metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-methyl­piperidinium) tetra­chlorido­ferrate dichloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bSchool of Chemical and Biomedical Engineering, YiChun University, YiChun 336000, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn

(Received 26 March 2012; accepted 18 April 2012; online 21 April 2012)

The asymmetric unit of the title salt, (C6H14N)3[FeCl4]Cl2, consists of a tetra­hedral tetra­chloro­ferrate anion, three independent 2-methyl­piperidinium cations and two chloride ions. All the piperidine rings adopt chair conformations. In the crystal, the organic cations and the free chloride anions are linked into chains parallel to the a axis by N—H⋯Cl hydrogen bonds.

Related literature

For general background to ferroelectric compounds with metal-organic framework structures, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H14N)3[FeCl4]Cl2

  • Mr = 569.10

  • Monoclinic, P 21 /c

  • a = 10.443 (2) Å

  • b = 23.239 (5) Å

  • c = 14.494 (5) Å

  • β = 122.03 (2)°

  • V = 2982.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.21 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.757, Tmax = 0.809

  • 30302 measured reflections

  • 6848 independent reflections

  • 2991 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.170

  • S = 1.03

  • 6848 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯Cl5 0.90 2.19 3.084 (4) 175
N3—H3A⋯Cl6 0.90 2.24 3.133 (4) 170
N2—H2D⋯Cl6i 0.90 2.26 3.118 (4) 160
N2—H2C⋯Cl5 0.90 2.26 3.156 (4) 171
N1—H1B⋯Cl6ii 0.90 2.28 3.183 (4) 178
N1—H1A⋯Cl5iii 0.90 2.21 3.105 (4) 174
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dielectric constant measurements of compounds as a function of temperature is the basic method to find potential ferroelectric phase change materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the study carried out on the title compound indicated that the permittivity is temperature-independent, suggesting that there may be no dielectric disuniformity between 80 K to 350 K (m.p. 393–381 K). In this report the crystal structure of the title compound is reported.

An ORTEP diagram of the asymmetric unit of the title compound is shown in Fig. 1. In the tetrachloroferrate anion, the iron metal is coordinated in a tetrahedral geometry by four chloride anions with Fe—Cl distances ranging from 2.1698 (19) to 2.1909 (17) Å. In the three independent cations, the piperidine rings adopt a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.566 (5) Å, θ = 178.1 (6)° for ring N1/C8/C13/C19/C11/C12; Q = 0.551 (7) Å, θ = 1.7 (8)° for ring N2/C15/C14/C19/C18/C17; and Q = 0.561 (8) Å, θ = 1.7 (7)° for ring N3/C2–C6. The crystal structure is consolidated by an extensive network of intramolecular N—H···Cl hydrogen bonds (Table 1, Fig. 2) generating one-dimensional chains along the a axis.

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

An aqueous solution of 2-methylpiperidine (1.64 g, 20 mmol) and hydrochloric acid (10 mmol) was treated with FeCl3 (1.75 g, 10 mmol). After the mixture was churned for a few minutes, slow evaporation of the resulting solution yielded yellow crystals after a few days.

Refinement top

Hydrogen atom positions were placed at calculated positions and allowed to ride on their parent atoms, with C–H = 0.96–0.97 Å, N–H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C, N) or or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. Dashed lines indicate hydrogen bonds.
Tris(2-methylpiperidinium) tetrachloridoferrate dichloride top
Crystal data top
(C6H14N)3[FeCl4]Cl2F(000) = 1196
Mr = 569.10Dx = 1.268 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6848 reflections
a = 10.443 (2) Åθ = 2.7–27.5°
b = 23.239 (5) ŵ = 1.05 mm1
c = 14.494 (5) ÅT = 293 K
β = 122.03 (2)°Block, yellow
V = 2982.0 (15) Å30.28 × 0.26 × 0.21 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.116
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3030
Tmin = 0.757, Tmax = 0.809l = 1818
30302 measured reflections2 standard reflections every 150 reflections
6848 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0479P)2 + 2.3248P]
where P = (Fo2 + 2Fc2)/3
6848 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C6H14N)3[FeCl4]Cl2V = 2982.0 (15) Å3
Mr = 569.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.443 (2) ŵ = 1.05 mm1
b = 23.239 (5) ÅT = 293 K
c = 14.494 (5) Å0.28 × 0.26 × 0.21 mm
β = 122.03 (2)°
Data collection top
Rigaku SCXmini
diffractometer
2991 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.116
Tmin = 0.757, Tmax = 0.8092 standard reflections every 150 reflections
30302 measured reflections intensity decay: none
6848 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.03Δρmax = 0.49 e Å3
6848 reflectionsΔρmin = 0.34 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.6651 (7)0.8225 (3)0.4704 (5)0.0846 (18)
H2A0.57690.79960.45200.101*
H2B0.63410.85260.41620.101*
C30.7818 (8)0.7851 (3)0.4700 (6)0.104 (2)
H3C0.73800.76620.40000.125*
H3D0.86510.80880.48070.125*
C40.8398 (8)0.7407 (3)0.5579 (6)0.103 (2)
H4A0.91740.71800.55740.124*
H4B0.75810.71510.54390.124*
C50.9046 (7)0.7684 (3)0.6683 (5)0.092 (2)
H5A0.93720.73870.72340.110*
H5B0.99210.79130.68520.110*
C60.7888 (6)0.8063 (2)0.6706 (5)0.0697 (16)
H60.70480.78200.65920.084*
C70.0265 (6)0.6181 (2)0.8804 (4)0.0723 (16)
H7A0.00980.58520.90010.108*
H7B0.05060.64700.84910.108*
H7C0.11460.63320.94410.108*
C80.0663 (5)0.6003 (2)0.7987 (4)0.0519 (12)
H80.11150.63340.78430.062*
C100.0217 (6)0.5604 (3)0.6130 (4)0.0774 (17)
H10A0.10960.54550.54750.093*
H10B0.01610.59310.59280.093*
C110.0982 (6)0.5147 (3)0.6639 (4)0.0778 (17)
H11A0.05580.48010.67480.093*
H11B0.13200.50530.61490.093*
C120.2305 (6)0.5342 (2)0.7709 (4)0.0696 (16)
H12A0.30240.50290.80440.084*
H12B0.28070.56590.75920.084*
N10.1796 (4)0.55291 (16)0.8445 (3)0.0529 (10)
H1A0.26050.56470.90800.063*
H1B0.13920.52250.85870.063*
C140.4725 (7)0.8436 (3)0.8182 (6)0.111 (2)
H14A0.47960.80690.85260.134*
H14B0.51850.83930.77540.134*
C150.3094 (6)0.8596 (3)0.7446 (5)0.0861 (19)
H15A0.26000.85970.78540.103*
H15B0.25920.83150.68650.103*
C170.3781 (6)0.9647 (3)0.7782 (5)0.0782 (17)
H170.33130.96850.82120.094*
C180.5411 (6)0.9466 (3)0.8543 (5)0.095 (2)
H18A0.59180.94630.81440.114*
H18B0.59130.97490.91210.114*
C190.5566 (8)0.8884 (4)0.9041 (5)0.115 (3)
H19A0.66260.87800.94770.138*
H19B0.51760.88980.95170.138*
C200.8490 (8)0.8379 (3)0.7751 (5)0.105 (2)
H20A0.92900.86310.78640.157*
H20B0.88720.81090.83400.157*
H20C0.76960.86020.77230.157*
C210.3573 (7)1.0197 (3)0.7205 (6)0.109 (2)
H21A0.40891.01810.68200.163*
H21B0.39801.05070.77230.163*
H21C0.25161.02620.66970.163*
Cl10.2723 (2)0.69890 (8)0.69137 (18)0.1180 (7)
Cl20.2821 (3)0.74617 (8)0.45792 (17)0.1363 (8)
Cl30.24802 (18)0.59654 (7)0.49909 (14)0.0918 (5)
Cl40.59116 (16)0.67217 (7)0.67223 (14)0.0900 (5)
Cl50.46403 (15)0.91536 (7)0.56780 (12)0.0779 (5)
Cl60.95787 (14)0.94390 (6)0.60501 (12)0.0673 (4)
Fe10.34492 (8)0.67911 (3)0.57877 (6)0.0621 (3)
C130.0665 (6)0.5796 (2)0.6919 (4)0.0666 (15)
H13A0.14000.61050.65890.080*
H13B0.11430.54780.70550.080*
N20.2980 (4)0.91840 (17)0.6970 (3)0.0590 (11)
H2C0.33530.91650.65360.071*
H2D0.19980.92800.65510.071*
N30.7290 (4)0.84896 (17)0.5811 (3)0.0630 (12)
H3A0.80390.87320.59390.076*
H3B0.65640.86980.58110.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.076 (4)0.088 (5)0.078 (4)0.004 (4)0.033 (4)0.010 (4)
C30.126 (6)0.095 (5)0.113 (6)0.004 (5)0.078 (5)0.012 (5)
C40.100 (5)0.079 (5)0.130 (7)0.013 (4)0.060 (5)0.005 (5)
C50.077 (4)0.068 (4)0.114 (6)0.011 (3)0.040 (4)0.013 (4)
C60.057 (3)0.071 (4)0.073 (4)0.013 (3)0.029 (3)0.004 (3)
C70.075 (4)0.075 (4)0.077 (4)0.008 (3)0.048 (3)0.006 (3)
C80.053 (3)0.049 (3)0.060 (3)0.001 (2)0.034 (3)0.002 (2)
C100.067 (4)0.099 (5)0.053 (3)0.013 (3)0.023 (3)0.004 (3)
C110.081 (4)0.093 (4)0.064 (4)0.010 (4)0.042 (4)0.010 (3)
C120.063 (4)0.080 (4)0.078 (4)0.023 (3)0.046 (4)0.009 (3)
N10.042 (2)0.062 (3)0.045 (2)0.002 (2)0.016 (2)0.004 (2)
C140.075 (5)0.094 (5)0.133 (6)0.002 (4)0.034 (5)0.043 (5)
C150.059 (4)0.083 (4)0.105 (5)0.011 (3)0.036 (4)0.014 (4)
C170.065 (4)0.093 (5)0.083 (4)0.004 (3)0.043 (4)0.020 (4)
C180.061 (4)0.110 (6)0.084 (5)0.019 (4)0.019 (4)0.013 (4)
C190.081 (5)0.139 (7)0.082 (5)0.021 (5)0.014 (4)0.031 (5)
C200.110 (5)0.116 (6)0.078 (5)0.002 (4)0.042 (4)0.013 (4)
C210.096 (5)0.057 (4)0.167 (7)0.009 (4)0.066 (5)0.002 (4)
Cl10.1307 (16)0.1068 (14)0.169 (2)0.0277 (11)0.1153 (16)0.0416 (13)
Cl20.1509 (19)0.0924 (14)0.1254 (16)0.0199 (13)0.0461 (15)0.0492 (12)
Cl30.0892 (12)0.0724 (10)0.0997 (12)0.0215 (8)0.0405 (10)0.0179 (9)
Cl40.0601 (9)0.0925 (12)0.1054 (13)0.0082 (8)0.0358 (9)0.0055 (9)
Cl50.0471 (8)0.1127 (12)0.0689 (9)0.0165 (8)0.0274 (7)0.0055 (8)
Cl60.0538 (8)0.0616 (8)0.0963 (11)0.0050 (6)0.0465 (8)0.0059 (7)
Fe10.0588 (5)0.0532 (5)0.0712 (5)0.0023 (4)0.0324 (4)0.0019 (4)
C130.055 (3)0.079 (4)0.059 (4)0.010 (3)0.026 (3)0.005 (3)
N20.037 (2)0.071 (3)0.062 (3)0.002 (2)0.021 (2)0.001 (2)
N30.039 (2)0.064 (3)0.086 (3)0.003 (2)0.033 (2)0.007 (3)
Geometric parameters (Å, º) top
C2—C31.499 (8)N1—H1B0.9000
C2—N31.504 (6)C14—C191.499 (9)
C2—H2A0.9700C14—C151.499 (8)
C2—H2B0.9700C14—H14A0.9700
C3—C41.494 (8)C14—H14B0.9700
C3—H3C0.9700C15—N21.507 (6)
C3—H3D0.9700C15—H15A0.9700
C4—C51.512 (8)C15—H15B0.9700
C4—H4A0.9700C17—C211.481 (8)
C4—H4B0.9700C17—N21.482 (6)
C5—C61.511 (7)C17—C181.516 (8)
C5—H5A0.9700C17—H170.9800
C5—H5B0.9700C18—C191.501 (8)
C6—N31.482 (6)C18—H18A0.9700
C6—C201.489 (7)C18—H18B0.9700
C6—H60.9800C19—H19A0.9700
C7—C81.506 (6)C19—H19B0.9700
C7—H7A0.9600C20—H20A0.9600
C7—H7B0.9600C20—H20B0.9600
C7—H7C0.9600C20—H20C0.9600
C8—N11.490 (5)C21—H21A0.9600
C8—C131.508 (6)C21—H21B0.9600
C8—H80.9800C21—H21C0.9600
C10—C111.505 (7)Cl1—Fe12.1826 (19)
C10—C131.513 (7)Cl2—Fe12.1698 (19)
C10—H10A0.9700Cl3—Fe12.1909 (17)
C10—H10B0.9700Cl4—Fe12.1860 (17)
C11—C121.499 (7)C13—H13A0.9700
C11—H11A0.9700C13—H13B0.9700
C11—H11B0.9700N2—H2C0.9000
C12—N11.487 (6)N2—H2D0.9000
C12—H12A0.9700N3—H3A0.9000
C12—H12B0.9700N3—H3B0.9000
N1—H1A0.9000
C3—C2—N3109.8 (5)C19—C14—C15111.3 (6)
C3—C2—H2A109.7C19—C14—H14A109.4
N3—C2—H2A109.7C15—C14—H14A109.4
C3—C2—H2B109.7C19—C14—H14B109.4
N3—C2—H2B109.7C15—C14—H14B109.4
H2A—C2—H2B108.2H14A—C14—H14B108.0
C4—C3—C2111.1 (6)C14—C15—N2109.5 (4)
C4—C3—H3C109.4C14—C15—H15A109.8
C2—C3—H3C109.4N2—C15—H15A109.8
C4—C3—H3D109.4C14—C15—H15B109.8
C2—C3—H3D109.4N2—C15—H15B109.8
H3C—C3—H3D108.0H15A—C15—H15B108.2
C3—C4—C5111.1 (6)C21—C17—N2109.1 (5)
C3—C4—H4A109.4C21—C17—C18115.0 (5)
C5—C4—H4A109.4N2—C17—C18108.7 (5)
C3—C4—H4B109.4C21—C17—H17108.0
C5—C4—H4B109.4N2—C17—H17108.0
H4A—C4—H4B108.0C18—C17—H17108.0
C6—C5—C4111.0 (5)C19—C18—C17113.1 (5)
C6—C5—H5A109.4C19—C18—H18A109.0
C4—C5—H5A109.4C17—C18—H18A109.0
C6—C5—H5B109.4C19—C18—H18B109.0
C4—C5—H5B109.4C17—C18—H18B109.0
H5A—C5—H5B108.0H18A—C18—H18B107.8
N3—C6—C20108.4 (5)C14—C19—C18111.2 (5)
N3—C6—C5109.9 (5)C14—C19—H19A109.4
C20—C6—C5113.5 (5)C18—C19—H19A109.4
N3—C6—H6108.3C14—C19—H19B109.4
C20—C6—H6108.3C18—C19—H19B109.4
C5—C6—H6108.3H19A—C19—H19B108.0
C8—C7—H7A109.5C6—C20—H20A109.5
C8—C7—H7B109.5C6—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C8—C7—H7C109.5C6—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
N1—C8—C7109.7 (4)C17—C21—H21A109.5
N1—C8—C13107.6 (4)C17—C21—H21B109.5
C7—C8—C13114.0 (4)H21A—C21—H21B109.5
N1—C8—H8108.4C17—C21—H21C109.5
C7—C8—H8108.4H21A—C21—H21C109.5
C13—C8—H8108.4H21B—C21—H21C109.5
C11—C10—C13110.4 (5)Cl2—Fe1—Cl1112.09 (9)
C11—C10—H10A109.6Cl2—Fe1—Cl4107.82 (8)
C13—C10—H10A109.6Cl1—Fe1—Cl4108.26 (8)
C11—C10—H10B109.6Cl2—Fe1—Cl3110.25 (8)
C13—C10—H10B109.6Cl1—Fe1—Cl3109.40 (7)
H10A—C10—H10B108.1Cl4—Fe1—Cl3108.95 (7)
C12—C11—C10111.4 (5)C8—C13—C10112.6 (4)
C12—C11—H11A109.4C8—C13—H13A109.1
C10—C11—H11A109.4C10—C13—H13A109.1
C12—C11—H11B109.4C8—C13—H13B109.1
C10—C11—H11B109.4C10—C13—H13B109.1
H11A—C11—H11B108.0H13A—C13—H13B107.8
N1—C12—C11110.3 (4)C17—N2—C15114.9 (4)
N1—C12—H12A109.6C17—N2—H2C108.6
C11—C12—H12A109.6C15—N2—H2C108.6
N1—C12—H12B109.6C17—N2—H2D108.6
C11—C12—H12B109.6C15—N2—H2D108.6
H12A—C12—H12B108.1H2C—N2—H2D107.5
C12—N1—C8113.4 (4)C6—N3—C2113.8 (4)
C12—N1—H1A108.9C6—N3—H3A108.8
C8—N1—H1A108.9C2—N3—H3A108.8
C12—N1—H1B108.9C6—N3—H3B108.8
C8—N1—H1B108.9C2—N3—H3B108.8
H1A—N1—H1B107.7H3A—N3—H3B107.7
N3—C2—C3—C455.4 (7)N2—C17—C18—C1952.8 (7)
C2—C3—C4—C557.2 (8)C15—C14—C19—C1855.8 (8)
C3—C4—C5—C656.6 (7)C17—C18—C19—C1455.0 (8)
C4—C5—C6—N354.6 (6)N1—C8—C13—C1056.3 (5)
C4—C5—C6—C20176.1 (5)C7—C8—C13—C10178.2 (4)
C13—C10—C11—C1254.0 (7)C11—C10—C13—C855.8 (6)
C10—C11—C12—N154.8 (6)C21—C17—N2—C15179.9 (5)
C11—C12—N1—C858.2 (6)C18—C17—N2—C1554.0 (6)
C7—C8—N1—C12177.6 (4)C14—C15—N2—C1756.2 (7)
C13—C8—N1—C1257.8 (5)C20—C6—N3—C2179.7 (5)
C19—C14—C15—N255.1 (7)C5—C6—N3—C255.2 (6)
C21—C17—C18—C19175.3 (6)C3—C2—N3—C655.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl50.902.193.084 (4)175
N3—H3A···Cl60.902.243.133 (4)170
N2—H2D···Cl6i0.902.263.118 (4)160
N2—H2C···Cl50.902.263.156 (4)171
N1—H1B···Cl6ii0.902.283.183 (4)178
N1—H1A···Cl5iii0.902.213.105 (4)174
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C6H14N)3[FeCl4]Cl2
Mr569.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.443 (2), 23.239 (5), 14.494 (5)
β (°) 122.03 (2)
V3)2982.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.28 × 0.26 × 0.21
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.757, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
30302, 6848, 2991
Rint0.116
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.170, 1.03
No. of reflections6848
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.34

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl50.902.193.084 (4)175
N3—H3A···Cl60.902.243.133 (4)170
N2—H2D···Cl6i0.902.263.118 (4)160
N2—H2C···Cl50.902.263.156 (4)171
N1—H1B···Cl6ii0.902.283.183 (4)178
N1—H1A···Cl5iii0.902.213.105 (4)174
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds