metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(di­methyl sulfoxide-κO)calcium μ6-oxido-dodeca­kis-μ2-oxido-hexa­oxido­hexa­tungstate(VI)

aMolecular Materials Research Center, Scientific Research Academy, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: zjf260@ujs.edu.cn

(Received 13 April 2012; accepted 24 April 2012; online 28 April 2012)

In the title compound, [Ca(C2H6OS)6][W6O19], the cation and anion both have a crystallographically imposed centre of symmetry. The CaII atom in the cation is coordinated by six O atoms from six dimethyl sulfoxide ligands in a distorted octa­hedral geometry. The [W6O19]2− isopolyanion possesses the well-known Lindqvist structure in which each WVI atom is coordinated by four μ2-O, one terminal O and one μ6-O atom.

Related literature

For the in situ synthetic method, see: Xu et al. (2010[Xu, F., Huang, W. & You, X. Z. (2010). Dalton Trans. 39, 10652-10658.]); Ni et al. (2009[Ni, W. X., Li, M., Zhan, S. Z., Hou, J. Z. & Li, D. (2009). Inorg. Chem. 48, 1433-1441.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C2H6OS)6][W6O19]

  • Mr = 1915.95

  • Triclinic, [P \overline 1]

  • a = 8.1871 (16) Å

  • b = 11.352 (2) Å

  • c = 11.378 (2) Å

  • α = 84.53 (3)°

  • β = 73.15 (3)°

  • γ = 74.02 (3)°

  • V = 972.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 18.20 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.13 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.047, Tmax = 0.094

  • 8635 measured reflections

  • 3507 independent reflections

  • 3072 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.047

  • S = 0.98

  • 3507 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −1.19 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The in situ synthetic method has been widely applied to constructing new compounds (Xu et al., 2010, Ni et al., 2009). In the present paper, the in situ reaction between tetrathiotungstate and calcium nitrate in DMSO to form the title compound is reported. The (W6O19)2- isopolyanion was achieved by the reaction between (WS4)2- and H2O in DMSO solution.

In the cation of the title compound (Fig. 1), the Ca2+ ion is bonded by six O atoms from six DMSO ligands in a distorted octahedral coordination geometry. The (W6O19)2- (Fig. 2) shows the usual cage-shaped Lindqvist structure, where each W atom is coordinated by four µ2-O, one terminal O and one µ6-O atoms. The W—O bond lengths involving the µ6-O atoms [2.3255 (8)–2.3292 (6) Å] are obviously longer than those observed for the µ2-O [1.905 (4)–1.934 (4) Å] and terminal [1.696 (4)–1.703 (4) Å] oxygen atoms.

Related literature top

For the in situ synthetic method, see: Xu et al. (2010); Ni et al. (2009).

Experimental top

Calcium nitrate (1 mmol) was added to a solution of [NH4]2WS4 (1 mmol in 5 ml DMSO) with thorough stir for 30 minutes. After filtration, the orange filtrate was carefully laid on the surface with 8 ml i-PrOH. Colourless block crystals were obtained after about one month.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the cation in the title compound, with 30% probability displacement ellipsoids. H atoms have been omitted. Symmetry code: (i) -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. The molecular structure of the anion in the title compound, with 30% probability displacement ellipsoids. Symmetry code: (i) 1 - x, -y, -z.
Hexakis(dimethyl sulfoxide-κO)calcium µ6-oxido-dodecakis-µ2-oxido-hexaoxidohexatungstate(VI) top
Crystal data top
[Ca(C2H6OS)6][W6O19]Z = 1
Mr = 1915.95F(000) = 868
Triclinic, P1Dx = 3.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1871 (16) ÅCell parameters from 4353 reflections
b = 11.352 (2) Åθ = 3.7–29.0°
c = 11.378 (2) ŵ = 18.20 mm1
α = 84.53 (3)°T = 293 K
β = 73.15 (3)°Block, colourless
γ = 74.02 (3)°0.21 × 0.15 × 0.13 mm
V = 972.8 (3) Å3
Data collection top
Rigaku Saturn724+
diffractometer
3507 independent reflections
Radiation source: fine-focus sealed tube3072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.4°, θmin = 3.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 99
Tmin = 0.047, Tmax = 0.094k = 1213
8635 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0163P)2]
where P = (Fo2 + 2Fc2)/3
3507 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Ca(C2H6OS)6][W6O19]γ = 74.02 (3)°
Mr = 1915.95V = 972.8 (3) Å3
Triclinic, P1Z = 1
a = 8.1871 (16) ÅMo Kα radiation
b = 11.352 (2) ŵ = 18.20 mm1
c = 11.378 (2) ÅT = 293 K
α = 84.53 (3)°0.21 × 0.15 × 0.13 mm
β = 73.15 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
3507 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
3072 reflections with I > 2σ(I)
Tmin = 0.047, Tmax = 0.094Rint = 0.034
8635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 0.98Δρmax = 1.05 e Å3
3507 reflectionsΔρmin = 1.19 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.00000.50000.50000.0163 (4)
S10.2595 (2)0.38529 (14)0.35230 (14)0.0203 (3)
S20.2007 (2)0.23054 (14)0.63729 (14)0.0206 (3)
S30.3557 (2)0.47593 (14)0.21704 (13)0.0205 (4)
O10.2315 (5)0.4680 (4)0.4393 (3)0.0232 (10)
O20.0581 (5)0.3034 (4)0.5797 (4)0.0250 (10)
O30.2119 (5)0.4354 (4)0.3150 (3)0.0224 (10)
C10.1301 (9)0.4158 (6)0.2049 (5)0.0302 (16)
H1A0.18240.49630.17770.045*
H1B0.12470.35620.14850.045*
H1C0.01290.41150.20850.045*
C20.1315 (9)0.2352 (6)0.3743 (6)0.0293 (16)
H2A0.18520.20320.45290.044*
H2B0.01420.23790.37130.044*
H2C0.12590.18310.31070.044*
C30.1723 (8)0.0790 (5)0.6536 (6)0.0251 (15)
H3A0.06710.07690.71800.038*
H3B0.27260.02330.67370.038*
H3C0.16190.05530.57790.038*
C40.4000 (8)0.2041 (6)0.5156 (6)0.0321 (17)
H4A0.43480.27920.49440.048*
H4B0.38120.17500.44530.048*
H4C0.49130.14390.54150.048*
C50.2577 (9)0.5451 (6)0.0969 (5)0.0299 (16)
H5A0.23620.48300.05610.045*
H5B0.33660.58560.03880.045*
H5C0.14800.60390.13140.045*
C60.3767 (9)0.6117 (6)0.2698 (6)0.0290 (16)
H6A0.42920.59190.33680.044*
H6B0.26190.66760.29700.044*
H6C0.45020.64920.20410.044*
W10.29354 (3)0.17964 (2)0.02810 (2)0.01538 (7)
W20.34391 (3)0.00577 (2)0.20593 (2)0.01614 (8)
W30.66800 (3)0.11373 (2)0.04884 (2)0.01671 (8)
O40.50000.00000.00000.0149 (12)
O50.4702 (5)0.2359 (3)0.0143 (3)0.0159 (9)
O60.1471 (5)0.3129 (4)0.0504 (4)0.0237 (10)
O70.2105 (5)0.1407 (4)0.1419 (3)0.0182 (9)
O80.5081 (5)0.0881 (4)0.2053 (3)0.0161 (9)
O90.7883 (6)0.1969 (4)0.0863 (4)0.0286 (11)
O100.2012 (5)0.0534 (4)0.0611 (3)0.0181 (9)
O110.4597 (5)0.1488 (3)0.1889 (3)0.0178 (9)
O120.2325 (5)0.0106 (4)0.3573 (3)0.0238 (10)
O130.2413 (5)0.0963 (4)0.1266 (3)0.0183 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0190 (9)0.0153 (10)0.0149 (8)0.0052 (8)0.0050 (7)0.0023 (7)
S10.0193 (8)0.0218 (9)0.0217 (8)0.0076 (7)0.0067 (7)0.0002 (7)
S20.0207 (8)0.0197 (9)0.0207 (8)0.0029 (7)0.0075 (7)0.0012 (7)
S30.0203 (8)0.0207 (9)0.0183 (8)0.0051 (7)0.0027 (7)0.0013 (7)
O10.025 (2)0.025 (3)0.020 (2)0.004 (2)0.0088 (19)0.0027 (19)
O20.020 (2)0.020 (2)0.035 (2)0.005 (2)0.011 (2)0.009 (2)
O30.026 (2)0.023 (3)0.017 (2)0.010 (2)0.0001 (19)0.0023 (18)
C10.041 (4)0.035 (4)0.019 (3)0.018 (3)0.007 (3)0.000 (3)
C20.037 (4)0.022 (4)0.030 (4)0.008 (3)0.012 (3)0.003 (3)
C30.027 (4)0.018 (4)0.031 (4)0.006 (3)0.009 (3)0.003 (3)
C40.016 (4)0.044 (5)0.032 (4)0.008 (3)0.003 (3)0.009 (3)
C50.036 (4)0.031 (4)0.023 (4)0.010 (3)0.008 (3)0.006 (3)
C60.033 (4)0.032 (4)0.025 (4)0.020 (3)0.003 (3)0.003 (3)
W10.01630 (14)0.01265 (14)0.01563 (13)0.00101 (10)0.00495 (10)0.00088 (10)
W20.01678 (14)0.01716 (15)0.01205 (13)0.00261 (11)0.00237 (10)0.00101 (10)
W30.01879 (14)0.01511 (15)0.01880 (14)0.00643 (11)0.00742 (10)0.00045 (10)
O40.013 (3)0.015 (3)0.014 (3)0.005 (2)0.001 (2)0.006 (2)
O50.022 (2)0.011 (2)0.014 (2)0.0026 (18)0.0071 (18)0.0002 (17)
O60.025 (2)0.019 (2)0.023 (2)0.001 (2)0.0060 (19)0.0046 (19)
O70.019 (2)0.017 (2)0.017 (2)0.0013 (18)0.0047 (18)0.0019 (18)
O80.021 (2)0.017 (2)0.0113 (19)0.0040 (18)0.0053 (17)0.0049 (17)
O90.031 (3)0.027 (3)0.037 (3)0.015 (2)0.015 (2)0.004 (2)
O100.019 (2)0.018 (2)0.020 (2)0.0067 (18)0.0061 (18)0.0017 (18)
O110.022 (2)0.015 (2)0.015 (2)0.0046 (19)0.0057 (18)0.0052 (17)
O120.028 (3)0.027 (3)0.011 (2)0.004 (2)0.0014 (19)0.0024 (18)
O130.016 (2)0.021 (2)0.019 (2)0.0080 (19)0.0049 (18)0.0077 (18)
Geometric parameters (Å, º) top
S1—O11.530 (4)C6—H6C0.9600
S1—C11.765 (6)W1—O61.701 (4)
S1—C21.776 (6)W1—O101.905 (4)
S2—O21.512 (4)W1—O71.907 (4)
S2—C41.780 (6)W1—O51.924 (4)
S2—C31.784 (6)W1—O111.934 (4)
S3—O31.509 (4)W1—O42.3258 (9)
S3—C61.775 (6)W2—O121.703 (4)
S3—C51.792 (6)W2—O131.916 (4)
C1—H1A0.9600W2—O11i1.924 (4)
C1—H1B0.9600W2—O71.929 (4)
C1—H1C0.9600W2—O81.930 (4)
C2—H2A0.9600W2—O42.3255 (8)
C2—H2B0.9600W3—O91.696 (4)
C2—H2C0.9600W3—O10i1.919 (4)
C3—H3A0.9600W3—O13i1.926 (4)
C3—H3B0.9600W3—O51.931 (4)
C3—H3C0.9600W3—O81.931 (4)
C4—H4A0.9600W3—O42.3292 (6)
C4—H4B0.9600O4—W2i2.3255 (8)
C4—H4C0.9600O4—W1i2.3258 (9)
C5—H5A0.9600O4—W3i2.3292 (6)
C5—H5B0.9600O10—W3i1.919 (4)
C5—H5C0.9600O11—W2i1.924 (4)
C6—H6A0.9600O13—W3i1.926 (4)
C6—H6B0.9600
O1—S1—C1105.5 (3)O10—W1—O476.19 (12)
O1—S1—C2106.5 (3)O7—W1—O476.43 (12)
C1—S1—C298.3 (3)O5—W1—O476.06 (11)
O2—S2—C4105.3 (3)O11—W1—O476.15 (12)
O2—S2—C3104.4 (3)O12—W2—O13104.30 (18)
C4—S2—C398.5 (3)O12—W2—O11i103.04 (18)
O3—S3—C6106.8 (3)O13—W2—O11i86.91 (16)
O3—S3—C5106.0 (3)O12—W2—O7104.58 (18)
C6—S3—C597.5 (3)O13—W2—O787.18 (16)
S1—C1—H1A109.5O11i—W2—O7152.37 (16)
S1—C1—H1B109.5O12—W2—O8102.96 (18)
H1A—C1—H1B109.5O13—W2—O8152.74 (15)
S1—C1—H1C109.5O11i—W2—O886.82 (16)
H1A—C1—H1C109.5O7—W2—O886.18 (17)
H1B—C1—H1C109.5O12—W2—O4179.15 (14)
S1—C2—H2A109.5O13—W2—O476.27 (11)
S1—C2—H2B109.5O11i—W2—O476.33 (11)
H2A—C2—H2B109.5O7—W2—O476.04 (11)
S1—C2—H2C109.5O8—W2—O476.47 (11)
H2A—C2—H2C109.5O9—W3—O10i104.34 (19)
H2B—C2—H2C109.5O9—W3—O13i104.75 (19)
S2—C3—H3A109.5O10i—W3—O13i86.68 (17)
S2—C3—H3B109.5O9—W3—O5103.97 (19)
H3A—C3—H3B109.5O10i—W3—O5151.69 (16)
S2—C3—H3C109.5O13i—W3—O585.75 (16)
H3A—C3—H3C109.5O9—W3—O8102.89 (18)
H3B—C3—H3C109.5O10i—W3—O887.37 (16)
S2—C4—H4A109.5O13i—W3—O8152.35 (16)
S2—C4—H4B109.5O5—W3—O886.80 (16)
H4A—C4—H4B109.5O9—W3—O4179.23 (15)
S2—C4—H4C109.5O10i—W3—O475.84 (11)
H4A—C4—H4C109.5O13i—W3—O476.00 (11)
H4B—C4—H4C109.5O5—W3—O475.85 (11)
S3—C5—H5A109.5O8—W3—O476.36 (11)
S3—C5—H5B109.5W2—O4—W2i180.000 (15)
H5A—C5—H5B109.5W2—O4—W1i90.19 (4)
S3—C5—H5C109.5W2i—O4—W1i89.81 (4)
H5A—C5—H5C109.5W2—O4—W189.81 (4)
H5B—C5—H5C109.5W2i—O4—W190.19 (4)
S3—C6—H6A109.5W1i—O4—W1180.000 (18)
S3—C6—H6B109.5W2—O4—W390.07 (3)
H6A—C6—H6B109.5W2i—O4—W389.93 (3)
S3—C6—H6C109.5W1i—O4—W389.690 (19)
H6A—C6—H6C109.5W1—O4—W390.310 (19)
H6B—C6—H6C109.5W2—O4—W3i89.93 (3)
O6—W1—O10105.04 (19)W2i—O4—W3i90.07 (3)
O6—W1—O7104.53 (18)W1i—O4—W3i90.310 (19)
O10—W1—O787.11 (16)W1—O4—W3i89.690 (19)
O6—W1—O5102.69 (18)W3—O4—W3i180.000 (12)
O10—W1—O5152.24 (17)W1—O5—W3117.76 (19)
O7—W1—O587.11 (16)W1—O7—W2117.72 (19)
O6—W1—O11102.88 (18)W2—O8—W3117.10 (18)
O10—W1—O1186.69 (16)W1—O10—W3i118.3 (2)
O7—W1—O11152.57 (17)W2i—O11—W1117.33 (19)
O5—W1—O1186.06 (16)W2—O13—W3i117.79 (18)
O6—W1—O4178.43 (14)
O13—W2—O4—W1i89.97 (12)O8—W3—O4—W189.34 (13)
O11i—W2—O4—W1i0.16 (12)O6—W1—O5—W3179.93 (19)
O7—W2—O4—W1i179.54 (12)O10—W1—O5—W32.5 (4)
O8—W2—O4—W1i90.15 (12)O7—W1—O5—W375.7 (2)
O13—W2—O4—W190.03 (12)O11—W1—O5—W377.7 (2)
O11i—W2—O4—W1179.84 (12)O4—W1—O5—W31.05 (15)
O7—W2—O4—W10.46 (12)O9—W3—O5—W1178.2 (2)
O8—W2—O4—W189.85 (12)O10i—W3—O5—W12.7 (4)
O13—W2—O4—W3179.66 (12)O13i—W3—O5—W177.7 (2)
O11i—W2—O4—W389.53 (12)O8—W3—O5—W175.7 (2)
O7—W2—O4—W389.85 (12)O4—W3—O5—W11.05 (15)
O8—W2—O4—W30.46 (12)O6—W1—O7—W2179.4 (2)
O13—W2—O4—W3i0.34 (12)O10—W1—O7—W275.8 (2)
O11i—W2—O4—W3i90.47 (12)O5—W1—O7—W277.0 (2)
O7—W2—O4—W3i90.15 (12)O11—W1—O7—W21.3 (5)
O8—W2—O4—W3i179.54 (12)O4—W1—O7—W20.64 (16)
O10—W1—O4—W289.87 (12)O12—W2—O7—W1180.0 (2)
O7—W1—O4—W20.47 (12)O13—W2—O7—W175.9 (2)
O5—W1—O4—W290.83 (11)O11i—W2—O7—W11.9 (5)
O11—W1—O4—W2179.84 (12)O8—W2—O7—W177.6 (2)
O10—W1—O4—W2i90.13 (12)O4—W2—O7—W10.64 (16)
O7—W1—O4—W2i179.53 (12)O12—W2—O8—W3178.7 (2)
O5—W1—O4—W2i89.17 (11)O13—W2—O8—W30.9 (5)
O11—W1—O4—W2i0.16 (12)O11i—W2—O8—W376.1 (2)
O10—W1—O4—W3179.94 (11)O7—W2—O8—W377.2 (2)
O7—W1—O4—W389.60 (12)O4—W2—O8—W30.63 (16)
O5—W1—O4—W30.77 (11)O9—W3—O8—W2179.6 (2)
O11—W1—O4—W390.10 (12)O10i—W3—O8—W275.4 (2)
O10—W1—O4—W3i0.06 (11)O13i—W3—O8—W22.3 (5)
O7—W1—O4—W3i90.40 (12)O5—W3—O8—W276.8 (2)
O5—W1—O4—W3i179.23 (11)O4—W3—O8—W20.63 (16)
O11—W1—O4—W3i89.90 (12)O6—W1—O10—W3i178.9 (2)
O10i—W3—O4—W290.26 (12)O7—W1—O10—W3i76.8 (2)
O13i—W3—O4—W2179.67 (12)O5—W1—O10—W3i1.4 (5)
O5—W3—O4—W290.57 (11)O11—W1—O10—W3i76.5 (2)
O8—W3—O4—W20.46 (12)O4—W1—O10—W3i0.09 (16)
O10i—W3—O4—W2i89.74 (12)O6—W1—O11—W2i178.5 (2)
O13i—W3—O4—W2i0.33 (12)O10—W1—O11—W2i76.8 (2)
O5—W3—O4—W2i89.43 (11)O7—W1—O11—W2i0.4 (5)
O8—W3—O4—W2i179.54 (12)O5—W1—O11—W2i76.4 (2)
O10i—W3—O4—W1i0.06 (11)O4—W1—O11—W2i0.22 (16)
O13i—W3—O4—W1i90.14 (13)O12—W2—O13—W3i179.8 (2)
O5—W3—O4—W1i179.23 (11)O11i—W2—O13—W3i77.1 (2)
O8—W3—O4—W1i90.66 (13)O7—W2—O13—W3i75.9 (2)
O10i—W3—O4—W1179.94 (11)O8—W2—O13—W3i0.2 (5)
O13i—W3—O4—W189.86 (13)O4—W2—O13—W3i0.46 (16)
O5—W3—O4—W10.77 (11)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ca(C2H6OS)6][W6O19]
Mr1915.95
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1871 (16), 11.352 (2), 11.378 (2)
α, β, γ (°)84.53 (3), 73.15 (3), 74.02 (3)
V3)972.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)18.20
Crystal size (mm)0.21 × 0.15 × 0.13
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.047, 0.094
No. of measured, independent and
observed [I > 2σ(I)] reflections
8635, 3507, 3072
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 0.98
No. of reflections3507
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 1.19

Computer programs: CrystalClear (Rigaku, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu High School (10KJB430005) and the Foundation of Jiangsu University (08JDG036).

References

First citationNi, W. X., Li, M., Zhan, S. Z., Hou, J. Z. & Li, D. (2009). Inorg. Chem. 48, 1433–1441.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F., Huang, W. & You, X. Z. (2010). Dalton Trans. 39, 10652–10658.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds