organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1374

1-(4-Chloro-2-fluoro-5-nitro­phen­yl)-4-di­fluoro­methyl-3-methyl-1H-1,2,4-triazol-5(4H)-one

aHenan Medical College for Staff and Workers, Zhengzhou 451191, People's Republic of China
*Correspondence e-mail: yang_l2012@163.com

(Received 19 March 2012; accepted 25 March 2012; online 13 April 2012)

In the title compound, C10H6ClF3N4O3, the dihedral angle between the benzene ring and the triazolone ring is 59.9 (1)°, while the nitro substituent subtends an angle of 39.5 (1)° to the benzene ring plane. In the crystal, pairs of mol­ecules form inversion dimers via C—H⋯O hydrogen bonds.

Related literature

For background to applications of this class of compound, see: Ager & Polsz (1996[Ager, J. W. & Polsz, C. A. (1996). EP Patent No. 1273232.]). For the synthesis and the use of the title compound in the production of herbicides, see: Goudar (1998[Goudar, J. S. (1998). US Patent No. 5756755.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClF3N4O3

  • Mr = 322.64

  • Monoclinic, P 21 /c

  • a = 12.556 (3) Å

  • b = 14.800 (3) Å

  • c = 6.8760 (14) Å

  • β = 103.32 (3)°

  • V = 1243.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.899, Tmax = 0.965

  • 4877 measured reflections

  • 2293 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.073

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.185

  • S = 1.01

  • 2293 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.98 2.32 3.190 (6) 148
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important intermediate used to synthesize the herbicide Carfentrazone-ethyl. It can also be used to synthesize other herbicides (Goudar, 1998), which are of wide interest for application to the control of broadleaf weeds and sedges (Ager & Polsz, 1996). We report here the crystal structure of the title compound, (I), which is of interest to us in this field.

The molecular structure of (I) is shown in Fig. 1. Bond distances in the molecule are normal (Allen et al., 1987). The dihedral angle between the C1—C6 and N1/N3/C8/N2/C7 rings is 59.9 (1)° and the nitro substituent subtends an angle of 39.5 (1)° to the benzene ring plane.. In the crystal structure, molecules form inversion dimers via intermolecular C10—H10A···O1 hydrogen bonds (Table 1, Fig 2) .

Related literature top

For background to applications of this class of compound, see: Ager & Polsz (1996). For the synthesis and the use of the title compound in the production of herbicides, see: Goudar (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Goudar, 1998). Crystals were obtained by dissolving (I) (0.2 g) in acetone (50 ml) and evaporating the solvent slowly at room temperature over 10 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.96 Å for alkyl H, respectively. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for alkyl H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) with hydrogen bonds drawn as dashed lines.
1-(4-Chloro-2-fluoro-5-nitrophenyl)-4-difluoromethyl-3-methyl-1H- 1,2,4-triazol-5(4H)-one top
Crystal data top
C10H6ClF3N4O3F(000) = 648
Mr = 322.64Dx = 1.724 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.556 (3) Åθ = 9–13°
b = 14.800 (3) ŵ = 0.36 mm1
c = 6.8760 (14) ÅT = 293 K
β = 103.32 (3)°Block, colourless
V = 1243.4 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1589 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 1514
Absorption correction: ψ scan
(North et al., 1968)
k = 1717
Tmin = 0.899, Tmax = 0.965l = 08
4877 measured reflections3 standard reflections every 200 reflections
2293 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.330P]
where P = (Fo2 + 2Fc2)/3
2293 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H6ClF3N4O3V = 1243.4 (4) Å3
Mr = 322.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.556 (3) ŵ = 0.36 mm1
b = 14.800 (3) ÅT = 293 K
c = 6.8760 (14) Å0.30 × 0.20 × 0.10 mm
β = 103.32 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1589 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.073
Tmin = 0.899, Tmax = 0.9653 standard reflections every 200 reflections
4877 measured reflections intensity decay: 1%
2293 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.78 e Å3
2293 reflectionsΔρmin = 0.34 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.47555 (10)0.11625 (7)0.08507 (17)0.0670 (4)
F10.84029 (19)0.26681 (16)0.2492 (4)0.0710 (7)
C10.5785 (3)0.3747 (2)0.1483 (5)0.0470 (9)
H1A0.54810.43220.13860.056*
N10.7581 (2)0.43972 (19)0.2491 (4)0.0444 (7)
O10.8646 (3)0.4432 (2)0.0175 (5)0.0709 (9)
O20.3580 (3)0.3887 (3)0.0249 (5)0.0798 (10)
C20.5118 (3)0.2996 (3)0.1173 (7)0.0580 (10)
F20.9214 (3)0.6832 (2)0.1945 (7)0.1216 (14)
N20.7474 (2)0.4912 (2)0.4138 (5)0.0481 (8)
N30.8789 (2)0.5451 (2)0.2821 (5)0.0469 (8)
C30.5549 (3)0.2129 (2)0.1239 (6)0.0521 (9)
F31.0420 (2)0.6114 (2)0.4004 (5)0.0862 (9)
C40.6663 (3)0.2027 (2)0.1651 (5)0.0414 (8)
H4A0.69700.14540.16940.050*
N40.3939 (4)0.3183 (3)0.0870 (10)0.113 (2)
C50.7323 (3)0.2774 (2)0.2001 (5)0.0408 (8)
C60.6898 (3)0.3641 (2)0.1934 (5)0.0379 (8)
C70.8207 (3)0.5538 (2)0.4266 (6)0.0476 (9)
C80.8380 (3)0.4709 (2)0.1627 (5)0.0471 (9)
C90.8423 (4)0.6223 (3)0.5868 (8)0.0770 (14)
H9A0.79160.61450.67080.116*
H9B0.83370.68160.52870.116*
H9C0.91570.61530.66530.116*
C100.9601 (3)0.6014 (3)0.2389 (7)0.0626 (12)
H10A0.98780.57640.12810.075*
O30.3405 (3)0.2597 (4)0.1869 (10)0.143 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0777 (8)0.0436 (6)0.0810 (8)0.0207 (5)0.0213 (6)0.0081 (5)
F10.0482 (13)0.0551 (15)0.109 (2)0.0087 (11)0.0167 (13)0.0066 (14)
C10.054 (2)0.0352 (19)0.053 (2)0.0013 (16)0.0148 (18)0.0006 (15)
N10.0564 (18)0.0368 (16)0.0461 (16)0.0068 (14)0.0245 (14)0.0097 (13)
O10.083 (2)0.071 (2)0.0702 (18)0.0221 (17)0.0428 (17)0.0113 (16)
O20.062 (2)0.077 (2)0.097 (2)0.0182 (17)0.0115 (18)0.0012 (19)
C20.045 (2)0.042 (2)0.081 (3)0.0005 (17)0.003 (2)0.0040 (19)
F20.078 (2)0.0610 (19)0.216 (4)0.0003 (15)0.015 (2)0.064 (2)
N20.0489 (18)0.0391 (17)0.0596 (19)0.0017 (14)0.0191 (15)0.0098 (14)
N30.0440 (17)0.0391 (17)0.0594 (18)0.0089 (13)0.0157 (15)0.0011 (14)
C30.060 (2)0.036 (2)0.057 (2)0.0128 (18)0.0075 (18)0.0031 (16)
F30.0552 (16)0.085 (2)0.107 (2)0.0209 (14)0.0060 (15)0.0192 (16)
C40.064 (2)0.0314 (17)0.0366 (17)0.0015 (16)0.0283 (16)0.0008 (14)
N40.047 (2)0.061 (3)0.221 (6)0.007 (2)0.011 (3)0.023 (4)
C50.046 (2)0.047 (2)0.0308 (16)0.0043 (16)0.0127 (14)0.0011 (14)
C60.056 (2)0.0337 (18)0.0290 (16)0.0064 (15)0.0188 (15)0.0035 (12)
C70.046 (2)0.0327 (18)0.060 (2)0.0052 (16)0.0041 (18)0.0031 (16)
C80.059 (2)0.042 (2)0.0453 (19)0.0057 (17)0.0238 (18)0.0005 (16)
C90.066 (3)0.056 (3)0.110 (4)0.002 (2)0.021 (3)0.031 (3)
C100.059 (3)0.040 (2)0.089 (3)0.0079 (19)0.017 (2)0.023 (2)
O30.066 (2)0.120 (4)0.248 (7)0.023 (3)0.044 (3)0.065 (4)
Geometric parameters (Å, º) top
Cl—C31.729 (4)N3—C71.368 (5)
F1—C51.329 (4)N3—C81.397 (5)
C1—C61.368 (5)N3—C101.401 (5)
C1—C21.379 (5)C3—C41.370 (5)
C1—H1A0.9300F3—C101.336 (5)
N1—C81.359 (5)C4—C51.369 (5)
N1—N21.397 (4)C4—H4A0.9300
N1—C61.408 (4)N4—O31.373 (8)
O1—C81.196 (4)C5—C61.387 (5)
O2—N41.176 (6)C7—C91.475 (6)
C2—C31.389 (5)C9—H9A0.9600
C2—N41.473 (6)C9—H9B0.9600
F2—C101.315 (5)C9—H9C0.9600
N2—C71.294 (5)C10—H10A0.9800
C6—C1—C2119.7 (3)F1—C5—C6118.7 (3)
C6—C1—H1A120.1C4—C5—C6121.9 (3)
C2—C1—H1A120.1C1—C6—C5118.6 (3)
C8—N1—N2112.8 (3)C1—C6—N1119.8 (3)
C8—N1—C6128.0 (3)C5—C6—N1121.3 (3)
N2—N1—C6119.2 (3)N2—C7—N3111.9 (3)
C1—C2—C3121.4 (4)N2—C7—C9123.3 (4)
C1—C2—N4115.2 (4)N3—C7—C9124.7 (4)
C3—C2—N4123.3 (4)O1—C8—N1128.7 (4)
C7—N2—N1104.3 (3)O1—C8—N3128.7 (3)
C7—N3—C8108.4 (3)N1—C8—N3102.6 (3)
C7—N3—C10129.4 (3)C7—C9—H9A109.5
C8—N3—C10122.0 (3)C7—C9—H9B109.5
C4—C3—C2118.7 (3)H9A—C9—H9B109.5
C4—C3—Cl117.7 (3)C7—C9—H9C109.5
C2—C3—Cl123.5 (3)H9A—C9—H9C109.5
C5—C4—C3119.7 (3)H9B—C9—H9C109.5
C5—C4—H4A120.2F2—C10—F3105.3 (4)
C3—C4—H4A120.2F2—C10—N3110.4 (4)
O2—N4—O3123.4 (5)F3—C10—N3110.4 (3)
O2—N4—C2120.4 (5)F2—C10—H10A110.2
O3—N4—C2113.7 (5)F3—C10—H10A110.2
F1—C5—C4119.4 (3)N3—C10—H10A110.2
C6—C1—C2—C32.3 (6)C8—N1—C6—C1123.1 (4)
C6—C1—C2—N4174.9 (4)N2—N1—C6—C157.8 (4)
C8—N1—N2—C70.3 (4)C8—N1—C6—C562.6 (5)
C6—N1—N2—C7179.5 (3)N2—N1—C6—C5116.5 (3)
C1—C2—C3—C41.0 (6)N1—N2—C7—N30.9 (4)
N4—C2—C3—C4176.0 (5)N1—N2—C7—C9177.2 (4)
C1—C2—C3—Cl179.7 (3)C8—N3—C7—N21.2 (4)
N4—C2—C3—Cl3.4 (7)C10—N3—C7—N2176.2 (4)
C2—C3—C4—C50.5 (6)C8—N3—C7—C9177.5 (4)
Cl—C3—C4—C5178.9 (2)C10—N3—C7—C97.5 (6)
C1—C2—N4—O225.3 (8)N2—N1—C8—O1177.8 (4)
C3—C2—N4—O2157.6 (5)C6—N1—C8—O13.1 (7)
C1—C2—N4—O3137.4 (5)N2—N1—C8—N30.4 (4)
C3—C2—N4—O339.7 (8)C6—N1—C8—N3178.7 (3)
C3—C4—C5—F1176.9 (3)C7—N3—C8—O1177.3 (4)
C3—C4—C5—C60.6 (5)C10—N3—C8—O11.9 (6)
C2—C1—C6—C52.1 (5)C7—N3—C8—N10.9 (4)
C2—C1—C6—N1172.3 (3)C10—N3—C8—N1176.3 (3)
F1—C5—C6—C1178.2 (3)C7—N3—C10—F259.3 (6)
C4—C5—C6—C10.7 (5)C8—N3—C10—F2115.1 (5)
F1—C5—C6—N13.9 (4)C7—N3—C10—F356.7 (5)
C4—C5—C6—N1173.6 (3)C8—N3—C10—F3128.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.982.323.190 (6)148
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H6ClF3N4O3
Mr322.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.556 (3), 14.800 (3), 6.8760 (14)
β (°) 103.32 (3)
V3)1243.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.899, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4877, 2293, 1589
Rint0.073
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.185, 1.01
No. of reflections2293
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.98002.32003.190 (6)148.00
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for the data collection.

References

First citationAger, J. W. & Polsz, C. A. (1996). EP Patent No. 1273232.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGoudar, J. S. (1998). US Patent No. 5756755.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1374
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds