metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m629-m630

[μ-1,6-Bis(diphenyphosphan­yl)hexane-1:2κ2P:P′]deca­carbonyl-1κ3C,2κ3C,3κ4C-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 28 March 2012; accepted 4 April 2012; online 18 April 2012)

The title triangulo-triruthenium(0) compound, [Ru3(C30H32P2)(CO)10], contains a triangle of singly bonded Ru atoms. The phosphane-bridged Ru—Ru distance [2.9531 (2) Å] is significantly longer than the non-bridged Ru—Ru distances [2.8842 (2) and 2.8876 (2) Å] . The bis­(diphenyl­phosphan­yl)hexane ligand bridges the Ru—Ru bond. Each phosphane-substituted Ru atom bears one equatorial and two axial terminal carbonyl ligands, whereas the unsubstituted Ru atom bears two equatorial and two axial terminal carbonyl ligands. The dihedral angles between the benzene rings attached to each P atom are 72.75 (7) and 82.02 (7)°. The mol­ecular structure is stabilized by an intra­molecular C—H⋯O hydrogen bond involving a methyl­ene group of the phosphane ligand and an axial carbonyl O atom, which generates an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds into layers parallel to (100).

Related literature

For general background to triangulo-triruthenium clusters with structures of the general type Ru3(CO)10L (where L is a group 15 bidentate ligand), see: Bruce et al. (1982[Bruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83-91.]); Coleman et al. (1984[Coleman, A. W., Jones, D. F., Dixneuf, P. H., Brisson, C., Bonnet, J. J. & Lavigne, G. (1984). Inorg. Chem. 23, 952-956.]); Teoh et al. (1990[Teoh, S.-G., Fun, H.-K. & Shawkataly, O. bin (1990). Z. Kristallogr. 190, 287-293.]); Diz et al. (2001[Diz, E. L., Neels, A., Stoeckli-Evans, H. & Suss-Fink, G. (2001). Polyhedron, 20, 2771-2780.]); Shawkataly et al. (2006[Shawkataly, O. bin, Chong, M.-L., Fun, H.-K., Didierjean, C. & Aubry, A. (2006). Acta Cryst. E62, m168-m169.], 2011[Shawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, m197-m198.]); Churchill et al. (1977[Churchill, M. R., Hollander, F. J. & Hutchinson, J. P. (1977). Inorg. Chem. 16, 2655-2659.]). For the preparation of the title compound, see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C30H32P2)(CO)10]

  • Mr = 1037.81

  • Monoclinic, P 21 /c

  • a = 13.4836 (6) Å

  • b = 21.270 (1) Å

  • c = 16.1025 (6) Å

  • β = 122.295 (3)°

  • V = 3903.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.51 × 0.26 × 0.11 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.869

  • 53262 measured reflections

  • 14125 independent reflections

  • 12773 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.046

  • S = 1.04

  • 14125 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O3i 0.93 2.48 3.3421 (17) 154
C14—H14A⋯O6 0.97 2.58 3.2007 (19) 122
C20—H20A⋯O6i 0.93 2.59 3.495 (2) 164
C21—H21A⋯O9ii 0.93 2.51 3.329 (2) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Synthesis and structural reports on substitutued triangulo-triruthenium clusters with group 15 ligands are of interest because of the observed structural variations and their potential catalytic activity. There are several reports of substituted derivatives, of the type Ru3(CO)10(L)[where L= bidentate phosphine ligand] (Coleman et al., 1984; Bruce et al., 1982; Teoh et al., 1990; Diz et al., 2001; Shawkataly et al., 2006, 2011).

The title triangulo-triruthenium(0) compound, [Ru3(CO)10(Ph2P(CH2)6PPh2)], contains triangle of singly bonded Ru atoms. These type of structures are derived from that of [Ru3(CO)12] (Churchill et al., 1977) by replacement of an equatorial carbonyl group on each of two Ru atoms by the Ph2P groups of the diphosphane ligands. The phosphane bridged Ru-Ru distance [Ru2—Ru3 = 2.9531 (2) Å ] is significantly longer than the non-bridged Ru-Ru distances [Ru1 —Ru2 = 2.8842 (2) Å and Ru1 — Ru3 = 2.8876 (2) Å]. The bis(diphenylphosphanyl) hexane ligand bridges the Ru2– Ru3 bond. These Ru-Ru distances 2.8842 (2), 2.8876 (2) and 2.9531 (2) Å agree well with those observed in Ru3(CO)10Ph2P(CH2)2PPh2 (2.847 (1), 2.855 (1) and 2.856 (1) Å) (Bruce et al., 1982) andRu3(CO)10(F-dppe) [where F-dppe = bis(perfluoro-diphenylphosphanyl)ethane] (2.842 (4), 2.849 (4) and 2.868 (4) Å) (Diz et al., 2001) whereby the longest Ru-Ru bond is bridged by the bidentate phosphane ligand. The Ru1 atom carries two equatorial and two axial terminal carbonyl ligands whereas the Ru2 and Ru3 atoms each carries one equatorial and two axial terminal carbonyl ligands. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C19–C24/C25–C30) are 72.75 (7) and 82.02 (7)°, respectively. The molecular structure is stabilized by an intramolecular C14–H14A···O6 (Table 1) hydrogen bond, which generates an S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular C9–H9A···O3, C20–H20A···O6 and C21–H21A···O9 hydrogen bonds (Table 1) into two-dimensional planes parallel to (100).

Related literature top

For general background to triangulo-triruthenium clusters with structures of the general type Ru3(CO)10L (where L is a group 15 bidentate ligand), see: Bruce et al. (1982); Coleman et al. (1984); Teoh et al. (1990); Diz et al. (2001); Shawkataly et al. (2006, 2011); Churchill et al. (1977). For the preparation of the title compound, see: Bruce et al. (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

All manipulations were performed under a dry, oxygen-free nitrogen atmosphere using standard Schlenk techniques. Tetrahydrofuran was dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. The Ru3(CO)12 (Aldrich) and Ph2P(CH2)6PPh2 (Strem Chemicals) were used as received. Ru3(CO)10(Ph2P(CH2)6PPh2) was prepared by a reported procedure (Bruce et al., 1983). The title compound was obtained by reacting equimolar quantities of Ru3(CO)12 with Ph2P(CH2)6PPh2 in 25 ml THF. Crystals suitable for X-ray diffraction were grown by slow solvent/solvent diffusion of CH3OH into CH2Cl2.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 40% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dash line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
[µ-1,6-Bis(diphenyphosphanyl)hexane-1:2κ2P:P']decacarbonyl- 1κ3C,2κ3C,3κ4C-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C30H32P2)(CO)10]F(000) = 2056
Mr = 1037.81Dx = 1.766 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9965 reflections
a = 13.4836 (6) Åθ = 3.1–32.6°
b = 21.270 (1) ŵ = 1.29 mm1
c = 16.1025 (6) ÅT = 100 K
β = 122.295 (3)°Block, brown
V = 3903.7 (3) Å30.51 × 0.26 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
14125 independent reflections
Radiation source: fine-focus sealed tube12773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.562, Tmax = 0.869k = 1532
53262 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0182P)2 + 1.6109P]
where P = (Fo2 + 2Fc2)/3
14125 reflections(Δ/σ)max = 0.004
496 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ru3(C30H32P2)(CO)10]V = 3903.7 (3) Å3
Mr = 1037.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4836 (6) ŵ = 1.29 mm1
b = 21.270 (1) ÅT = 100 K
c = 16.1025 (6) Å0.51 × 0.26 × 0.11 mm
β = 122.295 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
14125 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
12773 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.869Rint = 0.023
53262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.04Δρmax = 0.54 e Å3
14125 reflectionsΔρmin = 0.58 e Å3
496 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.234282 (8)0.486493 (4)0.439613 (7)0.01568 (2)
Ru20.007592 (7)0.536230 (4)0.293260 (7)0.01454 (2)
Ru30.221591 (7)0.613182 (4)0.370118 (6)0.01222 (2)
P10.17243 (2)0.578706 (14)0.16853 (2)0.01642 (5)
P20.21229 (2)0.713604 (13)0.30678 (2)0.01351 (5)
O10.16758 (11)0.35305 (5)0.46383 (10)0.0385 (3)
O20.49388 (9)0.47616 (6)0.59809 (8)0.0305 (2)
O30.28204 (10)0.43668 (5)0.28450 (8)0.0287 (2)
O40.19513 (9)0.54598 (5)0.59416 (7)0.0278 (2)
O50.08834 (9)0.40860 (5)0.29939 (8)0.0266 (2)
O60.05342 (9)0.48931 (5)0.13661 (7)0.02588 (19)
O70.05743 (9)0.58536 (5)0.43750 (7)0.0266 (2)
O80.47322 (8)0.62400 (5)0.54079 (7)0.02603 (19)
O90.27197 (8)0.56475 (4)0.21625 (7)0.02217 (17)
O100.13472 (8)0.67573 (4)0.49164 (7)0.02337 (18)
C10.33183 (12)0.47903 (7)0.12075 (11)0.0274 (3)
H1A0.29550.46050.09150.033*
C20.42138 (13)0.44728 (7)0.12156 (12)0.0338 (3)
H2A0.44480.40780.09260.041*
C30.47589 (12)0.47432 (8)0.16546 (12)0.0327 (3)
H3A0.53560.45290.16610.039*
C40.44125 (12)0.53312 (8)0.20821 (11)0.0293 (3)
H4A0.47800.55140.23730.035*
C50.35137 (11)0.56491 (7)0.20765 (10)0.0237 (2)
H5A0.32790.60430.23710.028*
C60.29594 (10)0.53843 (6)0.16344 (9)0.0198 (2)
C70.32163 (10)0.68222 (6)0.08869 (9)0.0218 (2)
H7A0.36980.65470.03790.026*
C80.35592 (11)0.74400 (6)0.08411 (10)0.0229 (2)
H8A0.42530.75830.02930.027*
C90.28679 (11)0.78458 (6)0.16140 (10)0.0224 (2)
H9A0.31050.82600.15900.027*
C100.18240 (11)0.76352 (6)0.24221 (9)0.0215 (2)
H10A0.13660.79070.29420.026*
C110.14562 (10)0.70156 (6)0.24601 (9)0.0177 (2)
H11A0.07480.68790.30000.021*
C120.21474 (9)0.66040 (5)0.16923 (8)0.01632 (19)
C130.20318 (11)0.56961 (6)0.04288 (9)0.0227 (2)
H13A0.20030.52520.03040.027*
H13B0.28230.58420.00340.027*
C140.11829 (13)0.60517 (7)0.02351 (11)0.0276 (3)
H14A0.03940.59940.08010.033*
H14B0.12120.58560.03220.033*
C150.13912 (11)0.67564 (7)0.00301 (9)0.0232 (2)
H15A0.15000.69490.05220.028*
H15B0.21050.68200.06070.028*
C160.03673 (11)0.70793 (7)0.00415 (9)0.0231 (2)
H16A0.02930.69000.04760.028*
H16B0.05520.75220.01060.028*
C170.08159 (10)0.70214 (6)0.10166 (9)0.0194 (2)
H17A0.10050.65800.11690.023*
H17B0.14210.72090.09440.023*
C180.08221 (10)0.73398 (6)0.18724 (8)0.0172 (2)
H18A0.01240.72150.18640.021*
H18B0.07950.77920.17850.021*
C190.12991 (12)0.81696 (6)0.36458 (10)0.0215 (2)
H19A0.05840.81210.30550.026*
C200.14418 (14)0.86478 (6)0.42961 (11)0.0289 (3)
H20A0.08200.89170.41350.035*
C210.24985 (16)0.87246 (7)0.51764 (11)0.0324 (3)
H21A0.25910.90480.56010.039*
C220.34173 (15)0.83192 (7)0.54228 (11)0.0326 (3)
H22A0.41290.83680.60170.039*
C230.32780 (12)0.78409 (7)0.47855 (10)0.0263 (3)
H23A0.38950.75650.49620.032*
C240.22258 (10)0.77667 (5)0.38820 (9)0.0170 (2)
C250.32775 (12)0.79391 (6)0.24798 (10)0.0244 (2)
H25A0.26390.82030.22840.029*
C260.41702 (13)0.81267 (7)0.23448 (11)0.0294 (3)
H26A0.41170.85100.20450.035*
C270.51388 (13)0.77433 (8)0.26570 (11)0.0299 (3)
H27A0.57400.78720.25750.036*
C280.52104 (11)0.71679 (7)0.30923 (10)0.0267 (3)
H28A0.58640.69130.33070.032*
C290.43030 (10)0.69707 (6)0.32084 (9)0.0203 (2)
H29A0.43470.65810.34870.024*
C300.33307 (10)0.73567 (6)0.29084 (9)0.0172 (2)
C310.18777 (12)0.40334 (6)0.45353 (11)0.0252 (3)
C320.39740 (11)0.48128 (6)0.53746 (10)0.0212 (2)
C330.26107 (11)0.45749 (6)0.33856 (10)0.0217 (2)
C340.20400 (11)0.52583 (6)0.53304 (10)0.0208 (2)
C350.05373 (11)0.45692 (6)0.29581 (9)0.0201 (2)
C360.04399 (10)0.50930 (6)0.19821 (10)0.0203 (2)
C370.02635 (10)0.56878 (6)0.38771 (9)0.0189 (2)
C380.37863 (10)0.61975 (5)0.47485 (9)0.0177 (2)
C390.24923 (10)0.57992 (5)0.27257 (9)0.0168 (2)
C400.16108 (10)0.64892 (5)0.44471 (9)0.0170 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01584 (4)0.01339 (4)0.02068 (4)0.00335 (3)0.01167 (3)0.00438 (3)
Ru20.01199 (4)0.01355 (4)0.01822 (4)0.00056 (3)0.00816 (3)0.00232 (3)
Ru30.01112 (4)0.01189 (4)0.01314 (4)0.00063 (3)0.00614 (3)0.00121 (3)
P10.01275 (11)0.01649 (12)0.01796 (13)0.00106 (9)0.00683 (10)0.00405 (10)
P20.01276 (11)0.01292 (11)0.01512 (12)0.00080 (9)0.00762 (10)0.00159 (9)
O10.0567 (7)0.0181 (4)0.0655 (8)0.0020 (5)0.0492 (7)0.0052 (5)
O20.0213 (4)0.0415 (6)0.0276 (5)0.0099 (4)0.0124 (4)0.0101 (4)
O30.0399 (5)0.0225 (4)0.0327 (5)0.0099 (4)0.0254 (5)0.0058 (4)
O40.0331 (5)0.0297 (5)0.0264 (5)0.0078 (4)0.0197 (4)0.0051 (4)
O50.0330 (5)0.0193 (4)0.0354 (5)0.0065 (4)0.0235 (4)0.0062 (4)
O60.0247 (4)0.0281 (5)0.0280 (5)0.0006 (4)0.0163 (4)0.0075 (4)
O70.0257 (4)0.0307 (5)0.0302 (5)0.0051 (4)0.0195 (4)0.0077 (4)
O80.0165 (4)0.0280 (5)0.0237 (4)0.0011 (3)0.0041 (3)0.0029 (4)
O90.0284 (4)0.0205 (4)0.0219 (4)0.0029 (3)0.0162 (4)0.0022 (3)
O100.0276 (4)0.0204 (4)0.0293 (5)0.0031 (3)0.0200 (4)0.0045 (4)
C10.0203 (5)0.0245 (6)0.0328 (7)0.0057 (5)0.0110 (5)0.0068 (5)
C20.0249 (6)0.0293 (7)0.0364 (8)0.0113 (5)0.0091 (6)0.0031 (6)
C30.0169 (5)0.0404 (8)0.0320 (7)0.0055 (5)0.0071 (5)0.0094 (6)
C40.0207 (6)0.0371 (7)0.0312 (7)0.0030 (5)0.0146 (5)0.0097 (6)
C50.0203 (5)0.0249 (6)0.0263 (6)0.0009 (4)0.0127 (5)0.0021 (5)
C60.0129 (4)0.0204 (5)0.0225 (5)0.0009 (4)0.0071 (4)0.0007 (4)
C70.0151 (5)0.0237 (5)0.0205 (5)0.0001 (4)0.0054 (4)0.0020 (5)
C80.0159 (5)0.0252 (6)0.0238 (6)0.0045 (4)0.0082 (4)0.0051 (5)
C90.0219 (5)0.0189 (5)0.0283 (6)0.0035 (4)0.0147 (5)0.0033 (5)
C100.0228 (5)0.0183 (5)0.0223 (5)0.0006 (4)0.0112 (5)0.0032 (4)
C110.0157 (5)0.0187 (5)0.0167 (5)0.0003 (4)0.0073 (4)0.0011 (4)
C120.0138 (4)0.0169 (5)0.0174 (5)0.0004 (4)0.0077 (4)0.0015 (4)
C130.0215 (5)0.0253 (6)0.0201 (5)0.0037 (4)0.0102 (5)0.0075 (5)
C140.0314 (7)0.0268 (6)0.0312 (7)0.0001 (5)0.0212 (6)0.0033 (5)
C150.0183 (5)0.0305 (6)0.0167 (5)0.0021 (5)0.0067 (4)0.0030 (5)
C160.0210 (5)0.0313 (6)0.0147 (5)0.0041 (5)0.0080 (4)0.0049 (5)
C170.0177 (5)0.0247 (5)0.0158 (5)0.0024 (4)0.0089 (4)0.0019 (4)
C180.0160 (5)0.0188 (5)0.0162 (5)0.0028 (4)0.0082 (4)0.0026 (4)
C190.0272 (6)0.0168 (5)0.0267 (6)0.0036 (4)0.0186 (5)0.0034 (4)
C200.0468 (8)0.0183 (5)0.0377 (7)0.0062 (5)0.0333 (7)0.0035 (5)
C210.0619 (10)0.0191 (6)0.0292 (7)0.0046 (6)0.0331 (7)0.0038 (5)
C220.0443 (8)0.0274 (7)0.0223 (6)0.0061 (6)0.0152 (6)0.0059 (5)
C230.0269 (6)0.0243 (6)0.0217 (6)0.0002 (5)0.0090 (5)0.0031 (5)
C240.0208 (5)0.0140 (4)0.0189 (5)0.0004 (4)0.0123 (4)0.0007 (4)
C250.0263 (6)0.0203 (5)0.0320 (7)0.0015 (4)0.0192 (5)0.0029 (5)
C260.0352 (7)0.0259 (6)0.0363 (7)0.0090 (5)0.0252 (6)0.0001 (6)
C270.0265 (6)0.0389 (8)0.0334 (7)0.0117 (6)0.0221 (6)0.0068 (6)
C280.0179 (5)0.0369 (7)0.0292 (6)0.0018 (5)0.0151 (5)0.0036 (6)
C290.0164 (5)0.0248 (5)0.0213 (5)0.0001 (4)0.0111 (4)0.0004 (4)
C300.0170 (5)0.0178 (5)0.0188 (5)0.0024 (4)0.0110 (4)0.0008 (4)
C310.0302 (6)0.0196 (5)0.0371 (7)0.0043 (5)0.0255 (6)0.0035 (5)
C320.0226 (5)0.0222 (5)0.0243 (6)0.0064 (4)0.0162 (5)0.0071 (5)
C330.0240 (5)0.0163 (5)0.0269 (6)0.0053 (4)0.0150 (5)0.0062 (4)
C340.0193 (5)0.0190 (5)0.0256 (6)0.0045 (4)0.0129 (5)0.0066 (4)
C350.0198 (5)0.0186 (5)0.0246 (6)0.0009 (4)0.0138 (5)0.0048 (4)
C360.0159 (5)0.0198 (5)0.0251 (6)0.0004 (4)0.0109 (4)0.0025 (4)
C370.0147 (4)0.0186 (5)0.0221 (5)0.0024 (4)0.0089 (4)0.0025 (4)
C380.0174 (5)0.0168 (5)0.0191 (5)0.0006 (4)0.0099 (4)0.0023 (4)
C390.0173 (5)0.0140 (4)0.0177 (5)0.0013 (4)0.0085 (4)0.0030 (4)
C400.0159 (4)0.0155 (5)0.0196 (5)0.0012 (4)0.0095 (4)0.0018 (4)
Geometric parameters (Å, º) top
Ru1—C321.9050 (13)C8—H8A0.9300
Ru1—C311.9293 (14)C9—C101.3849 (18)
Ru1—C341.9459 (13)C9—H9A0.9300
Ru1—C331.9461 (14)C10—C111.3980 (17)
Ru1—Ru22.8842 (2)C10—H10A0.9300
Ru1—Ru32.8876 (2)C11—C121.3899 (16)
Ru2—C351.8887 (13)C11—H11A0.9300
Ru2—C361.9271 (13)C13—C141.5366 (19)
Ru2—C371.9354 (13)C13—H13A0.9700
Ru2—P12.3522 (3)C13—H13B0.9700
Ru2—Ru32.9531 (2)C14—C151.528 (2)
Ru3—C381.8792 (12)C14—H14A0.9700
Ru3—C391.9319 (12)C14—H14B0.9700
Ru3—C401.9322 (12)C15—C161.5333 (19)
Ru3—P22.3413 (3)C15—H15A0.9700
P1—C121.8308 (12)C15—H15B0.9700
P1—C61.8353 (12)C16—C171.5326 (17)
P1—C131.8458 (13)C16—H16A0.9700
P2—C241.8285 (12)C16—H16B0.9700
P2—C181.8334 (11)C17—C181.5315 (17)
P2—C301.8399 (12)C17—H17A0.9700
O1—C311.1376 (17)C17—H17B0.9700
O2—C321.1402 (16)C18—H18A0.9700
O3—C331.1387 (16)C18—H18B0.9700
O4—C341.1368 (16)C19—C241.3902 (17)
O5—C351.1429 (15)C19—C201.3974 (19)
O6—C361.1472 (16)C19—H19A0.9300
O7—C371.1409 (16)C20—C211.381 (2)
O8—C381.1468 (15)C20—H20A0.9300
O9—C391.1480 (15)C21—C221.382 (2)
O10—C401.1445 (15)C21—H21A0.9300
C1—C21.390 (2)C22—C231.385 (2)
C1—C61.3954 (18)C22—H22A0.9300
C1—H1A0.9300C23—C241.3959 (17)
C2—C31.388 (2)C23—H23A0.9300
C2—H2A0.9300C25—C261.3910 (19)
C3—C41.383 (2)C25—C301.4012 (17)
C3—H3A0.9300C25—H25A0.9300
C4—C51.3920 (19)C26—C271.386 (2)
C4—H4A0.9300C26—H26A0.9300
C5—C61.3969 (18)C27—C281.388 (2)
C5—H5A0.9300C27—H27A0.9300
C7—C81.3818 (18)C28—C291.3973 (17)
C7—C121.4061 (16)C28—H28A0.9300
C7—H7A0.9300C29—C301.3961 (17)
C8—C91.3869 (19)C29—H29A0.9300
C32—Ru1—C3198.85 (6)C12—C11—H11A120.0
C32—Ru1—C3490.69 (5)C10—C11—H11A120.0
C31—Ru1—C3495.10 (6)C11—C12—C7118.84 (11)
C32—Ru1—C3391.44 (5)C11—C12—P1122.69 (9)
C31—Ru1—C3391.35 (6)C7—C12—P1118.47 (9)
C34—Ru1—C33172.82 (5)C14—C13—P1114.55 (9)
C32—Ru1—Ru2161.50 (4)C14—C13—H13A108.6
C31—Ru1—Ru299.37 (4)P1—C13—H13A108.6
C34—Ru1—Ru284.58 (4)C14—C13—H13B108.6
C33—Ru1—Ru291.27 (4)P1—C13—H13B108.6
C32—Ru1—Ru3100.25 (4)H13A—C13—H13B107.6
C31—Ru1—Ru3160.89 (4)C15—C14—C13117.11 (11)
C34—Ru1—Ru384.54 (4)C15—C14—H14A108.0
C33—Ru1—Ru388.33 (4)C13—C14—H14A108.0
Ru2—Ru1—Ru361.547 (3)C15—C14—H14B108.0
C35—Ru2—C3692.98 (5)C13—C14—H14B108.0
C35—Ru2—C3790.71 (5)H14A—C14—H14B107.3
C36—Ru2—C37176.27 (5)C14—C15—C16112.10 (11)
C35—Ru2—P195.60 (4)C14—C15—H15A109.2
C36—Ru2—P191.18 (4)C16—C15—H15A109.2
C37—Ru2—P187.95 (4)C14—C15—H15B109.2
C35—Ru2—Ru186.55 (4)C16—C15—H15B109.2
C36—Ru2—Ru186.07 (4)H15A—C15—H15B107.9
C37—Ru2—Ru194.67 (4)C17—C16—C15114.47 (10)
P1—Ru2—Ru1176.602 (9)C17—C16—H16A108.6
C35—Ru2—Ru3145.79 (4)C15—C16—H16A108.6
C36—Ru2—Ru383.75 (4)C17—C16—H16B108.6
C37—Ru2—Ru393.48 (3)C15—C16—H16B108.6
P1—Ru2—Ru3118.456 (9)H16A—C16—H16B107.6
Ru1—Ru2—Ru359.283 (4)C18—C17—C16112.87 (10)
C38—Ru3—C3998.20 (5)C18—C17—H17A109.0
C38—Ru3—C4093.46 (5)C16—C17—H17A109.0
C39—Ru3—C40168.09 (5)C18—C17—H17B109.0
C38—Ru3—P295.48 (4)C16—C17—H17B109.0
C39—Ru3—P288.20 (3)H17A—C17—H17B107.8
C40—Ru3—P288.26 (3)C17—C18—P2112.48 (8)
C38—Ru3—Ru185.21 (4)C17—C18—H18A109.1
C39—Ru3—Ru188.63 (3)P2—C18—H18A109.1
C40—Ru3—Ru194.79 (3)C17—C18—H18B109.1
P2—Ru3—Ru1176.823 (8)P2—C18—H18B109.1
C38—Ru3—Ru2142.89 (4)H18A—C18—H18B107.8
C39—Ru3—Ru291.49 (3)C24—C19—C20119.99 (13)
C40—Ru3—Ru280.56 (3)C24—C19—H19A120.0
P2—Ru3—Ru2120.673 (8)C20—C19—H19A120.0
Ru1—Ru3—Ru259.170 (4)C21—C20—C19120.57 (13)
C12—P1—C699.50 (5)C21—C20—H20A119.7
C12—P1—C13102.59 (6)C19—C20—H20A119.7
C6—P1—C13103.60 (6)C20—C21—C22119.71 (13)
C12—P1—Ru2122.83 (4)C20—C21—H21A120.1
C6—P1—Ru2110.90 (4)C22—C21—H21A120.1
C13—P1—Ru2114.87 (4)C21—C22—C23119.98 (14)
C24—P2—C18104.06 (5)C21—C22—H22A120.0
C24—P2—C30100.32 (5)C23—C22—H22A120.0
C18—P2—C30102.40 (5)C22—C23—C24121.02 (13)
C24—P2—Ru3113.02 (4)C22—C23—H23A119.5
C18—P2—Ru3118.14 (4)C24—C23—H23A119.5
C30—P2—Ru3116.62 (4)C19—C24—C23118.68 (12)
C2—C1—C6120.65 (14)C19—C24—P2122.90 (9)
C2—C1—H1A119.7C23—C24—P2118.41 (9)
C6—C1—H1A119.7C26—C25—C30120.65 (13)
C3—C2—C1120.18 (14)C26—C25—H25A119.7
C3—C2—H2A119.9C30—C25—H25A119.7
C1—C2—H2A119.9C27—C26—C25120.05 (13)
C4—C3—C2119.89 (13)C27—C26—H26A120.0
C4—C3—H3A120.1C25—C26—H26A120.0
C2—C3—H3A120.1C26—C27—C28119.99 (12)
C3—C4—C5119.99 (14)C26—C27—H27A120.0
C3—C4—H4A120.0C28—C27—H27A120.0
C5—C4—H4A120.0C27—C28—C29120.18 (13)
C4—C5—C6120.80 (13)C27—C28—H28A119.9
C4—C5—H5A119.6C29—C28—H28A119.9
C6—C5—H5A119.6C30—C29—C28120.31 (12)
C1—C6—C5118.49 (12)C30—C29—H29A119.8
C1—C6—P1120.81 (10)C28—C29—H29A119.8
C5—C6—P1120.58 (10)C29—C30—C25118.81 (11)
C8—C7—C12120.79 (11)C29—C30—P2122.63 (9)
C8—C7—H7A119.6C25—C30—P2118.56 (9)
C12—C7—H7A119.6O1—C31—Ru1175.53 (12)
C7—C8—C9119.91 (11)O2—C32—Ru1176.94 (12)
C7—C8—H8A120.0O3—C33—Ru1174.44 (11)
C9—C8—H8A120.0O4—C34—Ru1173.73 (11)
C10—C9—C8120.02 (12)O5—C35—Ru2178.36 (13)
C10—C9—H9A120.0O6—C36—Ru2171.84 (11)
C8—C9—H9A120.0O7—C37—Ru2173.03 (10)
C9—C10—C11120.31 (12)O8—C38—Ru3177.79 (11)
C9—C10—H10A119.8O9—C39—Ru3173.87 (10)
C11—C10—H10A119.8O10—C40—Ru3171.83 (10)
C12—C11—C10120.08 (11)
C32—Ru1—Ru2—C35170.75 (13)C12—P1—C6—C1152.39 (11)
C31—Ru1—Ru2—C350.70 (6)C13—P1—C6—C146.84 (12)
C34—Ru1—Ru2—C3594.99 (5)Ru2—P1—C6—C176.90 (12)
C33—Ru1—Ru2—C3590.88 (5)C12—P1—C6—C531.60 (11)
Ru3—Ru1—Ru2—C35178.29 (4)C13—P1—C6—C5137.14 (11)
C32—Ru1—Ru2—C3696.01 (13)Ru2—P1—C6—C599.11 (10)
C31—Ru1—Ru2—C3693.93 (6)C12—C7—C8—C92.6 (2)
C34—Ru1—Ru2—C36171.78 (5)C7—C8—C9—C101.2 (2)
C33—Ru1—Ru2—C362.35 (5)C8—C9—C10—C110.6 (2)
Ru3—Ru1—Ru2—C3685.06 (4)C9—C10—C11—C121.06 (19)
C32—Ru1—Ru2—C3780.33 (13)C10—C11—C12—C70.26 (18)
C31—Ru1—Ru2—C3789.73 (6)C10—C11—C12—P1179.77 (9)
C34—Ru1—Ru2—C374.56 (5)C8—C7—C12—C112.09 (19)
C33—Ru1—Ru2—C37178.69 (5)C8—C7—C12—P1177.93 (10)
Ru3—Ru1—Ru2—C3791.28 (4)C6—P1—C12—C11119.28 (11)
C32—Ru1—Ru2—P159.97 (19)C13—P1—C12—C11134.37 (10)
C31—Ru1—Ru2—P1129.98 (15)Ru2—P1—C12—C113.29 (12)
C34—Ru1—Ru2—P1135.73 (15)C6—P1—C12—C760.70 (11)
C33—Ru1—Ru2—P138.40 (15)C13—P1—C12—C745.66 (11)
Ru3—Ru1—Ru2—P149.01 (14)Ru2—P1—C12—C7176.73 (8)
C32—Ru1—Ru2—Ru310.95 (12)C12—P1—C13—C1471.06 (11)
C31—Ru1—Ru2—Ru3178.99 (4)C6—P1—C13—C14174.24 (10)
C34—Ru1—Ru2—Ru386.72 (4)Ru2—P1—C13—C1464.66 (11)
C33—Ru1—Ru2—Ru387.41 (4)P1—C13—C14—C1579.49 (14)
C32—Ru1—Ru3—C387.39 (5)C13—C14—C15—C16169.24 (11)
C31—Ru1—Ru3—C38172.15 (13)C14—C15—C16—C1759.62 (15)
C34—Ru1—Ru3—C3882.32 (5)C15—C16—C17—C1863.05 (15)
C33—Ru1—Ru3—C3898.55 (5)C16—C17—C18—P2168.47 (9)
Ru2—Ru1—Ru3—C38169.10 (4)C24—P2—C18—C17159.32 (9)
C32—Ru1—Ru3—C3990.96 (5)C30—P2—C18—C1755.19 (10)
C31—Ru1—Ru3—C3989.51 (13)Ru3—P2—C18—C1774.45 (9)
C34—Ru1—Ru3—C39179.33 (5)C24—C19—C20—C210.1 (2)
C33—Ru1—Ru3—C390.20 (5)C19—C20—C21—C221.0 (2)
Ru2—Ru1—Ru3—C3992.56 (3)C20—C21—C22—C230.4 (2)
C32—Ru1—Ru3—C40100.47 (5)C21—C22—C23—C241.3 (2)
C31—Ru1—Ru3—C4079.06 (13)C20—C19—C24—C231.69 (18)
C34—Ru1—Ru3—C4010.76 (5)C20—C19—C24—P2179.12 (10)
C33—Ru1—Ru3—C40168.37 (5)C22—C23—C24—C192.3 (2)
Ru2—Ru1—Ru3—C4076.02 (3)C22—C23—C24—P2178.48 (12)
C32—Ru1—Ru3—P295.40 (15)C18—P2—C24—C1916.52 (12)
C31—Ru1—Ru3—P285.07 (19)C30—P2—C24—C19122.23 (11)
C34—Ru1—Ru3—P2174.89 (15)Ru3—P2—C24—C19112.87 (10)
C33—Ru1—Ru3—P24.24 (15)C18—P2—C24—C23164.28 (10)
Ru2—Ru1—Ru3—P288.11 (14)C30—P2—C24—C2358.58 (11)
C32—Ru1—Ru3—Ru2176.49 (4)Ru3—P2—C24—C2366.33 (11)
C31—Ru1—Ru3—Ru23.05 (13)C30—C25—C26—C271.6 (2)
C34—Ru1—Ru3—Ru286.78 (4)C25—C26—C27—C280.9 (2)
C33—Ru1—Ru3—Ru292.35 (4)C26—C27—C28—C290.6 (2)
C35—Ru2—Ru3—C3821.23 (9)C27—C28—C29—C301.5 (2)
C36—Ru2—Ru3—C38107.34 (7)C28—C29—C30—C250.78 (19)
C37—Ru2—Ru3—C3875.17 (7)C28—C29—C30—P2178.39 (10)
P1—Ru2—Ru3—C38164.72 (6)C26—C25—C30—C290.7 (2)
Ru1—Ru2—Ru3—C3818.20 (6)C26—C25—C30—P2179.95 (11)
C35—Ru2—Ru3—C3984.48 (8)C24—P2—C30—C29118.01 (11)
C36—Ru2—Ru3—C391.62 (5)C18—P2—C30—C29134.96 (10)
C37—Ru2—Ru3—C39179.12 (5)Ru3—P2—C30—C294.39 (12)
P1—Ru2—Ru3—C3989.57 (3)C24—P2—C30—C2561.16 (11)
Ru1—Ru2—Ru3—C3987.51 (3)C18—P2—C30—C2545.87 (11)
C35—Ru2—Ru3—C40104.44 (8)Ru3—P2—C30—C25176.43 (9)
C36—Ru2—Ru3—C40169.45 (5)C32—Ru1—C31—O127.5 (18)
C37—Ru2—Ru3—C408.04 (5)C34—Ru1—C31—O1119.0 (18)
P1—Ru2—Ru3—C4081.51 (4)C33—Ru1—C31—O164.1 (18)
Ru1—Ru2—Ru3—C40101.41 (3)Ru2—Ru1—C31—O1155.6 (18)
C35—Ru2—Ru3—P2173.27 (7)Ru3—Ru1—C31—O1152.9 (17)
C36—Ru2—Ru3—P287.17 (4)C31—Ru1—C32—O225 (2)
C37—Ru2—Ru3—P290.32 (4)C34—Ru1—C32—O270 (2)
P1—Ru2—Ru3—P20.775 (13)C33—Ru1—C32—O2117 (2)
Ru1—Ru2—Ru3—P2176.308 (10)Ru2—Ru1—C32—O2145 (2)
C35—Ru2—Ru3—Ru13.03 (7)Ru3—Ru1—C32—O2155 (2)
C36—Ru2—Ru3—Ru189.14 (4)C32—Ru1—C33—O348.8 (13)
C37—Ru2—Ru3—Ru193.37 (4)C31—Ru1—C33—O350.1 (13)
P1—Ru2—Ru3—Ru1177.083 (10)C34—Ru1—C33—O3155.9 (11)
C35—Ru2—P1—C12141.36 (6)Ru2—Ru1—C33—O3149.5 (13)
C36—Ru2—P1—C12125.53 (6)Ru3—Ru1—C33—O3149.0 (13)
C37—Ru2—P1—C1250.85 (6)C32—Ru1—C34—O427.4 (11)
Ru1—Ru2—P1—C1289.57 (15)C31—Ru1—C34—O471.6 (11)
Ru3—Ru2—P1—C1242.00 (5)C33—Ru1—C34—O4134.6 (10)
C35—Ru2—P1—C624.19 (6)Ru2—Ru1—C34—O4170.5 (11)
C36—Ru2—P1—C6117.30 (6)Ru3—Ru1—C34—O4127.6 (11)
C37—Ru2—P1—C666.32 (6)C36—Ru2—C35—O5100 (4)
Ru1—Ru2—P1—C6153.26 (14)C37—Ru2—C35—O581 (4)
Ru3—Ru2—P1—C6159.17 (4)P1—Ru2—C35—O5169 (4)
C35—Ru2—P1—C1392.83 (6)Ru1—Ru2—C35—O514 (4)
C36—Ru2—P1—C130.28 (6)Ru3—Ru2—C35—O517 (4)
C37—Ru2—P1—C13176.66 (6)C35—Ru2—C36—O637.9 (8)
Ru1—Ru2—P1—C1336.24 (16)C37—Ru2—C36—O6134.1 (8)
Ru3—Ru2—P1—C1383.81 (5)P1—Ru2—C36—O657.7 (8)
C38—Ru3—P2—C2467.34 (6)Ru1—Ru2—C36—O6124.3 (8)
C39—Ru3—P2—C24165.41 (5)Ru3—Ru2—C36—O6176.2 (8)
C40—Ru3—P2—C2425.97 (5)C35—Ru2—C37—O748.1 (10)
Ru1—Ru3—P2—C24169.85 (14)C36—Ru2—C37—O7123.9 (10)
Ru2—Ru3—P2—C24103.93 (4)P1—Ru2—C37—O747.4 (10)
C38—Ru3—P2—C18170.88 (6)Ru1—Ru2—C37—O7134.7 (9)
C39—Ru3—P2—C1872.82 (6)Ru3—Ru2—C37—O7165.8 (9)
C40—Ru3—P2—C1895.80 (6)C39—Ru3—C38—O8165 (3)
Ru1—Ru3—P2—C1868.38 (15)C40—Ru3—C38—O817 (3)
Ru2—Ru3—P2—C1817.85 (5)P2—Ru3—C38—O8106 (3)
C38—Ru3—P2—C3048.17 (6)Ru1—Ru3—C38—O878 (3)
C39—Ru3—P2—C3049.90 (5)Ru2—Ru3—C38—O862 (3)
C40—Ru3—P2—C30141.48 (5)C38—Ru3—C39—O955.2 (10)
Ru1—Ru3—P2—C3054.34 (16)C40—Ru3—C39—O9112.9 (9)
Ru2—Ru3—P2—C30140.56 (4)P2—Ru3—C39—O940.1 (10)
C6—C1—C2—C30.3 (2)Ru1—Ru3—C39—O9140.2 (10)
C1—C2—C3—C40.2 (2)Ru2—Ru3—C39—O9160.7 (10)
C2—C3—C4—C50.4 (2)C38—Ru3—C40—O1050.2 (7)
C3—C4—C5—C60.6 (2)C39—Ru3—C40—O10118.0 (7)
C2—C1—C6—C50.5 (2)P2—Ru3—C40—O1045.2 (7)
C2—C1—C6—P1176.64 (11)Ru1—Ru3—C40—O10135.7 (7)
C4—C5—C6—C10.7 (2)Ru2—Ru3—C40—O10166.7 (7)
C4—C5—C6—P1176.80 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.932.483.3421 (17)154
C14—H14A···O60.972.583.2007 (19)122
C20—H20A···O6i0.932.593.495 (2)164
C21—H21A···O9ii0.932.513.329 (2)147
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru3(C30H32P2)(CO)10]
Mr1037.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4836 (6), 21.270 (1), 16.1025 (6)
β (°) 122.295 (3)
V3)3903.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.51 × 0.26 × 0.11
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.562, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
53262, 14125, 12773
Rint0.023
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.046, 1.04
No. of reflections14125
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O3i0.93002.48003.3421 (17)154.00
C14—H14A···O60.97002.58003.2007 (19)122.00
C20—H20A···O6i0.93002.59003.495 (2)164.00
C21—H21A···O9ii0.93002.51003.329 (2)147.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009.

§Thomson Reuters ResearcherID: E-6050-2011.

Thomson Reuters ResearcherID: A-5525-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

ObS would like to thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PJJAUH/811188. SSS thanks USM for the award of a USM fellowship and for a scholarship under the Postgraduate Research Grant Scheme (PRGS) No. 1001/PJJAUH/834064. HKF thanks USM for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Hambley, T. W., Nicholson, B. K. & Snow, M. R. (1982). J. Organomet. Chem. 235, 83–91.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurchill, M. R., Hollander, F. J. & Hutchinson, J. P. (1977). Inorg. Chem. 16, 2655–2659.  CSD CrossRef CAS Web of Science Google Scholar
First citationColeman, A. W., Jones, D. F., Dixneuf, P. H., Brisson, C., Bonnet, J. J. & Lavigne, G. (1984). Inorg. Chem. 23, 952–956.  CSD CrossRef CAS Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDiz, E. L., Neels, A., Stoeckli-Evans, H. & Suss-Fink, G. (2001). Polyhedron, 20, 2771–2780.  Web of Science CSD CrossRef CAS Google Scholar
First citationShawkataly, O. bin, Chong, M.-L., Fun, H.-K., Didierjean, C. & Aubry, A. (2006). Acta Cryst. E62, m168–m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Hafiz Malik, H. A., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, m197–m198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeoh, S.-G., Fun, H.-K. & Shawkataly, O. bin (1990). Z. Kristallogr. 190, 287–293.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m629-m630
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds