metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m631-m632

Bis(3,5-di­methyl-1H-pyrazole-κN2)bis­­(3,3′′,5,5′′-tetra­methyl-[1,1′:3′,1′′-terphen­yl]-2′-carboxyl­ato-κO)iron(II) di­chloro­methane monosolvate

aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea
*Correspondence e-mail: yoona@kookmin.ac.kr

(Received 31 March 2012; accepted 10 April 2012; online 18 April 2012)

In the title compound, [Fe(C23H21O2)2(C5H8N2)2]·CH2Cl2, the Fe2+ cation is coordinated by the N atoms of two 3,5-dimethyl­pyrazole ligands and the carboxyl­ate O atoms from two tetra­methyl­terphenyl­carboxyl­ate ligands, forming an FeN2O2 polyhedron with a slightly distorted tetra­hedral coordination geometry. Intra­molecular N—H⋯O and C—H⋯O hydrogen-bonding inter­actions stabilize the mol­ecular conformation. The dihedral angles formed by the central benzene ring with the outer benzene rings of the terphenyl groups are 47.92 (8), 59.38 (8), 48.24 (8) and 52.37 (8)°. The dichloro­methane solvent mol­ecule inter­acts with the complex mol­ecule via a C—H⋯O hydrogen bond. In the crystal, centrosymmetrically related complex mol­ecules are linked into dimers through pairs of C—H⋯O hydrogen bonds.

Related literature

For the synthesis of substituted terphenyl-based carboxyl­ate ligands, see: Saednya & Hart (1996[Saednya, A. & Hart, H. (1996). Synthesis, pp. 1455-1458.]); Du et al. (1986[Du, C. J. F., Hart, H. & Ng, K. K. D. (1986). J. Org. Chem. 51, 3162-3165.]); Chen & Siegel (1994[Chen, C. T. & Siegel, J. S. (1994). J. Am. Chem. Soc. 116, 5959-5960.]). For background to metal complexes with terphenyl-based carboxyl­ate and 3,5-dimethyl­pyrazole ligands, see: Hagadorn et al. (1998[Hagadorn, J. R., Que, L. Jr & Tolman, W. B. (1998). J. Am. Chem. Soc. 120, 13531-13532.]); Chakravorty et al. (2011[Chakravorty, S., Platts, J. A. & Das, B. K. (2011). Dalton Trans. 40, 11605-11612.]); Kannan et al. (2011[Kannan, S., Venkatachalam, G., Lee, H. J., Min, B. K., Kim, W., Koo, E., Do, Y. R. & Yoon, S. (2011). Polyhedron, 30, 340-346.]); Tolman & Que (2002[Tolman, W. B. & Que, L. Jr (2002). J. Chem. Soc. Dalton Trans. pp. 653-660.]); Zhang et al. (2007[Zhang, X.-J., Han, J., Wang, C.-G. & Xing, Y.-H. (2007). Acta Cryst. E63, m2620-m2621.]); Cheng et al. (1990[Cheng, C.-H., Lain, J.-S., Wu, Y.-J. & Wang, S.-L. (1990). Acta Cryst. C46, 208-210.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C23H21O2)2(C5H8N2)2]·CH2Cl2

  • Mr = 991.84

  • Triclinic, [P \overline 1]

  • a = 12.363 (3) Å

  • b = 14.796 (3) Å

  • c = 16.735 (3) Å

  • α = 111.11 (3)°

  • β = 91.19 (3)°

  • γ = 109.06 (3)°

  • V = 2665.7 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.32 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 1.0

  • 20058 measured reflections

  • 9561 independent reflections

  • 8147 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.149

  • S = 1.07

  • 9561 reflections

  • 633 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O4 0.84 (3) 1.95 (3) 2.744 (3) 158 (3)
N2—H2⋯O2 0.80 (3) 2.14 (3) 2.767 (3) 135 (3)
C6—H6C⋯O1 0.96 2.40 3.256 (4) 148
C46—H46⋯O3 0.93 2.46 3.055 (4) 122
C54—H54⋯O3 0.93 2.51 3.037 (3) 116
C55—H55B⋯O1 0.96 2.54 3.481 (3) 166
C58—H58A⋯O4 0.97 2.48 3.326 (5) 145
C3—H3⋯O4i 0.93 2.58 3.411 (5) 149
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthetic routes for sterically hindered terphenyl-based carboxylate ligands have been investigated (Saednya & Hart, 1996; Du et al., 1986; Chen & Siegel, 1994). Recently, Fe2+ binuclear complexes of 3,3'',5,5''-tetramethyl-[1,1':3',1''-terphenyl]-2'-carboxylate have been synthesized for modeling dioxygen activation sites in diiron-containing proteins (Tolman & Que 2002). Four-coordinate Fe2+ and Co2+ metal complexes with a slightly distorted tetrahedral coordination geometry were reported with two 3,5-dimethylpyrazole and two benzoate ligands with less bulky substituents (Hagadorn et al., 1998; Chakravorty et al., 2011; Kannan et al., 2011). Complexes with 3,5-dimethylpyrazole ligands have also been reported (Zhang et al., 2007; Cheng et al., 1990). Herein we report the structure of the tetrahedrally coordinated Fe2+ title complex with one dichloromethane molecule in the lattice.

In the title complex (Fig. 1), the iron(II) metal is coordinated by the N atoms of two 3,5-dimethylpyrazole ligands and the carboxylate O atoms of two tetramethyl-terphenyl carboxylate ligands in a slightly distorted tetrahedral geometry. In the carboxylate ligands, the dihedral angles formed by the central benzene ring (C12–C17 and C35–C40) with the outer benzene rings (C18–C23 and C26–C28/C30/C31/C33; C41–C46 and C40–C54) of the terphenyl groups are 47.92 (8), 59.38 (8), 48.24 (8) and 52.37 (8)°, respectively. The conformation of the complex is stabilized by intramolecular N—H···O and C—H···O hydrogen bonds (Table 1). A space filling model (Fig. 2) conveys the steric wall imposed by two terphenyl-based carboxylate and two 3,5-dimethylpyrazole ligands. The combined influence of the sterically hindered carboxylate ligands and the intramolecular hydrogen bonding interactions determines the binding mode of the carboxylate ligands as monodentate and stabilizes the coordination number of four of the metal ion. The dichloromethane molecule of crystallization interacts with the complex via a C—H···O hydrogen bond. In the crystal, centrosymmetrically related complex molecules are linked into dimers through pairs of C—H···O hydrogen bonds, generating a ring of R2 2(16) motif.

Related literature top

For the synthesis of substituted terphenyl-based carboxylate ligands, see: Saednya & Hart (1996); Du et al. (1986); Chen & Siegel (1994). For background to metal complexes with terphenyl-based carboxylate and 3,5-dimethylpyrazole ligands, see: Hagadorn et al. (1998); Chakravorty et al. (2011); Kannan et al. (2011); Tolman & Que (2002); Zhang et al. (2007); Cheng et al. (1990).

Experimental top

Sodium 3,3'',5,5''-tetramethyl-[1,1':3',1''-terphenyl]-2'-carboxylate (0.206 g, 0.552 mmol) was mixed with Fe(BF4)2.6H2O (0.0930 g, 0.276 mmol) in tetrahydrofuran (10 mL) at room temperature. After overnight stirring, the white fine precipitate was filtered off and 3,5-dimethylpyrazole (0.0530 g, 0.276 mmol) was added. After three hours, tetrahydrofuran was removed under reduced pressure and colourless block-like crystals were obtained by crystallization from a dichloromethane/pentane (2:3 v/v) solution (yield 75%, 0.187 g). Anal. Calc. for FeC56H58O4N4: C, 74.16; H, 6.45; N, 6.18. Found: C, 73.80; H, 6.51; N, 6.02.

Refinement top

H atoms were placed at calculated positions and refined as riding with C–H(aromatic) = 0.95 Å, C–H(CH3) = 0.98 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl groups. The N-bound H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A space-filling representation of the title compound.
Bis(3,5-dimethyl-1H-pyrazole-κN2)bis(3,3'',5,5''-tetramethyl- [1,1':3',1''-terphenyl]-2'-carboxylato-κO)iron(II) dichloromethane monosolvate top
Crystal data top
[Fe(C23H21O2)2(C5H8N2)2]·CH2Cl2Z = 2
Mr = 991.84F(000) = 1044
Triclinic, P1Dx = 1.236 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.363 (3) ÅCell parameters from 1009 reflections
b = 14.796 (3) Åθ = 3.1–27.7°
c = 16.735 (3) ŵ = 0.43 mm1
α = 111.11 (3)°T = 293 K
β = 91.19 (3)°Block, colorless
γ = 109.06 (3)°0.32 × 0.12 × 0.10 mm
V = 2665.7 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9561 independent reflections
Radiation source: fine-focus sealed tube8147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1414
Tmin = 0.839, Tmax = 1.0k = 1717
20058 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0879P)2 + 1.2662P]
where P = (Fo2 + 2Fc2)/3
9561 reflections(Δ/σ)max = 0.001
633 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Fe(C23H21O2)2(C5H8N2)2]·CH2Cl2γ = 109.06 (3)°
Mr = 991.84V = 2665.7 (13) Å3
Triclinic, P1Z = 2
a = 12.363 (3) ÅMo Kα radiation
b = 14.796 (3) ŵ = 0.43 mm1
c = 16.735 (3) ÅT = 293 K
α = 111.11 (3)°0.32 × 0.12 × 0.10 mm
β = 91.19 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9561 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
8147 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 1.0Rint = 0.018
20058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.13 e Å3
9561 reflectionsΔρmin = 1.06 e Å3
633 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.20939 (3)0.51707 (2)0.21446 (2)0.02958 (12)
O30.30443 (15)0.66135 (12)0.23370 (11)0.0348 (4)
O10.29491 (14)0.45286 (13)0.26950 (11)0.0351 (4)
O20.36189 (15)0.45601 (13)0.14937 (11)0.0361 (4)
O40.16310 (14)0.72328 (13)0.23166 (11)0.0401 (4)
C340.2667 (2)0.73433 (17)0.24544 (14)0.0303 (5)
C110.36139 (19)0.43290 (16)0.21395 (15)0.0294 (5)
N10.1156 (2)0.43116 (16)0.09177 (15)0.0444 (5)
C170.5361 (2)0.42978 (17)0.29198 (14)0.0299 (5)
C180.57352 (19)0.54266 (18)0.34720 (15)0.0304 (5)
C120.43746 (19)0.37735 (17)0.22818 (14)0.0277 (5)
N30.08654 (18)0.52658 (17)0.30033 (15)0.0404 (5)
C270.1936 (2)0.21195 (18)0.12314 (17)0.0369 (5)
H270.18200.24370.17960.044*
C400.4078 (2)0.89183 (18)0.22863 (16)0.0343 (5)
C230.5838 (2)0.61643 (18)0.31164 (16)0.0342 (5)
H230.56390.59500.25210.041*
C490.3161 (2)0.84844 (18)0.43131 (15)0.0326 (5)
C350.35406 (19)0.84372 (17)0.28261 (15)0.0297 (5)
C540.3374 (2)0.76141 (18)0.43030 (14)0.0311 (5)
H540.38370.73550.39220.037*
C200.6418 (2)0.6807 (2)0.49019 (16)0.0392 (6)
C360.3690 (2)0.90032 (18)0.37248 (15)0.0318 (5)
C130.4061 (2)0.27119 (17)0.17776 (14)0.0297 (5)
C160.6018 (2)0.37335 (19)0.30439 (15)0.0334 (5)
H160.66920.40760.34500.040*
N40.04781 (19)0.60714 (19)0.32059 (16)0.0433 (5)
C330.3208 (2)0.16675 (18)0.02217 (16)0.0363 (5)
H330.39450.16790.01100.044*
C190.6032 (2)0.57645 (19)0.43686 (15)0.0336 (5)
H190.59680.52780.46120.040*
C260.3044 (2)0.21535 (17)0.10658 (16)0.0320 (5)
C150.5684 (2)0.26825 (19)0.25767 (16)0.0356 (5)
H150.61120.23150.26870.043*
C410.3931 (2)0.83493 (18)0.13292 (16)0.0345 (5)
C370.4345 (2)1.00550 (19)0.40654 (16)0.0388 (6)
H370.44311.04380.46570.047*
C220.6234 (2)0.72150 (19)0.36390 (18)0.0392 (6)
C140.4715 (2)0.21733 (18)0.19445 (15)0.0338 (5)
H140.44970.14640.16270.041*
C450.3935 (2)0.6881 (2)0.00764 (18)0.0412 (6)
C530.2906 (2)0.71222 (19)0.48535 (15)0.0344 (5)
N20.1702 (3)0.39093 (19)0.02638 (15)0.0512 (6)
C210.6517 (2)0.7522 (2)0.45271 (17)0.0411 (6)
H210.67790.82250.48800.049*
C300.1192 (2)0.1149 (2)0.02760 (19)0.0471 (7)
H300.05700.08160.07270.057*
C550.3162 (2)0.6194 (2)0.48315 (17)0.0426 (6)
H55A0.38640.64150.52200.064*
H55B0.32500.58100.42530.064*
H55C0.25340.57600.50080.064*
C280.1002 (2)0.16175 (19)0.0564 (2)0.0438 (6)
C430.3497 (2)0.8277 (2)0.01151 (17)0.0403 (6)
C460.4087 (2)0.74075 (19)0.09713 (17)0.0375 (6)
H460.42970.71220.13350.045*
C390.4754 (2)0.99731 (19)0.26556 (18)0.0414 (6)
H390.51311.02980.23030.050*
C420.3634 (2)0.8778 (2)0.07789 (17)0.0380 (6)
H420.35270.94100.10150.046*
C310.2285 (2)0.11647 (19)0.04582 (17)0.0419 (6)
C500.2496 (2)0.8881 (2)0.49064 (17)0.0431 (6)
H500.23550.94660.49210.052*
C520.2241 (2)0.7537 (2)0.54303 (17)0.0432 (6)
H520.19210.72140.57990.052*
C70.0312 (2)0.4704 (2)0.34426 (19)0.0468 (6)
C380.4876 (2)1.05429 (19)0.35319 (18)0.0442 (6)
H380.53111.12500.37640.053*
C440.3637 (2)0.7328 (2)0.04499 (17)0.0418 (6)
H440.35280.69780.10490.050*
C80.0422 (3)0.5161 (3)0.3913 (2)0.0557 (8)
H80.09040.49220.42690.067*
C20.1004 (4)0.3431 (2)0.0506 (2)0.0722 (11)
C470.3212 (3)0.8779 (3)0.06921 (19)0.0544 (8)
H47A0.39130.91530.08450.082*
H47B0.28380.92500.03890.082*
H47C0.27040.82530.12090.082*
C320.2471 (3)0.0662 (2)0.13746 (18)0.0581 (8)
H32A0.32380.10290.14440.087*
H32B0.19120.06810.17690.087*
H32C0.23810.00470.14960.087*
C290.0194 (2)0.1596 (2)0.0747 (3)0.0619 (9)
H29A0.02280.22740.08820.093*
H29B0.03590.13970.12300.093*
H29C0.07560.11050.02450.093*
C510.2041 (2)0.8426 (2)0.54731 (18)0.0483 (7)
C90.0298 (2)0.6024 (2)0.3749 (2)0.0525 (7)
C60.0509 (3)0.3745 (3)0.3385 (2)0.0633 (9)
H6A0.00160.31620.29070.095*
H6B0.03770.36390.39130.095*
H6C0.12920.38150.32980.095*
C40.0078 (3)0.4087 (2)0.0543 (2)0.0614 (9)
C30.0040 (4)0.3534 (3)0.0343 (3)0.0834 (14)
H30.07020.32810.07480.100*
C250.6735 (3)0.7153 (2)0.58695 (17)0.0545 (7)
H25A0.75390.75850.60460.082*
H25B0.65950.65560.60120.082*
H25C0.62700.75380.61650.082*
C10.1433 (5)0.2950 (3)0.1326 (2)0.1081 (19)
H1A0.22370.30600.11970.162*
H1B0.13420.32620.17230.162*
H1C0.09950.22180.15830.162*
C480.4112 (3)0.5862 (2)0.0304 (2)0.0589 (8)
H48A0.34590.53640.07370.088*
H48B0.41860.56180.01460.088*
H48C0.48040.59530.05640.088*
C240.6358 (3)0.8004 (2)0.3240 (2)0.0558 (8)
H24A0.62360.86000.36480.084*
H24B0.57930.77030.27260.084*
H24C0.71210.82120.30930.084*
C100.0849 (3)0.6826 (3)0.4048 (3)0.0726 (10)
H10A0.02900.74930.41320.109*
H10B0.11190.68470.45860.109*
H10C0.14910.66530.36200.109*
C560.1346 (4)0.8883 (3)0.6133 (3)0.0804 (12)
H56A0.18640.94300.66360.121*
H56B0.08450.83520.62980.121*
H56C0.08880.91580.58840.121*
C50.0779 (3)0.4417 (3)0.1061 (3)0.0847 (13)
H5A0.10340.40040.13980.127*
H5B0.14310.43260.06790.127*
H5C0.04290.51350.14410.127*
Cl10.15706 (12)1.02798 (9)0.20616 (8)0.1043 (4)
Cl20.05816 (15)0.95928 (15)0.33896 (13)0.1414 (6)
C580.1625 (4)0.9602 (3)0.2718 (3)0.0840 (12)
H58A0.15220.88920.23520.101*
H58B0.23850.99150.30710.101*
H20.235 (3)0.393 (2)0.0360 (19)0.039 (8)*
H40.074 (3)0.653 (2)0.3006 (19)0.044 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02992 (19)0.02477 (18)0.0333 (2)0.00762 (14)0.00257 (14)0.01248 (14)
O30.0421 (9)0.0232 (8)0.0374 (9)0.0088 (7)0.0063 (7)0.0124 (7)
O10.0349 (9)0.0347 (9)0.0382 (9)0.0156 (7)0.0082 (7)0.0139 (7)
O20.0401 (9)0.0352 (9)0.0374 (9)0.0152 (8)0.0016 (7)0.0175 (7)
O40.0326 (9)0.0368 (9)0.0453 (10)0.0054 (7)0.0051 (8)0.0167 (8)
C340.0366 (13)0.0280 (12)0.0251 (11)0.0080 (10)0.0024 (9)0.0122 (9)
C110.0290 (11)0.0210 (11)0.0317 (12)0.0045 (9)0.0015 (9)0.0075 (9)
N10.0455 (13)0.0317 (11)0.0472 (13)0.0071 (10)0.0123 (10)0.0126 (10)
C170.0327 (12)0.0308 (12)0.0269 (11)0.0110 (10)0.0055 (9)0.0124 (9)
C180.0266 (11)0.0302 (12)0.0328 (12)0.0099 (9)0.0037 (9)0.0108 (10)
C120.0302 (11)0.0277 (11)0.0265 (11)0.0104 (9)0.0052 (9)0.0119 (9)
N30.0335 (11)0.0412 (12)0.0519 (13)0.0138 (9)0.0131 (10)0.0232 (10)
C270.0353 (13)0.0238 (11)0.0470 (14)0.0073 (10)0.0041 (11)0.0117 (10)
C400.0340 (12)0.0304 (12)0.0381 (13)0.0096 (10)0.0019 (10)0.0150 (10)
C230.0338 (12)0.0337 (12)0.0343 (12)0.0115 (10)0.0004 (10)0.0130 (10)
C490.0317 (12)0.0294 (12)0.0276 (11)0.0071 (10)0.0030 (9)0.0049 (9)
C350.0297 (11)0.0248 (11)0.0354 (12)0.0100 (9)0.0011 (9)0.0125 (9)
C540.0315 (12)0.0314 (12)0.0269 (11)0.0103 (10)0.0005 (9)0.0084 (9)
C200.0315 (12)0.0427 (14)0.0353 (13)0.0138 (11)0.0051 (10)0.0058 (11)
C360.0326 (12)0.0283 (12)0.0330 (12)0.0120 (10)0.0042 (9)0.0096 (10)
C130.0314 (12)0.0297 (11)0.0283 (11)0.0096 (10)0.0062 (9)0.0128 (9)
C160.0347 (12)0.0381 (13)0.0287 (12)0.0139 (11)0.0017 (10)0.0137 (10)
N40.0304 (11)0.0451 (13)0.0607 (15)0.0159 (10)0.0142 (10)0.0252 (12)
C330.0355 (13)0.0288 (12)0.0404 (13)0.0086 (10)0.0012 (10)0.0116 (10)
C190.0298 (12)0.0367 (13)0.0331 (12)0.0118 (10)0.0044 (10)0.0122 (10)
C260.0339 (12)0.0227 (11)0.0377 (13)0.0081 (9)0.0003 (10)0.0121 (10)
C150.0425 (14)0.0382 (13)0.0363 (13)0.0219 (11)0.0061 (11)0.0191 (11)
C410.0307 (12)0.0324 (12)0.0391 (13)0.0049 (10)0.0033 (10)0.0183 (10)
C370.0428 (14)0.0308 (13)0.0358 (13)0.0116 (11)0.0087 (11)0.0073 (10)
C220.0320 (13)0.0326 (13)0.0504 (15)0.0110 (10)0.0024 (11)0.0140 (11)
C140.0416 (13)0.0266 (11)0.0354 (13)0.0142 (10)0.0062 (10)0.0127 (10)
C450.0383 (14)0.0375 (14)0.0471 (15)0.0096 (11)0.0160 (12)0.0188 (12)
C530.0345 (12)0.0368 (13)0.0257 (11)0.0076 (10)0.0006 (10)0.0103 (10)
N20.0705 (19)0.0394 (13)0.0365 (13)0.0188 (13)0.0135 (12)0.0085 (10)
C210.0336 (13)0.0320 (13)0.0463 (15)0.0113 (11)0.0020 (11)0.0030 (11)
C300.0413 (15)0.0315 (13)0.0550 (17)0.0038 (11)0.0160 (12)0.0113 (12)
C550.0498 (16)0.0469 (15)0.0371 (14)0.0167 (13)0.0092 (12)0.0235 (12)
C280.0331 (13)0.0258 (12)0.0668 (18)0.0052 (10)0.0011 (12)0.0169 (12)
C430.0325 (13)0.0520 (16)0.0415 (14)0.0139 (12)0.0089 (11)0.0247 (12)
C460.0362 (13)0.0373 (13)0.0435 (14)0.0111 (11)0.0087 (11)0.0226 (11)
C390.0423 (14)0.0321 (13)0.0482 (15)0.0051 (11)0.0003 (12)0.0215 (12)
C420.0372 (13)0.0377 (13)0.0426 (14)0.0123 (11)0.0083 (11)0.0205 (11)
C310.0491 (15)0.0291 (12)0.0394 (14)0.0077 (11)0.0046 (12)0.0107 (11)
C500.0440 (15)0.0332 (13)0.0450 (15)0.0157 (12)0.0034 (12)0.0057 (11)
C520.0425 (15)0.0431 (15)0.0337 (13)0.0063 (12)0.0099 (11)0.0114 (11)
C70.0369 (14)0.0471 (16)0.0552 (17)0.0088 (12)0.0139 (12)0.0235 (13)
C380.0466 (15)0.0252 (12)0.0492 (16)0.0022 (11)0.0111 (12)0.0121 (11)
C440.0374 (14)0.0493 (15)0.0356 (13)0.0094 (12)0.0110 (11)0.0181 (12)
C80.0406 (16)0.0610 (19)0.0636 (19)0.0103 (14)0.0233 (14)0.0282 (16)
C20.118 (3)0.0394 (17)0.0440 (18)0.0205 (19)0.0268 (19)0.0077 (14)
C470.0555 (18)0.079 (2)0.0466 (16)0.0351 (17)0.0146 (14)0.0341 (16)
C320.073 (2)0.0507 (17)0.0374 (15)0.0153 (16)0.0071 (14)0.0089 (13)
C290.0342 (15)0.0421 (16)0.097 (3)0.0081 (13)0.0001 (15)0.0192 (17)
C510.0462 (16)0.0459 (16)0.0420 (15)0.0135 (13)0.0136 (12)0.0073 (12)
C90.0299 (14)0.0577 (18)0.0629 (19)0.0144 (13)0.0139 (13)0.0165 (15)
C60.064 (2)0.0564 (19)0.083 (2)0.0184 (16)0.0330 (18)0.0438 (18)
C40.0531 (18)0.0385 (15)0.076 (2)0.0004 (14)0.0293 (16)0.0205 (15)
C30.097 (3)0.0468 (19)0.077 (3)0.0054 (19)0.055 (2)0.0137 (18)
C250.0584 (18)0.0549 (18)0.0328 (14)0.0142 (15)0.0027 (13)0.0032 (13)
C10.208 (6)0.068 (3)0.0365 (19)0.056 (3)0.015 (3)0.0044 (17)
C480.075 (2)0.0495 (17)0.0571 (19)0.0268 (16)0.0313 (17)0.0215 (15)
C240.0583 (18)0.0365 (15)0.070 (2)0.0121 (13)0.0026 (15)0.0228 (14)
C100.0482 (18)0.074 (2)0.097 (3)0.0307 (17)0.0301 (18)0.026 (2)
C560.089 (3)0.067 (2)0.083 (3)0.035 (2)0.047 (2)0.017 (2)
C50.0388 (18)0.087 (3)0.126 (4)0.0121 (18)0.019 (2)0.049 (3)
Cl10.1176 (9)0.0743 (7)0.1066 (9)0.0258 (6)0.0435 (7)0.0302 (6)
Cl20.1312 (12)0.1640 (15)0.1702 (16)0.0944 (12)0.0593 (11)0.0716 (13)
C580.077 (3)0.067 (2)0.114 (3)0.036 (2)0.001 (2)0.034 (2)
Geometric parameters (Å, º) top
Fe1—O31.9727 (17)C30—H300.9300
Fe1—O12.0286 (17)C55—H55A0.9600
Fe1—N12.058 (2)C55—H55B0.9600
Fe1—N32.116 (2)C55—H55C0.9600
O3—C341.266 (3)C28—C291.509 (4)
O1—C111.273 (3)C43—C441.383 (4)
O2—C111.245 (3)C43—C421.387 (4)
O4—C341.242 (3)C43—C471.511 (4)
C34—C351.509 (3)C46—H460.9300
C11—C121.501 (3)C39—C381.379 (4)
N1—C41.343 (4)C39—H390.9300
N1—N21.354 (4)C42—H420.9300
C17—C161.400 (3)C31—C321.504 (4)
C17—C121.400 (3)C50—C511.379 (4)
C17—C181.491 (3)C50—H500.9300
C18—C231.394 (3)C52—C511.394 (4)
C18—C191.397 (3)C52—H520.9300
C12—C131.401 (3)C7—C81.396 (4)
N3—C71.337 (3)C7—C61.486 (4)
N3—N41.361 (3)C38—H380.9300
C27—C281.386 (4)C44—H440.9300
C27—C261.392 (3)C8—C91.362 (5)
C27—H270.9300C8—H80.9300
C40—C351.394 (3)C2—C31.370 (6)
C40—C391.396 (4)C2—C11.499 (6)
C40—C411.491 (3)C47—H47A0.9600
C23—C221.388 (3)C47—H47B0.9600
C23—H230.9300C47—H47C0.9600
C49—C541.390 (3)C32—H32A0.9600
C49—C501.391 (4)C32—H32B0.9600
C49—C361.493 (3)C32—H32C0.9600
C35—C361.406 (3)C29—H29A0.9600
C54—C531.394 (3)C29—H29B0.9600
C54—H540.9300C29—H29C0.9600
C20—C191.383 (4)C51—C561.515 (4)
C20—C211.388 (4)C9—C101.495 (4)
C20—C251.511 (4)C6—H6A0.9600
C36—C371.386 (3)C6—H6B0.9600
C13—C141.393 (3)C6—H6C0.9600
C13—C261.494 (3)C4—C31.389 (5)
C16—C151.375 (3)C4—C51.478 (6)
C16—H160.9300C3—H30.9300
N4—C91.337 (4)C25—H25A0.9600
N4—H40.84 (3)C25—H25B0.9600
C33—C261.389 (3)C25—H25C0.9600
C33—C311.390 (4)C1—H1A0.9600
C33—H330.9300C1—H1B0.9600
C19—H190.9300C1—H1C0.9600
C15—C141.381 (4)C48—H48A0.9600
C15—H150.9300C48—H48B0.9600
C41—C461.385 (4)C48—H48C0.9600
C41—C421.394 (3)C24—H24A0.9600
C37—C381.389 (4)C24—H24B0.9600
C37—H370.9300C24—H24C0.9600
C22—C211.388 (4)C10—H10A0.9600
C22—C241.511 (4)C10—H10B0.9600
C14—H140.9300C10—H10C0.9600
C45—C441.383 (4)C56—H56A0.9600
C45—C461.392 (4)C56—H56B0.9600
C45—C481.502 (4)C56—H56C0.9600
C53—C521.385 (4)C5—H5A0.9600
C53—C551.496 (4)C5—H5B0.9600
N2—C21.343 (4)C5—H5C0.9600
N2—H20.80 (3)Cl1—C581.747 (4)
C21—H210.9300Cl2—C581.728 (5)
C30—C311.386 (4)C58—H58A0.9700
C30—C281.388 (4)C58—H58B0.9700
O3—Fe1—O1111.85 (7)C45—C46—H46119.5
O3—Fe1—N1114.09 (9)C38—C39—C40121.4 (2)
O1—Fe1—N1119.33 (8)C38—C39—H39119.3
O3—Fe1—N3106.17 (8)C40—C39—H39119.3
O1—Fe1—N396.59 (8)C43—C42—C41121.0 (2)
N1—Fe1—N3106.18 (10)C43—C42—H42119.5
C34—O3—Fe1125.58 (15)C41—C42—H42119.5
C11—O1—Fe199.69 (14)C30—C31—C33118.6 (3)
O4—C34—O3125.2 (2)C30—C31—C32120.7 (3)
O4—C34—C35117.4 (2)C33—C31—C32120.7 (3)
O3—C34—C35117.3 (2)C51—C50—C49121.6 (3)
O2—C11—O1121.8 (2)C51—C50—H50119.2
O2—C11—C12121.1 (2)C49—C50—H50119.2
O1—C11—C12117.09 (19)C53—C52—C51121.7 (2)
C4—N1—N2105.6 (3)C53—C52—H52119.1
C4—N1—Fe1135.5 (2)C51—C52—H52119.1
N2—N1—Fe1118.65 (18)N3—C7—C8109.5 (3)
C16—C17—C12118.3 (2)N3—C7—C6121.3 (3)
C16—C17—C18118.9 (2)C8—C7—C6129.2 (3)
C12—C17—C18122.8 (2)C39—C38—C37119.6 (2)
C23—C18—C19118.7 (2)C39—C38—H38120.2
C23—C18—C17121.8 (2)C37—C38—H38120.2
C19—C18—C17119.5 (2)C43—C44—C45122.2 (2)
C17—C12—C13120.6 (2)C43—C44—H44118.9
C17—C12—C11120.8 (2)C45—C44—H44118.9
C13—C12—C11118.6 (2)C9—C8—C7106.8 (3)
C7—N3—N4105.3 (2)C9—C8—H8126.6
C7—N3—Fe1135.96 (19)C7—C8—H8126.6
N4—N3—Fe1118.77 (16)N2—C2—C3106.1 (3)
C28—C27—C26120.7 (3)N2—C2—C1121.3 (4)
C28—C27—H27119.6C3—C2—C1132.6 (4)
C26—C27—H27119.6C43—C47—H47A109.5
C35—C40—C39118.6 (2)C43—C47—H47B109.5
C35—C40—C41122.2 (2)H47A—C47—H47B109.5
C39—C40—C41119.2 (2)C43—C47—H47C109.5
C22—C23—C18120.9 (2)H47A—C47—H47C109.5
C22—C23—H23119.6H47B—C47—H47C109.5
C18—C23—H23119.6C31—C32—H32A109.5
C54—C49—C50118.6 (2)C31—C32—H32B109.5
C54—C49—C36120.0 (2)H32A—C32—H32B109.5
C50—C49—C36121.4 (2)C31—C32—H32C109.5
C40—C35—C36120.5 (2)H32A—C32—H32C109.5
C40—C35—C34121.0 (2)H32B—C32—H32C109.5
C36—C35—C34118.0 (2)C28—C29—H29A109.5
C49—C54—C53121.3 (2)C28—C29—H29B109.5
C49—C54—H54119.4H29A—C29—H29B109.5
C53—C54—H54119.4C28—C29—H29C109.5
C19—C20—C21118.5 (2)H29A—C29—H29C109.5
C19—C20—C25120.4 (3)H29B—C29—H29C109.5
C21—C20—C25121.1 (2)C50—C51—C52118.4 (2)
C37—C36—C35119.2 (2)C50—C51—C56121.0 (3)
C37—C36—C49119.9 (2)C52—C51—C56120.5 (3)
C35—C36—C49120.9 (2)N4—C9—C8106.5 (3)
C14—C13—C12119.1 (2)N4—C9—C10121.0 (3)
C14—C13—C26119.7 (2)C8—C9—C10132.6 (3)
C12—C13—C26121.2 (2)C7—C6—H6A109.5
C15—C16—C17121.2 (2)C7—C6—H6B109.5
C15—C16—H16119.4H6A—C6—H6B109.5
C17—C16—H16119.4C7—C6—H6C109.5
C9—N4—N3112.0 (2)H6A—C6—H6C109.5
C9—N4—H4128 (2)H6B—C6—H6C109.5
N3—N4—H4120 (2)N1—C4—C3109.4 (4)
C26—C33—C31120.8 (2)N1—C4—C5121.2 (3)
C26—C33—H33119.6C3—C4—C5129.4 (3)
C31—C33—H33119.6C2—C3—C4107.0 (3)
C20—C19—C18121.4 (2)C2—C3—H3126.5
C20—C19—H19119.3C4—C3—H3126.5
C18—C19—H19119.3C20—C25—H25A109.5
C33—C26—C27119.3 (2)C20—C25—H25B109.5
C33—C26—C13119.4 (2)H25A—C25—H25B109.5
C27—C26—C13121.2 (2)C20—C25—H25C109.5
C16—C15—C14120.0 (2)H25A—C25—H25C109.5
C16—C15—H15120.0H25B—C25—H25C109.5
C14—C15—H15120.0C2—C1—H1A109.5
C46—C41—C42119.0 (2)C2—C1—H1B109.5
C46—C41—C40121.7 (2)H1A—C1—H1B109.5
C42—C41—C40119.2 (2)C2—C1—H1C109.5
C36—C37—C38120.6 (2)H1A—C1—H1C109.5
C36—C37—H37119.7H1B—C1—H1C109.5
C38—C37—H37119.7C45—C48—H48A109.5
C21—C22—C23118.9 (2)C45—C48—H48B109.5
C21—C22—C24121.0 (2)H48A—C48—H48B109.5
C23—C22—C24120.1 (2)C45—C48—H48C109.5
C15—C14—C13120.7 (2)H48A—C48—H48C109.5
C15—C14—H14119.7H48B—C48—H48C109.5
C13—C14—H14119.7C22—C24—H24A109.5
C44—C45—C46118.4 (2)C22—C24—H24B109.5
C44—C45—C48121.1 (3)H24A—C24—H24B109.5
C46—C45—C48120.5 (3)C22—C24—H24C109.5
C52—C53—C54118.3 (2)H24A—C24—H24C109.5
C52—C53—C55121.8 (2)H24B—C24—H24C109.5
C54—C53—C55119.9 (2)C9—C10—H10A109.5
C2—N2—N1111.9 (3)C9—C10—H10B109.5
C2—N2—H2127 (2)H10A—C10—H10B109.5
N1—N2—H2121 (2)C9—C10—H10C109.5
C22—C21—C20121.7 (2)H10A—C10—H10C109.5
C22—C21—H21119.2H10B—C10—H10C109.5
C20—C21—H21119.2C51—C56—H56A109.5
C31—C30—C28121.6 (2)C51—C56—H56B109.5
C31—C30—H30119.2H56A—C56—H56B109.5
C28—C30—H30119.2C51—C56—H56C109.5
C53—C55—H55A109.5H56A—C56—H56C109.5
C53—C55—H55B109.5H56B—C56—H56C109.5
H55A—C55—H55B109.5C4—C5—H5A109.5
C53—C55—H55C109.5C4—C5—H5B109.5
H55A—C55—H55C109.5H5A—C5—H5B109.5
H55B—C55—H55C109.5C4—C5—H5C109.5
C27—C28—C30118.8 (3)H5A—C5—H5C109.5
C27—C28—C29120.4 (3)H5B—C5—H5C109.5
C30—C28—C29120.8 (3)Cl2—C58—Cl1113.0 (2)
C44—C43—C42118.4 (2)Cl2—C58—H58A109.0
C44—C43—C47122.0 (2)Cl1—C58—H58A109.0
C42—C43—C47119.6 (3)Cl2—C58—H58B109.0
C41—C46—C45121.0 (2)Cl1—C58—H58B109.0
C41—C46—H46119.5H58A—C58—H58B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O40.84 (3)1.95 (3)2.744 (3)158 (3)
N2—H2···O20.80 (3)2.14 (3)2.767 (3)135 (3)
C6—H6C···O10.962.403.256 (4)148
C46—H46···O30.932.463.055 (4)122
C54—H54···O30.932.513.037 (3)116
C55—H55B···O10.962.543.481 (3)166
C58—H58A···O40.972.483.326 (5)145
C3—H3···O4i0.932.583.411 (5)149
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C23H21O2)2(C5H8N2)2]·CH2Cl2
Mr991.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.363 (3), 14.796 (3), 16.735 (3)
α, β, γ (°)111.11 (3), 91.19 (3), 109.06 (3)
V3)2665.7 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.32 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.839, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
20058, 9561, 8147
Rint0.018
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.149, 1.07
No. of reflections9561
No. of parameters633
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.13, 1.06

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick,2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O40.84 (3)1.95 (3)2.744 (3)158 (3)
N2—H2···O20.80 (3)2.14 (3)2.767 (3)135 (3)
C6—H6C···O10.962.403.256 (4)148
C46—H46···O30.932.463.055 (4)122
C54—H54···O30.932.513.037 (3)116
C55—H55B···O10.962.543.481 (3)166
C58—H58A···O40.972.483.326 (5)145
C3—H3···O4i0.932.583.411 (5)149
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We acknowledge financial support by grants from the Korea CCS R&D Center, funded by the Ministry of Education, Science and Technology of the Korean Government.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravorty, S., Platts, J. A. & Das, B. K. (2011). Dalton Trans. 40, 11605–11612.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, C. T. & Siegel, J. S. (1994). J. Am. Chem. Soc. 116, 5959–5960.  CrossRef CAS Web of Science Google Scholar
First citationCheng, C.-H., Lain, J.-S., Wu, Y.-J. & Wang, S.-L. (1990). Acta Cryst. C46, 208–210.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDu, C. J. F., Hart, H. & Ng, K. K. D. (1986). J. Org. Chem. 51, 3162–3165.  CrossRef CAS Web of Science Google Scholar
First citationHagadorn, J. R., Que, L. Jr & Tolman, W. B. (1998). J. Am. Chem. Soc. 120, 13531–13532.  Web of Science CSD CrossRef CAS Google Scholar
First citationKannan, S., Venkatachalam, G., Lee, H. J., Min, B. K., Kim, W., Koo, E., Do, Y. R. & Yoon, S. (2011). Polyhedron, 30, 340–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaednya, A. & Hart, H. (1996). Synthesis, pp. 1455–1458.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, W. B. & Que, L. Jr (2002). J. Chem. Soc. Dalton Trans. pp. 653–660.  Web of Science CrossRef Google Scholar
First citationZhang, X.-J., Han, J., Wang, C.-G. & Xing, Y.-H. (2007). Acta Cryst. E63, m2620–m2621.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m631-m632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds