organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1411-o1412

Redetermination of 1,3-di­ammonio-1,2,3-tride­­oxy-cis-inositol dichloride

aFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
*Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

(Received 13 March 2012; accepted 21 March 2012; online 18 April 2012)

The crystal structure of the title compound, C6H16N2O32+·2Cl, has been reported previously by Palm [Acta Cryst. (1967[Palm, J. H. (1967). Acta Cryst. 22, 209-216.]), 22, 209–216] from Weisenberg camera data, with R1 = 10.5%, isotropic refinement of non-H atoms and H atoms not located. We remeasured a data set of the title compound and present a more precise structure determination. The asymmetric unit contains two unique 1,3-diammonio-1,2,3-tride­oxy-cis-inositol cations and four Cl counter-ions. The cyclo­hexane rings of both inositol cations adopt chair conformations with two axial hy­droxy groups. An extended network of hydrogen bonds is formed. The four chloride counter ions are hydrogen bonded to the hydroxy and ammonium groups of the cations by N—H⋯Cl and O—H⋯Cl interactions. The cations are aligned into wavy layers by cation⋯cation interactions of the form N—H⋯O(ax), N—H⋯O(eq) and O(ax)—H⋯O(eq). Intramolecular hydrogen bonding between the axial hydroxy groups is, however, not observed.

Related literature

An earlier, less accurate structure determination of the title compound was performed by Palm (1967[Palm, J. H. (1967). Acta Cryst. 22, 209-216.]). The crystal structure of 1,3-diammonio-1,2,3-tride­oxy-cis-inositol sulfate has been reported by Neis et al. (2012[Neis, C., Merten, G. J. & Hegetschweiler, K. (2012). Acta Cryst. E68, o1425-o1426.]). The importance of intra­molecular hydrogen bonding in 1,3,5-tris­ubstituted cyclo­hexane derivatives has been described by Gencheva et al. (2000[Gencheva, G., Bontchev, P. R., Sander, J. & Hegetschweiler, K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 183-185.]), Saaidi et al. (2008[Saaidi, P.-L., Chazal, P.-E., Maurin, P., Jeanneau, E. & Hasserodt, J. (2008). Acta Cryst. E64, o803-o804.]) and Neis et al. (2010[Neis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092-10107.]), and the implication of increased 1,3-diaxial repulsion on the conformation of a cyclo­hexane ring has been discussed by Fritsche-Lang et al. (1985[Fritsche-Lang, W., Wilharm, P., Hädicke, E., Fritz, H. & Prinzbach, H. (1985). Chem. Ber. 118, 2044-2078.]), Kramer et al. (1998[Kramer, A., Alberto, R., Egli, A., Novak-Hofer, I., Hegetschweiler, K., Abram, U., Bernhardt, P. V. & Schubiger, P. A. (1998). Bioconjugate Chem. 9, 691-702.]) and Kuppert et al. (2006[Kuppert, D., Comba, P. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 2792-2807.]). For the synthesis, see: Merten et al. (2012[Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31-35.]). For the treatment of hydrogen atoms in SHELXL, see: Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N2O32+·2Cl

  • Mr = 235.11

  • Monoclinic, P 21

  • a = 7.7899 (4) Å

  • b = 10.1254 (5) Å

  • c = 13.0136 (7) Å

  • β = 91.156 (2)°

  • V = 1026.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 130 K

  • 0.30 × 0.22 × 0.15 mm

Data collection
  • Bruker–Nonius X8 APEX KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.838, Tmax = 0.914

  • 16242 measured reflections

  • 4459 independent reflections

  • 4429 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.047

  • S = 1.06

  • 4459 reflections

  • 289 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2093 Friedel pairs

  • Flack parameter: 0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N18—H18A⋯Cl4 0.89 (1) 2.28 (1) 3.1411 (11) 163 (2)
N18—H18B⋯Cl1i 0.90 (1) 2.37 (2) 3.2646 (12) 177 (2)
N18—H18C⋯Cl3ii 0.91 (1) 2.26 (1) 3.1634 (11) 175 (2)
N22—H22C⋯Cl4iii 0.87 (1) 2.21 (1) 3.0761 (11) 172 (2)
N22—H22A⋯Cl1 0.88 (2) 2.28 (2) 3.1466 (12) 168 (2)
N22—H22B⋯Cl3 0.87 (1) 2.32 (2) 3.1518 (12) 162 (2)
O19—H19⋯O9iv 0.81 (2) 1.91 (2) 2.7168 (13) 172 (2)
O20—H20⋯Cl2v 0.88 (2) 2.48 (2) 3.2220 (10) 143 (2)
O21—H21⋯Cl2 0.83 (1) 2.39 (2) 3.2096 (10) 174 (2)
N7—H7C⋯O20vi 0.89 (1) 2.05 (2) 2.8560 (15) 151 (2)
N7—H7B⋯O19 0.85 (1) 2.11 (2) 2.9404 (14) 164 (2)
N7—H7A⋯Cl3 0.89 (1) 2.70 (2) 3.4038 (11) 138 (1)
O8—H8⋯Cl2vi 0.84 (1) 2.29 (2) 3.1256 (10) 175 (2)
O9—H9⋯Cl1iv 0.80 (2) 2.27 (2) 3.0144 (10) 156 (2)
O10—H10⋯Cl4vii 0.85 (2) 2.14 (2) 2.9889 (10) 177 (2)
N11—H11C⋯Cl2v 0.89 (2) 2.37 (2) 3.2132 (12) 159 (2)
N11—H11B⋯Cl1v 0.86 (1) 2.51 (2) 3.3007 (11) 154 (2)
N11—H11A⋯Cl2 0.90 (2) 2.61 (2) 3.4618 (13) 158 (2)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) [-x+2, y+{\script{1\over 2}}, -z+1]; (vi) x-1, y, z; (vii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound contains two independent 1,3-diammonio-1,2,3-trideoxy-cis-inositol dications (denoted as cation 1 and cation 2). As already noted by Palm (1967), the cyclohexane rings of both cations adopt a chair conformation, having one hydroxy and two ammonium groups in equatorial and two hydroxy groups in axial position. The puckering parameters of the two cyclohexane rings are: Q = 0.59 Å, θ = 4.3 °, ϕ = 337.8 ° (cation 1); Q = 0.58 Å, θ = 5.0 °, ϕ = 87.0 ° (cation 2). The cations are aligned to wavy layers, oriented parallel to the ab plane, by direct cation 1···cation 2 interactions of the form N—H···O(ax), N—H···O(eq) and O(ax)—H···O(eq). In these layers, each cation of one type is interlinked with three cations of the other. In addition, cation 1···cation 1 interactions are formed by weak C—H···O hydrogen bonds between the axial oxygen atoms and two axial C—H hydrogen atoms of a neighbour (O···C distances: 3.277 and 3.215 Å, O···H distances: 2.470 and 2.485 Å, O···H—C angles 137 and 129 °). Cation 2···cation 2 hydrogen bonding is not observed. The four chloride counter ions are also involved in the extended hydrogen bonding network. Considering Cl···H distances up to 2.7 Å, Cl1 has a coordination number of four (irregular geometry). The coordination number of Cl2 is 5 and its geometry lies closer to a tetragonal pyramid than to a trigonal bipyramid (τ = 1/4). Cl3 and Cl4 have coordination numbers of three. The geometry is again irregular. All O—H and N—H groups in the two cations act as hydrogen donors, however, not all of the axial hydroxy groups act as hydrogen acceptors (if the abovementioned, weak C—H···O contacts are disregarded). This observation is in agreement with the well established concept that axial substituents are sterically more encumbered. In particular, it is of interest that no intramolecular O—H···O hydrogen bonding has been found for the axial hydroxy groups, although the corresponding O···O separations fall in the almost ideal range of 2.893 - 2.906 Å. For corresponding structures with three axial hydroxy or amino groups in a syn-1,3,5-triaxial arrangement, a different behaviour has frequently been noted (Gencheva et al., 2000; Saaidi et al., 2008; Neis et al., 2010). If a third syn-axial substituent is present, it appears that formation of such intramolecular hydrogen bonds is sometimes even a prerequisite for the adoption of a stable cyclohexane chair. Disabling of hydrogen bonding (for instance by protonation of an amino group or by converting it into an amide) enforces the structure to escape the increasing repulsion by switching to a twisted boat conformation (Fritsche-Lang et al., 1985; Kramer et al., 1998; Kuppert et al., 2006). It is thus noteworthy that in both cations of the title compound, such intramolecular O—H···O stabilisation is not required. Also in a corresponding sulphate salt (Neis et al., 2012) no intramolecular hydrogen bonding between the two axial hydroxy groups has been found.

Related literature top

An early, less accurate structure determination of the title compound has been performed by Palm (1967). The crystal structure of 1,3-diammonio-1,2,3-trideoxy-cis-inositol sulfate has been reported by Neis et al. (2012). The importance of intramolecular hydrogen bonding in 1,3,5-trisubstituted cyclohexane derivatives has been described by Gencheva et al. (2000), Saaidi et al. (2008) and Neis et al. (2010), and the implication of increased 1,3-diaxial repulsion on the conformation of a cyclohexane ring has been discussed by Fritsche-Lang et al. (1985), Kramer et al. (1998) and Kuppert et al. (2006). For the synthesis, see: Merten et al. (2012). For the treatment of hydrogen atoms in SHELXL, see: Müller et al. (2006).

Experimental top

The title compound was prepared following the protocol given by Merten et al. (2012). 1H-NMR (D2O, pH 1.0): δ (p.p.m.) = 4.17 (2H), 3.74 (1H), 3.56 (2H), 2.12 (2H). 13C-NMR (D2O, pH 1.0): δ (p.p.m.) = 25.2, 43.0, 63.7, 68.2. Single crystals were grown from an aqueous solution by slow evaporation at 298 K.

Refinement top

All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were treated as recommended by Müller et al. (2006): A riding model was used for C-bonded hydrogen atoms. The positional parameters of the O- and N-bonded hydrogen atoms were refined using isotropic displacement parameters which were set to 1.5×Ueq of the pivot atom. In addition, restraints of 0.84 and 0.88 Å were used for the O—H and N—H distances, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. The asymmetric unit comprising two crystallographically independent cations and four crystallographically independent chloride counter ions is shown. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Section of the puckered layer, which is formed by hydrogen bonding between cation 1 and cation 2 entities (ball and stick model).
1,3-diammonio-1,2,3-trideoxy-cis-inositol dichloride top
Crystal data top
C6H16N2O32+·2ClF(000) = 496
Mr = 235.11Dx = 1.522 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9336 reflections
a = 7.7899 (4) Åθ = 2.6–40.5°
b = 10.1254 (5) ŵ = 0.61 mm1
c = 13.0136 (7) ÅT = 130 K
β = 91.156 (2)°Prism, colorless
V = 1026.25 (9) Å30.30 × 0.22 × 0.15 mm
Z = 4
Data collection top
Bruker–Nonius X8 APEX KappaCCD
diffractometer
4459 independent reflections
Radiation source: fine-focus sealed tube4429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 99
Tmin = 0.838, Tmax = 0.914k = 1212
16242 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.1788P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4459 reflectionsΔρmax = 0.27 e Å3
289 parametersΔρmin = 0.15 e Å3
19 restraintsAbsolute structure: Flack (1983), 2093 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C6H16N2O32+·2ClV = 1026.25 (9) Å3
Mr = 235.11Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.7899 (4) ŵ = 0.61 mm1
b = 10.1254 (5) ÅT = 130 K
c = 13.0136 (7) Å0.30 × 0.22 × 0.15 mm
β = 91.156 (2)°
Data collection top
Bruker–Nonius X8 APEX KappaCCD
diffractometer
4459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
4429 reflections with I > 2σ(I)
Tmin = 0.838, Tmax = 0.914Rint = 0.017
16242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047Δρmax = 0.27 e Å3
S = 1.06Δρmin = 0.15 e Å3
4459 reflectionsAbsolute structure: Flack (1983), 2093 Friedel pairs
289 parametersAbsolute structure parameter: 0.01 (3)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.65695 (15)0.78053 (13)0.49259 (9)0.0116 (2)
H1A0.74400.82970.45350.014*
H1B0.67420.68500.48050.014*
C20.47789 (15)0.82069 (11)0.45618 (9)0.0109 (2)
H20.46290.91770.46720.013*
C30.33980 (16)0.74645 (11)0.51435 (9)0.0117 (2)
H30.22450.78220.49360.014*
C40.36884 (16)0.76840 (13)0.63009 (9)0.0135 (2)
H40.34780.86380.64530.016*
C50.54882 (17)0.73308 (12)0.66995 (9)0.0141 (2)
H50.56050.75970.74380.017*
C60.67808 (15)0.81082 (12)0.60699 (9)0.0129 (2)
H60.66050.90750.61850.015*
N180.72743 (14)1.01783 (11)0.05624 (8)0.0149 (2)
H18A0.6277 (19)1.0191 (18)0.0889 (12)0.022*
H18B0.789 (2)1.0895 (16)0.0746 (14)0.022*
H18C0.706 (2)1.0188 (19)0.0129 (10)0.022*
N220.73895 (14)0.53468 (11)0.10007 (8)0.0154 (2)
H22C0.706 (2)0.5268 (19)0.0357 (11)0.023*
H22A0.801 (2)0.4651 (17)0.1183 (13)0.023*
H22B0.646 (2)0.5385 (19)0.1356 (13)0.023*
O190.75839 (12)0.93190 (9)0.26803 (7)0.01429 (18)
H190.751 (2)1.0080 (15)0.2863 (13)0.021*
O201.09187 (12)0.81557 (10)0.32436 (7)0.0206 (2)
H201.028 (2)0.8689 (19)0.3606 (14)0.031*
O210.78841 (12)0.64823 (10)0.28780 (7)0.01674 (19)
H210.837 (2)0.6185 (18)0.3397 (12)0.025*
N70.45629 (14)0.79085 (11)0.34387 (8)0.0132 (2)
H7C0.3542 (19)0.8197 (17)0.3215 (13)0.020*
H7B0.537 (2)0.8271 (17)0.3103 (13)0.020*
H7A0.462 (2)0.7050 (14)0.3315 (13)0.020*
C130.83453 (16)0.90192 (12)0.08871 (9)0.0140 (2)
H130.93610.89700.04310.017*
O80.34834 (12)0.61091 (9)0.48626 (7)0.01400 (17)
H80.2471 (19)0.5838 (18)0.4902 (14)0.021*
C140.89926 (16)0.92022 (12)0.19938 (9)0.0131 (2)
H140.97041.00230.20370.016*
O90.24058 (12)0.69200 (10)0.68068 (7)0.01881 (19)
H90.213 (2)0.7301 (18)0.7312 (13)0.028*
C151.01194 (16)0.80171 (13)0.22624 (9)0.0152 (2)
H151.10640.80110.17540.018*
O100.58596 (14)0.59647 (10)0.66089 (7)0.0204 (2)
H100.601 (2)0.5671 (19)0.7219 (12)0.031*
C160.92115 (16)0.66793 (12)0.21605 (9)0.0134 (2)
H161.00840.59630.22550.016*
N110.85723 (14)0.77409 (13)0.63986 (8)0.0182 (2)
H11C0.931 (2)0.8269 (18)0.6089 (14)0.027*
H11B0.872 (2)0.780 (2)0.7055 (11)0.027*
H11A0.883 (2)0.6931 (16)0.6164 (14)0.027*
C170.84314 (16)0.65722 (12)0.10753 (9)0.0132 (2)
H170.93920.65000.05800.016*
C120.73148 (16)0.77507 (13)0.07590 (9)0.0137 (2)
H12A0.69290.76520.00330.016*
H12B0.62850.77860.11920.016*
Cl10.95255 (4)0.27346 (3)0.13119 (2)0.01574 (7)
Cl20.96850 (3)0.51134 (3)0.48456 (2)0.01623 (6)
Cl30.36075 (4)0.53635 (3)0.18167 (2)0.02006 (7)
Cl40.34728 (4)0.98731 (3)0.12868 (2)0.02147 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0106 (5)0.0148 (6)0.0092 (5)0.0009 (4)0.0005 (4)0.0008 (4)
C20.0121 (5)0.0109 (5)0.0096 (5)0.0002 (4)0.0004 (4)0.0002 (4)
C30.0111 (5)0.0103 (5)0.0138 (5)0.0004 (4)0.0021 (4)0.0004 (4)
C40.0166 (6)0.0108 (5)0.0134 (5)0.0016 (4)0.0059 (4)0.0001 (4)
C50.0203 (6)0.0122 (5)0.0097 (5)0.0014 (5)0.0021 (4)0.0003 (4)
C60.0138 (6)0.0140 (6)0.0107 (5)0.0020 (4)0.0015 (4)0.0004 (4)
N180.0175 (5)0.0141 (5)0.0131 (4)0.0007 (4)0.0003 (4)0.0020 (4)
N220.0177 (5)0.0142 (5)0.0140 (5)0.0010 (4)0.0013 (4)0.0019 (4)
O190.0168 (4)0.0137 (4)0.0125 (4)0.0013 (3)0.0033 (3)0.0020 (3)
O200.0189 (5)0.0250 (5)0.0176 (4)0.0031 (4)0.0048 (4)0.0033 (4)
O210.0170 (5)0.0219 (5)0.0114 (4)0.0020 (4)0.0003 (3)0.0017 (3)
N70.0133 (5)0.0159 (5)0.0104 (5)0.0016 (4)0.0012 (4)0.0010 (4)
C130.0158 (6)0.0136 (6)0.0125 (5)0.0003 (4)0.0017 (4)0.0005 (4)
O80.0129 (4)0.0115 (4)0.0177 (4)0.0025 (3)0.0029 (3)0.0030 (3)
C140.0113 (5)0.0139 (6)0.0140 (6)0.0012 (4)0.0011 (4)0.0014 (4)
O90.0214 (5)0.0175 (5)0.0180 (4)0.0036 (4)0.0115 (4)0.0020 (4)
C150.0115 (5)0.0173 (6)0.0167 (6)0.0015 (4)0.0028 (4)0.0033 (5)
O100.0302 (5)0.0148 (4)0.0162 (4)0.0005 (4)0.0002 (4)0.0018 (4)
C160.0128 (6)0.0142 (6)0.0133 (5)0.0022 (4)0.0005 (4)0.0003 (4)
N110.0171 (5)0.0222 (6)0.0151 (5)0.0032 (5)0.0055 (4)0.0027 (5)
C170.0135 (6)0.0133 (6)0.0127 (5)0.0000 (4)0.0021 (4)0.0020 (4)
C120.0166 (5)0.0144 (6)0.0101 (5)0.0001 (5)0.0015 (4)0.0010 (4)
Cl10.01912 (14)0.01465 (13)0.01360 (12)0.00009 (11)0.00369 (10)0.00124 (10)
Cl20.01362 (13)0.01454 (13)0.02052 (14)0.00019 (10)0.00009 (10)0.00263 (11)
Cl30.01973 (14)0.02535 (17)0.01513 (13)0.00115 (12)0.00145 (10)0.00093 (12)
Cl40.01848 (14)0.03068 (18)0.01520 (13)0.00287 (12)0.00074 (10)0.00097 (12)
Geometric parameters (Å, º) top
C1—C21.5195 (16)O19—H190.809 (15)
C1—C61.5257 (15)O20—C151.4163 (15)
C1—H1A0.9900O20—H200.878 (15)
C1—H1B0.9900O21—C161.4212 (15)
C2—N71.4987 (14)O21—H210.825 (14)
C2—C31.5258 (16)N7—H7C0.890 (14)
C2—H21.0000N7—H7B0.852 (14)
C3—O81.4222 (14)N7—H7A0.885 (14)
C3—C41.5347 (16)C13—C121.5221 (18)
C3—H31.0000C13—C141.5275 (16)
C4—O91.4341 (14)C13—H131.0000
C4—C51.5275 (18)O8—H80.838 (14)
C4—H41.0000C14—C151.5232 (17)
C5—O101.4186 (15)C14—H141.0000
C5—C61.5291 (16)O9—H90.796 (15)
C5—H51.0000C15—C161.5326 (17)
C6—N111.4983 (16)C15—H151.0000
C6—H61.0000O10—H100.854 (15)
N18—C131.4959 (16)C16—C171.5299 (16)
N18—H18A0.893 (14)C16—H161.0000
N18—H18B0.900 (14)N11—H11C0.885 (15)
N18—H18C0.911 (13)N11—H11B0.862 (14)
N22—C171.4848 (16)N11—H11A0.898 (15)
N22—H22C0.874 (14)C17—C121.5283 (17)
N22—H22A0.883 (15)C17—H171.0000
N22—H22B0.865 (14)C12—H12A0.9900
O19—C141.4339 (15)C12—H12B0.9900
C2—C1—C6109.31 (10)C2—N7—H7C109.6 (11)
C2—C1—H1A109.8C2—N7—H7B110.1 (12)
C6—C1—H1A109.8H7C—N7—H7B110.5 (16)
C2—C1—H1B109.8C2—N7—H7A111.7 (12)
C6—C1—H1B109.8H7C—N7—H7A107.9 (17)
H1A—C1—H1B108.3H7B—N7—H7A106.9 (17)
N7—C2—C1109.54 (9)N18—C13—C12109.95 (10)
N7—C2—C3108.55 (9)N18—C13—C14110.05 (10)
C1—C2—C3111.43 (9)C12—C13—C14111.65 (10)
N7—C2—H2109.1N18—C13—H13108.4
C1—C2—H2109.1C12—C13—H13108.4
C3—C2—H2109.1C14—C13—H13108.4
O8—C3—C2108.11 (9)C3—O8—H8104.6 (12)
O8—C3—C4112.66 (10)O19—C14—C15111.51 (10)
C2—C3—C4108.91 (10)O19—C14—C13110.81 (10)
O8—C3—H3109.0C15—C14—C13107.37 (10)
C2—C3—H3109.0O19—C14—H14109.0
C4—C3—H3109.0C15—C14—H14109.0
O9—C4—C5111.16 (10)C13—C14—H14109.0
O9—C4—C3106.39 (10)C4—O9—H9108.6 (14)
C5—C4—C3114.55 (10)O20—C15—C14111.69 (10)
O9—C4—H4108.2O20—C15—C16111.06 (10)
C5—C4—H4108.2C14—C15—C16114.43 (10)
C3—C4—H4108.2O20—C15—H15106.4
O10—C5—C4112.79 (10)C14—C15—H15106.4
O10—C5—C6108.65 (10)C16—C15—H15106.4
C4—C5—C6107.90 (10)C5—O10—H10106.7 (13)
O10—C5—H5109.1O21—C16—C17108.41 (10)
C4—C5—H5109.1O21—C16—C15114.07 (10)
C6—C5—H5109.1C17—C16—C15108.45 (10)
N11—C6—C1108.07 (10)O21—C16—H16108.6
N11—C6—C5109.81 (10)C17—C16—H16108.6
C1—C6—C5111.11 (10)C15—C16—H16108.6
N11—C6—H6109.3C6—N11—H11C109.0 (12)
C1—C6—H6109.3C6—N11—H11B111.6 (13)
C5—C6—H6109.3H11C—N11—H11B109.4 (18)
C13—N18—H18A111.2 (12)C6—N11—H11A109.9 (12)
C13—N18—H18B105.4 (12)H11C—N11—H11A104.3 (17)
H18A—N18—H18B109.1 (17)H11B—N11—H11A112.3 (18)
C13—N18—H18C112.1 (11)N22—C17—C12109.12 (10)
H18A—N18—H18C109.2 (15)N22—C17—C16109.03 (10)
H18B—N18—H18C109.8 (17)C12—C17—C16113.99 (10)
C17—N22—H22C106.7 (12)N22—C17—H17108.2
C17—N22—H22A110.8 (12)C12—C17—H17108.2
H22C—N22—H22A109.4 (17)C16—C17—H17108.2
C17—N22—H22B112.8 (13)C13—C12—C17109.47 (10)
H22C—N22—H22B106.6 (16)C13—C12—H12A109.8
H22A—N22—H22B110.3 (17)C17—C12—H12A109.8
C14—O19—H19108.9 (13)C13—C12—H12B109.8
C15—O20—H20107.5 (13)C17—C12—H12B109.8
C16—O21—H21105.0 (13)H12A—C12—H12B108.2
C6—C1—C2—N7179.87 (10)N18—C13—C14—O1959.93 (13)
C6—C1—C2—C359.74 (13)C12—C13—C14—O1962.45 (13)
N7—C2—C3—O853.24 (12)N18—C13—C14—C15178.07 (10)
C1—C2—C3—O867.46 (12)C12—C13—C14—C1559.55 (13)
N7—C2—C3—C4175.96 (9)O19—C14—C15—O2064.11 (13)
C1—C2—C3—C455.26 (12)C13—C14—C15—O20174.33 (10)
O8—C3—C4—O957.58 (13)O19—C14—C15—C1663.16 (13)
C2—C3—C4—O9177.52 (9)C13—C14—C15—C1658.41 (13)
O8—C3—C4—C565.65 (14)O20—C15—C16—O2161.04 (13)
C2—C3—C4—C554.29 (13)C14—C15—C16—O2166.54 (13)
O9—C4—C5—O1055.85 (13)O20—C15—C16—C17178.05 (10)
C3—C4—C5—O1064.77 (13)C14—C15—C16—C1754.36 (13)
O9—C4—C5—C6175.88 (9)O21—C16—C17—N2249.61 (13)
C3—C4—C5—C655.25 (13)C15—C16—C17—N22173.95 (10)
C2—C1—C6—N11178.30 (10)O21—C16—C17—C1272.58 (13)
C2—C1—C6—C561.17 (13)C15—C16—C17—C1251.77 (13)
O10—C5—C6—N1154.54 (13)N18—C13—C12—C17179.03 (10)
C4—C5—C6—N11177.14 (10)C14—C13—C12—C1758.53 (13)
O10—C5—C6—C164.96 (13)N22—C17—C12—C13177.03 (10)
C4—C5—C6—C157.64 (13)C16—C17—C12—C1354.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18A···Cl40.89 (1)2.28 (1)3.1411 (11)163 (2)
N18—H18B···Cl1i0.90 (1)2.37 (2)3.2646 (12)177 (2)
N18—H18C···Cl3ii0.91 (1)2.26 (1)3.1634 (11)175 (2)
N22—H22C···Cl4iii0.87 (1)2.21 (1)3.0761 (11)172 (2)
N22—H22A···Cl10.88 (2)2.28 (2)3.1466 (12)168 (2)
N22—H22B···Cl30.87 (1)2.32 (2)3.1518 (12)162 (2)
O19—H19···O9iv0.81 (2)1.91 (2)2.7168 (13)172 (2)
O20—H20···Cl2v0.88 (2)2.48 (2)3.2220 (10)143 (2)
O21—H21···Cl20.83 (1)2.39 (2)3.2096 (10)174 (2)
N7—H7C···O20vi0.89 (1)2.05 (2)2.8560 (15)151 (2)
N7—H7B···O190.85 (1)2.11 (2)2.9404 (14)164 (2)
N7—H7A···Cl30.89 (1)2.70 (2)3.4038 (11)138 (1)
O8—H8···Cl2vi0.84 (1)2.29 (2)3.1256 (10)175 (2)
O9—H9···Cl1iv0.80 (2)2.27 (2)3.0144 (10)156 (2)
O10—H10···Cl4vii0.85 (2)2.14 (2)2.9889 (10)177 (2)
N11—H11C···Cl2v0.89 (2)2.37 (2)3.2132 (12)159 (2)
N11—H11B···Cl1v0.86 (1)2.51 (2)3.3007 (11)154 (2)
N11—H11A···Cl20.90 (2)2.61 (2)3.4618 (13)158 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z+1; (v) x+2, y+1/2, z+1; (vi) x1, y, z; (vii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H16N2O32+·2Cl
Mr235.11
Crystal system, space groupMonoclinic, P21
Temperature (K)130
a, b, c (Å)7.7899 (4), 10.1254 (5), 13.0136 (7)
β (°) 91.156 (2)
V3)1026.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.30 × 0.22 × 0.15
Data collection
DiffractometerBruker–Nonius X8 APEX KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.838, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
16242, 4459, 4429
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.047, 1.06
No. of reflections4459
No. of parameters289
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.15
Absolute structureFlack (1983), 2093 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N18—H18A···Cl40.893 (14)2.278 (14)3.1411 (11)162.5 (15)
N18—H18B···Cl1i0.900 (14)2.365 (15)3.2646 (12)177.2 (16)
N18—H18C···Cl3ii0.911 (13)2.255 (14)3.1634 (11)175.0 (16)
N22—H22C···Cl4iii0.874 (14)2.208 (14)3.0761 (11)172.1 (17)
N22—H22A···Cl10.883 (15)2.277 (15)3.1466 (12)168.3 (16)
N22—H22B···Cl30.865 (14)2.317 (15)3.1518 (12)162.3 (16)
O19—H19···O9iv0.809 (15)1.913 (15)2.7168 (13)172.4 (18)
O20—H20···Cl2v0.878 (15)2.478 (17)3.2220 (10)142.9 (17)
O21—H21···Cl20.825 (14)2.388 (15)3.2096 (10)174.3 (18)
N7—H7C···O20vi0.890 (14)2.045 (15)2.8560 (15)150.8 (16)
N7—H7B···O190.852 (14)2.111 (15)2.9404 (14)164.3 (16)
N7—H7A···Cl30.885 (14)2.697 (16)3.4038 (11)137.6 (14)
O8—H8···Cl2vi0.838 (14)2.290 (15)3.1256 (10)174.7 (17)
O9—H9···Cl1iv0.796 (15)2.271 (16)3.0144 (10)155.8 (18)
O10—H10···Cl4vii0.854 (15)2.136 (15)2.9889 (10)176.6 (19)
N11—H11C···Cl2v0.885 (15)2.372 (16)3.2132 (12)158.8 (16)
N11—H11B···Cl1v0.862 (14)2.505 (16)3.3007 (11)153.8 (16)
N11—H11A···Cl20.898 (15)2.612 (16)3.4618 (13)158.1 (16)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z+1; (v) x+2, y+1/2, z+1; (vi) x1, y, z; (vii) x+1, y1/2, z+1.
 

Acknowledgements

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFritsche-Lang, W., Wilharm, P., Hädicke, E., Fritz, H. & Prinzbach, H. (1985). Chem. Ber. 118, 2044–2078.  CAS Google Scholar
First citationGencheva, G., Bontchev, P. R., Sander, J. & Hegetschweiler, K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 183–185.  CAS Google Scholar
First citationKramer, A., Alberto, R., Egli, A., Novak-Hofer, I., Hegetschweiler, K., Abram, U., Bernhardt, P. V. & Schubiger, P. A. (1998). Bioconjugate Chem. 9, 691–702.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuppert, D., Comba, P. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 2792–2807.  Web of Science CSD CrossRef Google Scholar
First citationMerten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31–35.  Web of Science CSD CrossRef Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement – A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationNeis, C., Merten, G. J. & Hegetschweiler, K. (2012). Acta Cryst. E68, o1425–o1426.  CSD CrossRef IUCr Journals Google Scholar
First citationNeis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092–10107.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPalm, J. H. (1967). Acta Cryst. 22, 209–216.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSaaidi, P.-L., Chazal, P.-E., Maurin, P., Jeanneau, E. & Hasserodt, J. (2008). Acta Cryst. E64, o803–o804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1411-o1412
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds