3)
C3—H3A0.9500C22—C241.517 (3)
C4—C51.384 (4)C22—C231.538 (4)
C4—H4A0.9500C22—H22A1.0000
C5—C61.417 (3)C23—H23A0.9900
C5—H5A0.9500C23—H23B0.9900
C6—C111.402 (3)C24—C251.385 (4)
C6—C71.423 (3)C24—C291.404 (3)
C7—C81.374 (3)C25—C261.395 (4)
C7—H7A0.9500C25—H25A0.9500
C8—C91.419 (4)C26—C271.389 (3)
C8—H8A0.9500C26—H26A0.9500
C9—C101.370 (3)C27—C281.387 (4)
C9—H9A0.9500C27—C311.495 (4)
C10—C111.417 (3)C28—C291.390 (4)
C10—C121.526 (3)C28—H28A0.9500
C12—C131.573 (4)C29—H29A0.9500
C13—C211.553 (3)C30—H30A0.9800
C13—C141.555 (3)C30—H30B0.9800
C13—C221.565 (3)C30—H30C0.9800
C14—C151.506 (3)
C30—N1—C23114.8 (2)C17—C16—H16A120.8
C30—N1—C12115.90 (19)C16—C17—C18121.5 (2)
C23—N1—C12106.87 (18)C16—C17—H17A119.3
O1—C1—C2127.3 (2)C18—C17—H17A119.3
O1—C1—C12124.5 (2)C19—C18—C17120.3 (2)
C2—C1—C12108.11 (19)C19—C18—H18A119.9
C3—C2—C11120.0 (2)C17—C18—H18A119.9
C3—C2—C1132.3 (2)C18—C19—C20118.1 (2)
C11—C2—C1107.72 (19)C18—C19—H19A121.0
C2—C3—C4118.0 (2)C20—C19—H19A121.0
C2—C3—H3A121.0C19—C20—C15122.1 (2)
C4—C3—H3A121.0C19—C20—C21128.9 (2)
C5—C4—C3121.9 (2)C15—C20—C21109.0 (2)
C5—C4—H4A119.1O2—C21—C20127.1 (2)
C3—C4—H4A119.1O2—C21—C13125.6 (2)
C4—C5—C6121.2 (2)C20—C21—C13107.31 (18)
C4—C5—H5A119.4C24—C22—C23114.6 (2)
C6—C5—H5A119.4C24—C22—C13116.69 (19)
C11—C6—C5115.9 (2)C23—C22—C13104.93 (19)
C11—C6—C7116.4 (2)C24—C22—H22A106.7
C5—C6—C7127.6 (2)C23—C22—H22A106.7
C8—C7—C6119.9 (2)C13—C22—H22A106.7
C8—C7—H7A120.1N1—C23—C22103.67 (19)
C6—C7—H7A120.1N1—C23—H23A111.0
C7—C8—C9122.4 (2)C22—C23—H23A111.0
C7—C8—H8A118.8N1—C23—H23B111.0
C9—C8—H8A118.8C22—C23—H23B111.0
C10—C9—C8119.3 (2)H23A—C23—H23B109.0
C10—C9—H9A120.3C25—C24—C29118.6 (2)
C8—C9—H9A120.4C25—C24—C22119.6 (2)
C9—C10—C11118.1 (2)C29—C24—C22121.7 (2)
C9—C10—C12132.7 (2)C24—C25—C26121.4 (2)
C11—C10—C12109.21 (19)C24—C25—H25A119.3
C6—C11—C2123.0 (2)C26—C25—H25A119.3
C6—C11—C10123.9 (2)C27—C26—C25119.4 (2)
C2—C11—C10113.0 (2)C27—C26—H26A120.3
N1—C12—C10112.60 (19)C25—C26—H26A120.3
N1—C12—C13101.81 (18)C28—C27—C26120.0 (2)
C10—C12—C13117.51 (19)C28—C27—C31120.0 (2)
N1—C12—C1113.36 (18)C26—C27—C31119.9 (2)
C10—C12—C1101.53 (17)C27—C28—C29120.3 (2)
C13—C12—C1110.51 (18)C27—C28—H28A119.8
C21—C13—C14102.34 (18)C29—C28—H28A119.8
C21—C13—C22110.03 (17)C28—C29—C24120.2 (2)
C14—C13—C22119.3 (2)C28—C29—H29A119.9
C21—C13—C12107.02 (19)C24—C29—H29A119.9
C14—C13—C12113.39 (18)N1—C30—H30A109.5
C22—C13—C12104.30 (19)N1—C30—H30B109.5
C15—C14—C13104.15 (18)H30A—C30—H30B109.5
C15—C14—H14A110.9N1—C30—H30C109.5
C13—C14—H14A110.9H30A—C30—H30C109.5
C15—C14—H14B110.9H30B—C30—H30C109.5
C13—C14—H14B110.9F3—C31—F2106.7 (2)
H14A—C14—H14B108.9F3—C31—F1105.7 (2)
C16—C15—C20119.7 (2)F2—C31—F1105.8 (2)
C16—C15—C14129.1 (2)F3—C31—C27113.2 (2)
C20—C15—C14111.2 (2)F2—C31—C27112.7 (2)
C15—C16—C17118.4 (2)F1—C31—C27112.2 (2)
C15—C16—H16A120.8
O1—C1—C2—C35.3 (5)C22—C13—C14—C15145.3 (2)
C12—C1—C2—C3178.6 (3)C12—C13—C14—C1591.2 (2)
O1—C1—C2—C11171.9 (2)C13—C14—C15—C16163.4 (3)
C12—C1—C2—C114.2 (3)C13—C14—C15—C2018.0 (3)
C11—C2—C3—C40.4 (4)C20—C15—C16—C170.4 (4)
C1—C2—C3—C4177.3 (3)C14—C15—C16—C17178.8 (3)
C2—C3—C4—C51.4 (4)C15—C16—C17—C181.2 (4)
C3—C4—C5—C60.5 (4)C16—C17—C18—C190.6 (4)
C4—C5—C6—C111.4 (4)C17—C18—C19—C200.8 (4)
C4—C5—C6—C7176.6 (3)C18—C19—C20—C151.7 (4)
C11—C6—C7—C81.2 (4)C18—C19—C20—C21176.6 (3)
C5—C6—C7—C8176.8 (3)C16—C15—C20—C191.1 (4)
C6—C7—C8—C90.9 (4)C14—C15—C20—C19177.6 (2)
C7—C8—C9—C100.9 (4)C16—C15—C20—C21177.5 (2)
C8—C9—C10—C112.2 (4)C14—C15—C20—C213.8 (3)
C8—C9—C10—C12179.9 (3)C19—C20—C21—O213.3 (4)
C5—C6—C11—C22.5 (4)C15—C20—C21—O2168.3 (3)
C7—C6—C11—C2175.8 (2)C19—C20—C21—C13166.2 (3)
C5—C6—C11—C10178.5 (2)C15—C20—C21—C1312.3 (3)
C7—C6—C11—C100.2 (4)C14—C13—C21—O2158.2 (2)
C3—C2—C11—C61.6 (4)C22—C13—C21—O230.4 (3)
C1—C2—C11—C6176.0 (2)C12—C13—C21—O282.3 (3)
C3—C2—C11—C10178.0 (2)C14—C13—C21—C2022.3 (2)
C1—C2—C11—C100.4 (3)C22—C13—C21—C20150.1 (2)
C9—C10—C11—C61.9 (4)C12—C13—C21—C2097.1 (2)
C12—C10—C11—C6179.9 (2)C21—C13—C22—C24120.0 (2)
C9—C10—C11—C2174.4 (2)C14—C13—C22—C242.2 (3)
C12—C10—C11—C23.8 (3)C12—C13—C22—C24125.5 (2)
C30—N1—C12—C1061.1 (3)C21—C13—C22—C23112.0 (2)
C23—N1—C12—C10169.48 (19)C14—C13—C22—C23130.3 (2)
C30—N1—C12—C13172.15 (19)C12—C13—C22—C232.5 (2)
C23—N1—C12—C1342.7 (2)C30—N1—C23—C22171.83 (18)
C30—N1—C12—C153.5 (3)C12—N1—C23—C2241.8 (2)
C23—N1—C12—C176.0 (2)C24—C22—C23—N1151.82 (18)
C9—C10—C12—N150.4 (4)C13—C22—C23—N122.5 (2)
C11—C10—C12—N1127.4 (2)C23—C22—C24—C25128.6 (2)
C9—C10—C12—C1367.4 (3)C13—C22—C24—C25108.2 (2)
C11—C10—C12—C13114.8 (2)C23—C22—C24—C2950.6 (3)
C9—C10—C12—C1172.0 (3)C13—C22—C24—C2972.5 (3)
C11—C10—C12—C15.8 (2)C29—C24—C25—C261.7 (4)
O1—C1—C12—N149.2 (3)C22—C24—C25—C26177.6 (2)
C2—C1—C12—N1127.1 (2)C24—C25—C26—C270.9 (4)
O1—C1—C12—C10170.2 (2)C25—C26—C27—C280.6 (4)
C2—C1—C12—C106.0 (2)C25—C26—C27—C31176.3 (2)
O1—C1—C12—C1364.4 (3)C26—C27—C28—C291.5 (4)
C2—C1—C12—C13119.4 (2)C31—C27—C28—C29175.4 (2)
N1—C12—C13—C2190.2 (2)C27—C28—C29—C240.7 (4)
C10—C12—C13—C2133.3 (2)C25—C24—C29—C280.8 (4)
C1—C12—C13—C21149.07 (18)C22—C24—C29—C28178.4 (2)
N1—C12—C13—C14157.69 (18)C28—C27—C31—F3160.1 (2)
C10—C12—C13—C1478.8 (2)C26—C27—C31—F323.0 (3)
C1—C12—C13—C1437.0 (3)C28—C27—C31—F238.9 (3)
N1—C12—C13—C2226.4 (2)C26—C27—C31—F2144.2 (2)
C10—C12—C13—C22149.85 (18)C28—C27—C31—F180.4 (3)
C1—C12—C13—C2294.3 (2)C26—C27—C31—F196.5 (3)
C21—C13—C14—C1523.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.952.293.166 (3)153
C4—H4A···O2i0.952.523.364 (3)147
C16—H16A···N1ii0.952.513.429 (3)163
C26—H26A···O1iii0.952.513.324 (3)144
C5—H5A···Cg1iv0.952.743.417 (3)129
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H22F3NO2
Mr497.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8373 (2), 20.1333 (5), 13.7129 (3)
β (°) 96.243 (1)
V3)2425.39 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
27133, 7039, 4753
Rint0.072
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.186, 1.10
No. of reflections7039
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C29—H29A···O10.95002.29003.166 (3)153.00
C4—H4A···O2i0.952.523.364 (3)147.3
C16—H16A···N1ii0.952.513.429 (3)162.8
C26—H26A···O1iii0.95002.51003.324 (3)144.00
C5—H5A···Cg1iv0.95002.743.417 (3)129
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti of Sains Malysia, Penang, and the Malaysian Goverment for the Research University Grant Nos. 1001/PSK/8620012 and 1001/PFIZIK/811151 and also for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012). Acta Cryst. E68, o545–o546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Ismail, R., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o3293–o3294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1296-o1297
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds