organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1356

2-{[5-(Adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfan­yl}-N,N-di­methyl­ethanamine

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C17H28N4S, the 1,2,4-triazole ring is nearly planar [maximum deviation = 0.005 (2) Å]. There are no significant hydrogen bonds observed in the crystal structure. The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3).

Related literature

For the biological activity of adamantyl derivatives see: Al-Omar et al. (2010[Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526-2550.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch./Drug Res. 56, 40-47.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]). For the structures of related adamantyl-1,2,4-triazoles, see: Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Al-Tamimi et al. (2010[Al-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o344.]). For the structures of substituted sulfanyl-1,2,4-triazoles, see: Fun et al. (2011[Fun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3422-o3423.]); Wang et al. (2011[Wang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H28N4S

  • Mr = 320.49

  • Monoclinic, P 21 /c

  • a = 12.5133 (7) Å

  • b = 10.3779 (5) Å

  • c = 14.3044 (8) Å

  • β = 106.766 (3)°

  • V = 1778.63 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.62 mm−1

  • T = 296 K

  • 0.64 × 0.59 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.204, Tmax = 0.923

  • 3267 measured reflections

  • 3267 independent reflections

  • 2846 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.184

  • S = 1.13

  • 3267 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Considerable attention has been devoted to adamantane derivatives which have long been known for their diverse biological properties as antiviral against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam, Al-Deeb, Al-Omar & Lehmann, 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial activity (Kadi et al., 2007, 2010). In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, we synthesized the title compound as a potential chemotherapeutic agent.

In the title molecule, Fig. 1, the 1,2,4-triazole ring (N1-N3/C11/C12) is nearly planar with a maximum deviation of 0.005 (2) Å at atom N2. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Almutairi et al., 2012; Al-Tamimi et al., 2010; Al-Abdullah et al., 2012; Fun et al., 2011; Wang et al., 2011). The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3). There are no significant hydrogen bonds observed in this compound.

Related literature top

For the biological activity of adamantyl derivatives see: Al-Omar et al. (2010); Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007, 2010); Vernier et al. (1969). For the structures of related adamantyl-1,2,4-triazoles, see: Almutairi et al. (2012); Al-Tamimi et al. (2010); Al-Abdullah et al. (2012). For the structures of substituted sulfanyl-1,2,4-triazoles, see: Fun et al. (2011); Wang et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 3-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazole-5-thiol (2.49 g, 0.01 mol), potassium hydroxide (1.12 g, 0.02 mol) and 2-dimethylaminoethyl chloride hydrochloride (1.44 g, 0.01 mol) in ethanol (15 ml) was heated under reflux with stirring for 3 h and the solvent was distilled off in vacuo. The obtained residue was washed with water and purified by column chromatography on silica gel column using CHCl3:MeOH (9:1 v/v) as eluent to yield 2.02 g (63%) of the title compound as colorless powder. M.p. 133-135°C. Single crystals suitable for X-ray diffraction were obtained by crystallization from aqueous ethanol. 1H NMR (CDCl3, 500.13 MHz): δ 1.69-1.75 (m, 6H, adamantane-H), 2.04-2.85 (m, 9H, adamantane-H), 2.21 (s, 6H, 2xCH3), 2.62 (t, 2H, CH2N, J = 6.5 Hz), 3.28 (t, 2H, SCH2, J = 6.5 Hz), 3.59 (s, 3H, CH3). 13C NMR (CDCl3, 125.76 MHz): δ 28.07, 34.98, 36.50, 49.56 (adamantane-C), 31.05 (CH3), 32.33 (SCH2), 45.21 (2xCH3), 58.24 (CH2N), 152.16, 161.21 (triazole C).

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.96–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The crystal studied was a non-merohedral twin, the refined ratio of twin components being 0.281 (3):0.719 (3).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
2-{[5-(Adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}- N,N-dimethylethanamine top
Crystal data top
C17H28N4SF(000) = 696
Mr = 320.49Dx = 1.197 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3932 reflections
a = 12.5133 (7) Åθ = 7.7–69.2°
b = 10.3779 (5) ŵ = 1.62 mm1
c = 14.3044 (8) ÅT = 296 K
β = 106.766 (3)°Plate, colourless
V = 1778.63 (16) Å30.64 × 0.59 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3267 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ϕ and ω scansθmax = 69.8°, θmin = 7.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1514
Tmin = 0.204, Tmax = 0.923k = 1212
3267 measured reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.P)2 + 1.1111P]
where P = (Fo2 + 2Fc2)/3
3267 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H28N4SV = 1778.63 (16) Å3
Mr = 320.49Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.5133 (7) ŵ = 1.62 mm1
b = 10.3779 (5) ÅT = 296 K
c = 14.3044 (8) Å0.64 × 0.59 × 0.05 mm
β = 106.766 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3267 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2846 reflections with I > 2σ(I)
Tmin = 0.204, Tmax = 0.923Rint = 0.000
3267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.13Δρmax = 0.32 e Å3
3267 reflectionsΔρmin = 0.37 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.59451 (7)0.30472 (8)0.05471 (7)0.0589 (3)
N10.4306 (2)0.2967 (2)0.14471 (19)0.0478 (6)
N40.7649 (3)0.2967 (3)0.0644 (2)0.0630 (7)
C90.2838 (2)0.2248 (3)0.2293 (2)0.0476 (7)
C100.3344 (3)0.2856 (4)0.3307 (3)0.0672 (9)
H10A0.39440.23150.36890.081*
H10B0.36530.36940.32340.081*
C60.2449 (4)0.3001 (5)0.3838 (3)0.0814 (12)
H6A0.27790.34020.44770.098*
C50.1995 (4)0.1692 (5)0.3976 (3)0.0893 (14)
H5A0.14410.17780.43280.107*
H5B0.25940.11490.43590.107*
C40.1465 (4)0.1071 (4)0.2985 (3)0.0765 (11)
H4A0.11690.02220.30770.092*
C30.0526 (3)0.1919 (5)0.2391 (3)0.0817 (13)
H3A0.01830.15240.17610.098*
H3B0.00410.20110.27280.098*
C130.6508 (4)0.1620 (4)0.0134 (4)0.0803 (12)
H13A0.65600.09270.06000.096*
H13B0.60150.13440.04900.096*
C20.0985 (3)0.3229 (4)0.2249 (3)0.0757 (11)
H2A0.03750.37750.18690.091*
C70.1513 (4)0.3853 (5)0.3230 (4)0.0861 (13)
H7A0.09540.39770.35710.103*
H7B0.18100.46910.31360.103*
C10.1858 (3)0.3084 (4)0.1699 (3)0.0653 (9)
H1A0.21320.39270.15860.078*
H1B0.15200.26840.10690.078*
C80.2350 (3)0.0923 (3)0.2444 (3)0.0666 (9)
H8A0.20180.05210.18140.080*
H8B0.29440.03670.28170.080*
C110.3702 (2)0.2040 (3)0.1772 (2)0.0477 (7)
N20.4021 (2)0.0897 (2)0.1572 (2)0.0577 (7)
N30.4859 (3)0.1046 (3)0.1120 (2)0.0599 (7)
C120.5001 (3)0.2289 (3)0.1054 (2)0.0516 (7)
C140.7641 (4)0.1909 (5)0.0031 (4)0.0874 (14)
H14A0.81390.21240.06690.105*
H14B0.79300.11400.01960.105*
C160.7117 (7)0.2636 (6)0.1633 (5)0.126 (2)
H16A0.71800.33410.20480.189*
H16B0.63420.24570.17130.189*
H16C0.74680.18860.18050.189*
C170.4269 (3)0.4366 (3)0.1495 (3)0.0633 (9)
H17A0.48990.47230.13300.095*
H17B0.42920.46260.21450.095*
H17C0.35930.46740.10430.095*
C150.8793 (5)0.3349 (7)0.0500 (6)0.120 (2)
H15A0.88220.40230.09510.181*
H15B0.92170.26230.06080.181*
H15C0.91010.36550.01560.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0605 (5)0.0553 (5)0.0668 (6)0.0051 (3)0.0278 (4)0.0023 (4)
N10.0524 (14)0.0418 (13)0.0497 (15)0.0000 (10)0.0156 (11)0.0003 (10)
N40.0598 (17)0.0665 (18)0.0661 (19)0.0050 (13)0.0236 (14)0.0030 (14)
C90.0478 (15)0.0505 (16)0.0430 (16)0.0012 (12)0.0105 (13)0.0010 (12)
C100.060 (2)0.084 (2)0.051 (2)0.0009 (18)0.0042 (16)0.0097 (17)
C60.076 (3)0.113 (4)0.054 (2)0.003 (2)0.0162 (19)0.021 (2)
C50.082 (3)0.133 (4)0.059 (3)0.012 (3)0.031 (2)0.017 (2)
C40.079 (3)0.078 (3)0.083 (3)0.011 (2)0.039 (2)0.003 (2)
C30.056 (2)0.123 (4)0.070 (3)0.011 (2)0.0232 (19)0.009 (2)
C130.081 (3)0.064 (2)0.114 (4)0.0078 (19)0.056 (3)0.006 (2)
C20.057 (2)0.095 (3)0.073 (3)0.0195 (19)0.0154 (18)0.007 (2)
C70.085 (3)0.092 (3)0.091 (3)0.009 (2)0.042 (3)0.018 (2)
C10.059 (2)0.080 (2)0.055 (2)0.0125 (16)0.0139 (16)0.0096 (17)
C80.070 (2)0.063 (2)0.072 (2)0.0051 (16)0.0289 (18)0.0026 (17)
C110.0505 (16)0.0440 (15)0.0476 (17)0.0002 (12)0.0126 (13)0.0023 (12)
N20.0657 (16)0.0454 (14)0.0686 (18)0.0029 (12)0.0299 (14)0.0032 (12)
N30.0682 (17)0.0466 (15)0.0727 (19)0.0041 (12)0.0327 (15)0.0027 (12)
C120.0531 (17)0.0499 (17)0.0499 (18)0.0020 (13)0.0118 (14)0.0008 (13)
C140.080 (3)0.094 (3)0.096 (3)0.024 (2)0.038 (3)0.024 (3)
C160.181 (6)0.097 (4)0.082 (4)0.030 (4)0.008 (4)0.013 (3)
C170.069 (2)0.0442 (17)0.080 (2)0.0017 (15)0.0273 (18)0.0028 (15)
C150.082 (3)0.137 (5)0.151 (6)0.003 (3)0.047 (4)0.032 (4)
Geometric parameters (Å, º) top
S1—C121.742 (3)C13—C141.498 (6)
S1—C131.811 (4)C13—H13A0.9700
N1—C121.361 (4)C13—H13B0.9700
N1—C111.384 (4)C2—C71.513 (7)
N1—C171.455 (4)C2—C11.527 (5)
N4—C161.421 (7)C2—H2A0.9800
N4—C151.441 (6)C7—H7A0.9700
N4—C141.464 (5)C7—H7B0.9700
C9—C111.495 (4)C1—H1A0.9700
C9—C101.539 (5)C1—H1B0.9700
C9—C11.542 (4)C8—H8A0.9700
C9—C81.546 (5)C8—H8B0.9700
C10—C61.531 (6)C11—N21.310 (4)
C10—H10A0.9700N2—N31.390 (4)
C10—H10B0.9700N3—C121.309 (4)
C6—C51.508 (7)C14—H14A0.9700
C6—C71.524 (7)C14—H14B0.9700
C6—H6A0.9800C16—H16A0.9600
C5—C41.524 (7)C16—H16B0.9600
C5—H5A0.9700C16—H16C0.9600
C5—H5B0.9700C17—H17A0.9600
C4—C31.517 (7)C17—H17B0.9600
C4—C81.531 (5)C17—H17C0.9600
C4—H4A0.9800C15—H15A0.9600
C3—C21.513 (7)C15—H15B0.9600
C3—H3A0.9700C15—H15C0.9600
C3—H3B0.9700
C12—S1—C1398.05 (17)C7—C2—H2A109.2
C12—N1—C11104.8 (2)C1—C2—H2A109.2
C12—N1—C17124.6 (3)C2—C7—C6109.8 (4)
C11—N1—C17130.5 (3)C2—C7—H7A109.7
C16—N4—C15111.7 (5)C6—C7—H7A109.7
C16—N4—C14112.6 (4)C2—C7—H7B109.7
C15—N4—C14107.9 (4)C6—C7—H7B109.7
C11—C9—C10111.7 (3)H7A—C7—H7B108.2
C11—C9—C1112.4 (3)C2—C1—C9110.2 (3)
C10—C9—C1109.5 (3)C2—C1—H1A109.6
C11—C9—C8108.2 (3)C9—C1—H1A109.6
C10—C9—C8107.7 (3)C2—C1—H1B109.6
C1—C9—C8107.1 (3)C9—C1—H1B109.6
C6—C10—C9110.3 (3)H1A—C1—H1B108.1
C6—C10—H10A109.6C4—C8—C9110.7 (3)
C9—C10—H10A109.6C4—C8—H8A109.5
C6—C10—H10B109.6C9—C8—H8A109.5
C9—C10—H10B109.6C4—C8—H8B109.5
H10A—C10—H10B108.1C9—C8—H8B109.5
C5—C6—C7109.9 (4)H8A—C8—H8B108.1
C5—C6—C10109.5 (4)N2—C11—N1109.0 (3)
C7—C6—C10109.0 (4)N2—C11—C9123.3 (3)
C5—C6—H6A109.5N1—C11—C9127.6 (3)
C7—C6—H6A109.5C11—N2—N3108.6 (3)
C10—C6—H6A109.5C12—N3—N2106.3 (3)
C6—C5—C4109.8 (3)N3—C12—N1111.2 (3)
C6—C5—H5A109.7N3—C12—S1126.8 (3)
C4—C5—H5A109.7N1—C12—S1122.0 (2)
C6—C5—H5B109.7N4—C14—C13113.7 (4)
C4—C5—H5B109.7N4—C14—H14A108.8
H5A—C5—H5B108.2C13—C14—H14A108.8
C3—C4—C5109.5 (4)N4—C14—H14B108.8
C3—C4—C8109.4 (4)C13—C14—H14B108.8
C5—C4—C8109.2 (4)H14A—C14—H14B107.7
C3—C4—H4A109.6N4—C16—H16A109.5
C5—C4—H4A109.6N4—C16—H16B109.5
C8—C4—H4A109.6H16A—C16—H16B109.5
C2—C3—C4109.5 (3)N4—C16—H16C109.5
C2—C3—H3A109.8H16A—C16—H16C109.5
C4—C3—H3A109.8H16B—C16—H16C109.5
C2—C3—H3B109.8N1—C17—H17A109.5
C4—C3—H3B109.8N1—C17—H17B109.5
H3A—C3—H3B108.2H17A—C17—H17B109.5
C14—C13—S1109.7 (3)N1—C17—H17C109.5
C14—C13—H13A109.7H17A—C17—H17C109.5
S1—C13—H13A109.7H17B—C17—H17C109.5
C14—C13—H13B109.7N4—C15—H15A109.5
S1—C13—H13B109.7N4—C15—H15B109.5
H13A—C13—H13B108.2H15A—C15—H15B109.5
C3—C2—C7110.0 (4)N4—C15—H15C109.5
C3—C2—C1109.7 (4)H15A—C15—H15C109.5
C7—C2—C1109.6 (3)H15B—C15—H15C109.5
C3—C2—H2A109.2
C11—C9—C10—C6177.5 (3)C10—C9—C8—C458.6 (4)
C1—C9—C10—C657.3 (4)C1—C9—C8—C459.2 (4)
C8—C9—C10—C658.8 (4)C12—N1—C11—N20.5 (4)
C9—C10—C6—C560.9 (4)C17—N1—C11—N2179.8 (3)
C9—C10—C6—C759.3 (5)C12—N1—C11—C9178.0 (3)
C7—C6—C5—C458.9 (5)C17—N1—C11—C91.3 (5)
C10—C6—C5—C460.8 (5)C10—C9—C11—N2113.2 (4)
C6—C5—C4—C359.6 (5)C1—C9—C11—N2123.3 (4)
C6—C5—C4—C860.2 (5)C8—C9—C11—N25.3 (4)
C5—C4—C3—C259.8 (5)C10—C9—C11—N165.1 (4)
C8—C4—C3—C259.8 (5)C1—C9—C11—N158.4 (4)
C12—S1—C13—C14157.1 (3)C8—C9—C11—N1176.4 (3)
C4—C3—C2—C759.9 (5)N1—C11—N2—N30.8 (4)
C4—C3—C2—C160.7 (4)C9—C11—N2—N3177.8 (3)
C3—C2—C7—C659.1 (5)C11—N2—N3—C120.8 (4)
C1—C2—C7—C661.6 (5)N2—N3—C12—N10.5 (4)
C5—C6—C7—C258.6 (5)N2—N3—C12—S1179.9 (3)
C10—C6—C7—C261.3 (5)C11—N1—C12—N30.1 (4)
C3—C2—C1—C961.4 (4)C17—N1—C12—N3179.3 (3)
C7—C2—C1—C959.4 (5)C11—N1—C12—S1179.7 (2)
C11—C9—C1—C2178.2 (3)C17—N1—C12—S10.3 (5)
C10—C9—C1—C257.1 (4)C13—S1—C12—N33.1 (4)
C8—C9—C1—C259.5 (4)C13—S1—C12—N1177.3 (3)
C3—C4—C8—C960.2 (5)C16—N4—C14—C1369.9 (6)
C5—C4—C8—C959.7 (5)C15—N4—C14—C13166.4 (5)
C11—C9—C8—C4179.4 (3)S1—C13—C14—N458.1 (5)

Experimental details

Crystal data
Chemical formulaC17H28N4S
Mr320.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5133 (7), 10.3779 (5), 14.3044 (8)
β (°) 106.766 (3)
V3)1778.63 (16)
Z4
Radiation typeCu Kα
µ (mm1)1.62
Crystal size (mm)0.64 × 0.59 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.204, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
3267, 3267, 2846
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.184, 1.13
No. of reflections3267
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch./Drug Res. 56, 40–47.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationAl-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.  Web of Science CAS PubMed Google Scholar
First citationAl-Tamimi, A.-M. S., Bari, A., Al-Omar, M. A., Alrashood, K. A. & El-Emam, A. A. (2010). Acta Cryst. E66, o1756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Asik, S. I. J., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o3422–o3423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, W., Liu, Q., Xu, C., Wu, W. & Gao, Y. (2011). Acta Cryst. E67, o2236.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1356
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds