organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1349-o1350

N-(3,4-Di­fluoro­phen­yl)-2,2-di­phenyl­acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu, PO, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C20H15F2NO, the mean plane of the acetamide group makes dihedral angles of 88.26 (6), 78.30 (7) and 9.83 (6)° with the two terminal benzene rings and difluoro-substituted benzene ring, respectively. One F atom is disordered over two orientations rotated by 180°, with a site-occupancy ratio of 0.557 (2):0.443 (2). An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds into chains along the c axis. The crystal structure is further consolidated by C—H⋯π inter­actions.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Praveen et al. (2011a[Praveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2602-o2603.],b[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604.],c[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826.]); Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941-o2942.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926-o2927.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15F2NO

  • Mr = 323.33

  • Monoclinic, P 21 /c

  • a = 9.9756 (2) Å

  • b = 18.0181 (3) Å

  • c = 9.8107 (2) Å

  • β = 117.064 (1)°

  • V = 1570.29 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.54 × 0.41 × 0.37 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.964

  • 30289 measured reflections

  • 6276 independent reflections

  • 4829 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.130

  • S = 1.03

  • 6276 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.881 (15) 2.088 (16) 2.9134 (11) 155.7 (14)
C13—H13ACg1ii 0.95 2.98 3.7633 (11) 140
C16—H16ACg2iii 0.95 2.82 3.5998 (15) 140
C20—H20A⋯O1 0.95 2.29 2.8878 (14) 120
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). The crystal structures of some acetamide derivatives viz. N-(4-chloro-1,3-benzothiazol-2-yl)-2-(3-methylphenyl)acetamide monohydrate, N-(3-chloro-4-fluorophenyl)-2,2-diphenylacetamide and N-(3-chloro-4-fluorophenyl)-2-(naphthalen-1-yl)acetamide (Praveen et al., 2011a,b,c) have been recently reported. In continuation of our work on the synthesis of amides (Fun et al., 2011a,b), we report herein the crystal structure of the title compound (I).

The molecular structure of the title compound (I) is shown in Fig. 1. The mean plane of the acetamide group (C7/C14/N1/O1) makes dihedral angles of 88.26 (6), 78.30 (7) and 9.83 (6)° with the two terminal benzene rings (C1–C6 and C8–C13) and difluoro-substituted benzene ring (C15–C20), respectively. The F1 fluorine atom is disordered over two orientations rotated by 180° with a site-occupancy ratio of 0.557 (2):0.443 (2). The molecular structure is stabilized by an intramolecular C20—H20A···O1 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Praveen et al., 2011a,b,c; Fun et al., 2011a,b). In the crystal structure (Fig. 2), the molecules are linked via intermolecular N1—H1N1···O1 hydrogen bonds (Table 1) into chains along the c axis. The crystal structure is further consolidated by C—H···π interactions (Table 1), involving the C1–C6 ring (centroid Cg 1) and C8—C13 ring (centroid Cg 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Praveen et al. (2011a,b,c); Fun et al. (2011a,b). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Diphenylacetic acid (0.212 g, 1 mmol), 2,6-difluoroaniline (0.1 ml, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h, then was poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, and extracted thrice with dichloromethane. The organic layer was washed with a saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from a methylene chloride/N,N-dimethyl formamide mixture (1:1 v/v) by the slow evaporation method (m.p.: 403–405 K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely [N–H = 0.881 (15) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (C—H = 0.95–1.00 Å). The fluorine atom is disordered over two positions with refined site-occupancy ratio of 0.557 (2):0.443 (2).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement. An intramolecular hydrogen bond is shown a a dashed line. Bonds invoving the minor component of disorder are shown as open bonds.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound, viewed along the b axis. H atoms not involved in intermolecular hydrogen interactions (dashed lines) and the minor components of disorder have been omitted for clarity.
N-(3,4-Difluorophenyl)-2,2-diphenylacetamide top
Crystal data top
C20H15F2NOF(000) = 672
Mr = 323.33Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9889 reflections
a = 9.9756 (2) Åθ = 2.3–33.5°
b = 18.0181 (3) ŵ = 0.10 mm1
c = 9.8107 (2) ÅT = 100 K
β = 117.064 (1)°Block, colourless
V = 1570.29 (5) Å30.54 × 0.41 × 0.37 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6276 independent reflections
Radiation source: fine-focus sealed tube4829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 33.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1515
Tmin = 0.947, Tmax = 0.964k = 2128
30289 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.484P]
where P = (Fo2 + 2Fc2)/3
6276 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H15F2NOV = 1570.29 (5) Å3
Mr = 323.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9756 (2) ŵ = 0.10 mm1
b = 18.0181 (3) ÅT = 100 K
c = 9.8107 (2) Å0.54 × 0.41 × 0.37 mm
β = 117.064 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4829 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.028
30289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
6276 reflectionsΔρmin = 0.22 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.47032 (19)0.52149 (9)0.89774 (16)0.0561 (5)0.557 (2)
F1X0.56321 (18)0.57786 (10)0.4987 (2)0.0389 (5)0.443 (2)
F20.63567 (10)0.50352 (5)0.75745 (11)0.0597 (3)
O10.13830 (10)0.74131 (4)0.30771 (8)0.03033 (18)
N10.16602 (10)0.70449 (5)0.54187 (9)0.02392 (17)
C10.28769 (13)0.78053 (6)0.36744 (13)0.0319 (2)
H1A0.27420.82520.42380.038*
C20.42202 (15)0.74209 (7)0.31632 (16)0.0392 (3)
H2A0.49890.75980.33970.047*
C30.44453 (15)0.67783 (8)0.23120 (16)0.0412 (3)
H3A0.53700.65160.19540.049*
C40.33179 (16)0.65211 (7)0.19871 (15)0.0409 (3)
H4A0.34720.60820.13970.049*
C50.19550 (14)0.69013 (7)0.25202 (13)0.0334 (2)
H5A0.11830.67180.22980.040*
C60.17167 (12)0.75480 (6)0.33758 (11)0.02586 (19)
C70.02249 (12)0.79671 (6)0.40525 (10)0.02398 (18)
H7A0.00160.80950.51320.029*
C80.02398 (12)0.86899 (5)0.32524 (11)0.02398 (18)
C90.06364 (13)0.92810 (6)0.41162 (12)0.0299 (2)
H9A0.12190.92270.51920.036*
C100.06666 (15)0.99493 (6)0.34203 (14)0.0344 (2)
H10A0.12721.03480.40200.041*
C110.01879 (15)1.00341 (6)0.18504 (14)0.0335 (2)
H11A0.01781.04920.13740.040*
C120.10549 (13)0.94485 (6)0.09827 (13)0.0315 (2)
H12A0.16340.95050.00930.038*
C130.10860 (12)0.87771 (6)0.16718 (11)0.02652 (19)
H13A0.16830.83780.10660.032*
C140.10303 (12)0.74572 (5)0.41253 (10)0.02300 (18)
C150.28155 (11)0.65108 (5)0.58492 (10)0.02453 (19)
C160.31134 (13)0.61006 (6)0.71693 (11)0.0316 (2)
H16A0.25080.61620.76790.038*
C170.43000 (15)0.56061 (7)0.77189 (13)0.0407 (3)
H17A0.45120.53270.86160.049*0.443 (2)
C180.51753 (15)0.55115 (7)0.69909 (15)0.0426 (3)
C190.48590 (14)0.58994 (7)0.56743 (14)0.0370 (3)
H19A0.54570.58220.51600.044*0.557 (2)
C200.36784 (12)0.64020 (6)0.50857 (12)0.0284 (2)
H20A0.34630.66680.41730.034*
H1N10.1318 (17)0.7138 (8)0.6086 (17)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0638 (10)0.0395 (8)0.0371 (7)0.0028 (7)0.0014 (7)0.0203 (6)
F1X0.0291 (8)0.0390 (9)0.0512 (10)0.0090 (7)0.0206 (7)0.0087 (7)
F20.0463 (5)0.0449 (5)0.0598 (5)0.0190 (4)0.0003 (4)0.0138 (4)
O10.0440 (4)0.0325 (4)0.0208 (3)0.0134 (3)0.0203 (3)0.0071 (3)
N10.0304 (4)0.0267 (4)0.0160 (3)0.0008 (3)0.0118 (3)0.0027 (3)
C10.0358 (6)0.0282 (5)0.0345 (5)0.0092 (4)0.0184 (4)0.0082 (4)
C20.0332 (6)0.0376 (6)0.0483 (7)0.0096 (5)0.0198 (5)0.0154 (5)
C30.0347 (6)0.0402 (7)0.0429 (6)0.0029 (5)0.0126 (5)0.0131 (5)
C40.0485 (7)0.0336 (6)0.0398 (6)0.0085 (5)0.0195 (6)0.0023 (5)
C50.0405 (6)0.0308 (5)0.0332 (5)0.0027 (5)0.0205 (5)0.0032 (4)
C60.0326 (5)0.0244 (4)0.0223 (4)0.0032 (4)0.0140 (4)0.0047 (3)
C70.0324 (5)0.0243 (4)0.0185 (4)0.0036 (4)0.0144 (3)0.0003 (3)
C80.0311 (5)0.0225 (4)0.0228 (4)0.0043 (4)0.0161 (4)0.0008 (3)
C90.0409 (6)0.0266 (5)0.0263 (4)0.0002 (4)0.0189 (4)0.0054 (4)
C100.0471 (7)0.0241 (5)0.0403 (6)0.0028 (5)0.0271 (5)0.0073 (4)
C110.0433 (6)0.0236 (5)0.0432 (6)0.0061 (4)0.0280 (5)0.0052 (4)
C120.0350 (5)0.0312 (5)0.0304 (5)0.0059 (4)0.0167 (4)0.0077 (4)
C130.0312 (5)0.0257 (5)0.0241 (4)0.0030 (4)0.0139 (4)0.0016 (3)
C140.0307 (5)0.0227 (4)0.0169 (3)0.0018 (4)0.0120 (3)0.0009 (3)
C150.0281 (5)0.0220 (4)0.0182 (3)0.0023 (4)0.0059 (3)0.0023 (3)
C160.0382 (6)0.0274 (5)0.0215 (4)0.0067 (4)0.0069 (4)0.0051 (4)
C170.0451 (7)0.0289 (6)0.0278 (5)0.0035 (5)0.0010 (5)0.0100 (4)
C180.0370 (6)0.0289 (6)0.0396 (6)0.0062 (5)0.0020 (5)0.0058 (5)
C190.0332 (6)0.0319 (6)0.0374 (6)0.0046 (5)0.0086 (5)0.0013 (4)
C200.0304 (5)0.0270 (5)0.0244 (4)0.0035 (4)0.0094 (4)0.0035 (3)
Geometric parameters (Å, º) top
F1—C171.3157 (17)C8—C91.3938 (15)
F1X—C191.253 (2)C8—C131.3967 (13)
F2—C181.3561 (14)C9—C101.3913 (16)
O1—C141.2316 (11)C9—H9A0.9500
N1—C141.3533 (12)C10—C111.3883 (18)
N1—C151.4107 (14)C10—H10A0.9500
N1—H1N10.881 (15)C11—C121.3843 (17)
C1—C21.3839 (18)C11—H11A0.9500
C1—C61.3960 (15)C12—C131.3931 (15)
C1—H1A0.9500C12—H12A0.9500
C2—C31.385 (2)C13—H13A0.9500
C2—H2A0.9500C15—C201.3882 (15)
C3—C41.381 (2)C15—C161.4006 (13)
C3—H3A0.9500C16—C171.3802 (18)
C4—C51.3944 (18)C16—H16A0.9500
C4—H4A0.9500C17—C181.367 (2)
C5—C61.3918 (15)C17—H17A0.9500
C5—H5A0.9500C18—C191.3733 (18)
C6—C71.5253 (15)C19—C201.3863 (16)
C7—C81.5172 (14)C19—H19A0.9500
C7—C141.5283 (14)C20—H20A0.9500
C7—H7A1.0000
C14—N1—C15128.51 (8)C9—C10—H10A120.0
C14—N1—H1N1114.9 (10)C12—C11—C10119.66 (10)
C15—N1—H1N1116.6 (10)C12—C11—H11A120.2
C2—C1—C6121.09 (11)C10—C11—H11A120.2
C2—C1—H1A119.5C11—C12—C13120.60 (10)
C6—C1—H1A119.5C11—C12—H12A119.7
C1—C2—C3120.10 (12)C13—C12—H12A119.7
C1—C2—H2A120.0C12—C13—C8120.06 (10)
C3—C2—H2A120.0C12—C13—H13A120.0
C4—C3—C2119.61 (12)C8—C13—H13A120.0
C4—C3—H3A120.2O1—C14—N1124.08 (9)
C2—C3—H3A120.2O1—C14—C7122.62 (8)
C3—C4—C5120.39 (12)N1—C14—C7113.25 (8)
C3—C4—H4A119.8C20—C15—C16120.11 (10)
C5—C4—H4A119.8C20—C15—N1123.88 (8)
C6—C5—C4120.49 (11)C16—C15—N1115.95 (9)
C6—C5—H5A119.8C17—C16—C15119.03 (11)
C4—C5—H5A119.8C17—C16—H16A120.5
C5—C6—C1118.30 (11)C15—C16—H16A120.5
C5—C6—C7122.82 (10)F1—C17—C18115.35 (14)
C1—C6—C7118.83 (9)F1—C17—C16123.65 (15)
C8—C7—C6114.95 (8)C18—C17—C16120.96 (11)
C8—C7—C14110.80 (8)C18—C17—H17A119.5
C6—C7—C14109.82 (8)C16—C17—H17A119.5
C8—C7—H7A107.0F2—C18—C17119.82 (12)
C6—C7—H7A107.0F2—C18—C19120.18 (14)
C14—C7—H7A107.0C17—C18—C19120.00 (11)
C9—C8—C13118.95 (9)F1X—C19—C18118.92 (13)
C9—C8—C7119.05 (9)F1X—C19—C20120.23 (13)
C13—C8—C7121.99 (9)C18—C19—C20120.82 (12)
C10—C9—C8120.71 (10)C18—C19—H19A119.6
C10—C9—H9A119.6C20—C19—H19A119.6
C8—C9—H9A119.6C19—C20—C15119.03 (10)
C11—C10—C9120.01 (11)C19—C20—H20A120.5
C11—C10—H10A120.0C15—C20—H20A120.5
C6—C1—C2—C31.41 (17)C15—N1—C14—O11.15 (17)
C1—C2—C3—C40.48 (18)C15—N1—C14—C7178.67 (9)
C2—C3—C4—C50.48 (19)C8—C7—C14—O137.01 (13)
C3—C4—C5—C60.52 (19)C6—C7—C14—O191.06 (11)
C4—C5—C6—C10.38 (16)C8—C7—C14—N1145.43 (9)
C4—C5—C6—C7177.03 (10)C6—C7—C14—N186.51 (10)
C2—C1—C6—C51.35 (16)C14—N1—C15—C2010.68 (16)
C2—C1—C6—C7176.17 (10)C14—N1—C15—C16172.12 (10)
C5—C6—C7—C8106.72 (11)C20—C15—C16—C171.90 (16)
C1—C6—C7—C875.88 (11)N1—C15—C16—C17175.41 (10)
C5—C6—C7—C1419.02 (12)C15—C16—C17—F1177.53 (13)
C1—C6—C7—C14158.38 (9)C15—C16—C17—C180.26 (18)
C6—C7—C8—C9145.85 (9)F1—C17—C18—F20.46 (19)
C14—C7—C8—C988.93 (10)C16—C17—C18—F2178.43 (11)
C6—C7—C8—C1335.24 (13)F1—C17—C18—C19179.40 (13)
C14—C7—C8—C1389.99 (11)C16—C17—C18—C191.44 (19)
C13—C8—C9—C100.23 (16)F2—C18—C19—F1X3.4 (2)
C7—C8—C9—C10179.18 (10)C17—C18—C19—F1X176.70 (14)
C8—C9—C10—C110.33 (17)F2—C18—C19—C20178.36 (11)
C9—C10—C11—C120.68 (17)C17—C18—C19—C201.50 (19)
C10—C11—C12—C130.46 (17)F1X—C19—C20—C15178.32 (14)
C11—C12—C13—C80.11 (16)C18—C19—C20—C150.14 (18)
C9—C8—C13—C120.45 (15)C16—C15—C20—C191.84 (16)
C7—C8—C13—C12179.37 (9)N1—C15—C20—C19175.24 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.881 (15)2.088 (16)2.9134 (11)155.7 (14)
C13—H13A···Cg1ii0.952.983.7633 (11)140
C16—H16A···Cg2iii0.952.823.5998 (15)140
C20—H20A···O10.952.292.8878 (14)120
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H15F2NO
Mr323.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9756 (2), 18.0181 (3), 9.8107 (2)
β (°) 117.064 (1)
V3)1570.29 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.41 × 0.37
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.947, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
30289, 6276, 4829
Rint0.028
(sin θ/λ)max1)0.783
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.130, 1.03
No. of reflections6276
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.881 (15)2.088 (16)2.9134 (11)155.7 (14)
C13—H13A···Cg1ii0.95002.983.7633 (11)140
C16—H16A···Cg2iii0.95002.823.5998 (15)140
C20—H20A···O10.95002.29002.8878 (14)120.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS–Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2602–o2603.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1349-o1350
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds