organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1336-o1337

N′-(3-Bromo-5-chloro-2-hy­dr­oxy­benzyl­­idene)-2H-1,3-benzodioxole-5-carbo­hydrazide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 31 March 2012; accepted 3 April 2012; online 6 April 2012)

The asymmetric unit of the title hydrazone compound, C15H10BrClN2O4, contains two independent mol­ecules. The dihedral angles between the benzene rings are 38.7 (3)° in one mol­ecule and 24.3 (3)° in the other. Both mol­ecules exist in trans conformations with respect to the C=N double bonds of the central methyl­idene units. Intra­molecular O—H⋯N contacts are observed in both mol­ecules, forming S(6) rings. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds into chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun et al. (2008a[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594-o1595.],b[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o3792-o3793.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClN2O4

  • Mr = 397.61

  • Triclinic, [P \overline 1]

  • a = 9.769 (2) Å

  • b = 13.041 (3) Å

  • c = 13.251 (3) Å

  • α = 75.558 (2)°

  • β = 78.745 (2)°

  • γ = 76.527 (2)°

  • V = 1572.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.80 mm−1

  • T = 298 K

  • 0.12 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Gemany.]) Tmin = 0.730, Tmax = 0.767

  • 8062 measured reflections

  • 5662 independent reflections

  • 3817 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.137

  • S = 1.01

  • 5662 reflections

  • 423 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.90 (1) 2.00 (2) 2.872 (4) 162 (5)
O3—H3⋯N3 0.82 1.92 2.637 (4) 145
O1—H1⋯N1 0.82 1.85 2.561 (4) 145
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun et al., 2008a,b; Yang et al., 2008; Ejsmont et al., 2008; Yang, 2006). Recently, we have reported several such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the new title benzohydrazide derivative.

The asymmetric unit of the title hydrazone compound, Fig. 1, contains two independent molecules. The dihedral angles between the two benzene rings are 38.7 (3) and 24.3 (3)°, respectively. The molecules exist in trans configuration with respect to the central methylidene units. Intramolecular O1—H1···N1 and O3—H3···N3 contacts are observed forming S(6) rings (Bernstein et al., 1995). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis, Fig. 2.

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun et al. (2008a,b); Yang et al. (2008); Ejsmont et al. (2008); Yang (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by refluxing 3-bromo-5-chlorosalicylaldehyde (1.0 mol, 0.23 g) with [3,4]dioxolebenzohydrazide (1.0 mol, 0.18 g) in methanol (50 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution of the compound by slow evaporation in air.

Refinement top

Atoms H2 and H4A were located in a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(O). The structure contains solvent accessible voids of 78 Å3, which might accommodate a disordered methanol molecule. However, the effect of the presence of additional solvent was not investigated further.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
N'-(3-Bromo-5-chloro-2-hydroxybenzylidene)-2H-1,3-benzodioxole- 5-carbohydrazide top
Crystal data top
C15H10BrClN2O4Z = 4
Mr = 397.61F(000) = 792
Triclinic, P1Dx = 1.679 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.769 (2) ÅCell parameters from 2572 reflections
b = 13.041 (3) Åθ = 2.5–25.0°
c = 13.251 (3) ŵ = 2.80 mm1
α = 75.558 (2)°T = 298 K
β = 78.745 (2)°Block, colourless
γ = 76.527 (2)°0.12 × 0.10 × 0.10 mm
V = 1572.9 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5662 independent reflections
Radiation source: fine-focus sealed tube3817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 25.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.730, Tmax = 0.767k = 1514
8062 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
5662 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 1.23 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
C15H10BrClN2O4γ = 76.527 (2)°
Mr = 397.61V = 1572.9 (6) Å3
Triclinic, P1Z = 4
a = 9.769 (2) ÅMo Kα radiation
b = 13.041 (3) ŵ = 2.80 mm1
c = 13.251 (3) ÅT = 298 K
α = 75.558 (2)°0.12 × 0.10 × 0.10 mm
β = 78.745 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5662 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3817 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.767Rint = 0.019
8062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.23 e Å3
5662 reflectionsΔρmin = 0.40 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32727 (5)0.72347 (4)1.11304 (4)0.0705 (2)
Br20.88064 (7)0.00317 (5)0.23324 (6)0.0941 (3)
Cl10.21177 (17)0.81156 (13)1.05109 (10)0.0840 (4)
Cl20.35756 (17)0.02462 (10)0.11594 (10)0.0753 (4)
N10.0059 (3)0.5383 (2)0.8013 (2)0.0388 (7)
N20.0549 (3)0.4803 (2)0.7245 (2)0.0388 (7)
N30.5226 (3)0.3717 (2)0.3015 (2)0.0395 (7)
N40.4588 (3)0.4720 (2)0.3202 (3)0.0404 (7)
O10.1949 (3)0.6081 (2)0.9379 (2)0.0517 (7)
H10.15590.57060.89510.078*
O20.1698 (3)0.4846 (2)0.7053 (2)0.0543 (7)
O30.7314 (3)0.2028 (2)0.2949 (2)0.0504 (7)
H30.69320.26280.30570.076*
O40.6578 (3)0.4993 (2)0.3652 (2)0.0463 (6)
O50.0839 (3)0.2765 (2)0.4030 (2)0.0548 (7)
O60.1385 (3)0.1716 (2)0.4079 (3)0.0657 (9)
O70.4445 (3)0.8606 (2)0.4909 (2)0.0552 (8)
O80.2603 (3)0.9451 (2)0.3952 (3)0.0622 (8)
C10.0423 (4)0.6396 (3)0.9147 (3)0.0409 (9)
C20.0981 (4)0.6516 (3)0.9635 (3)0.0407 (9)
C30.1388 (5)0.7108 (3)1.0418 (3)0.0486 (10)
C40.0453 (5)0.7608 (3)1.0691 (3)0.0576 (11)
H40.07520.80241.11990.069*
C50.0917 (6)0.7474 (4)1.0197 (3)0.0557 (11)
C60.1375 (5)0.6876 (3)0.9435 (3)0.0492 (10)
H60.23180.67930.91130.059*
C70.0940 (4)0.5775 (3)0.8325 (3)0.0389 (8)
H70.18960.56680.80350.047*
C80.0431 (4)0.4514 (3)0.6826 (3)0.0374 (8)
C90.0141 (4)0.3772 (3)0.6091 (3)0.0375 (8)
C100.0726 (4)0.3719 (3)0.5385 (3)0.0378 (8)
H100.16160.41660.53420.045*
C110.0211 (4)0.2988 (3)0.4768 (3)0.0383 (8)
C120.1124 (4)0.2353 (3)0.4811 (3)0.0481 (10)
C130.1984 (5)0.2380 (4)0.5486 (4)0.0615 (13)
H130.28740.19310.55130.074*
C140.1469 (4)0.3115 (3)0.6138 (3)0.0511 (10)
H140.20270.31640.66120.061*
C150.0072 (5)0.1843 (4)0.3712 (4)0.0587 (12)
H15A0.03440.12070.40130.070*
H15B0.02180.19470.29500.070*
C160.5024 (4)0.2181 (3)0.2431 (3)0.0416 (9)
C170.6426 (4)0.1645 (3)0.2551 (3)0.0420 (9)
C180.6890 (5)0.0671 (3)0.2240 (3)0.0537 (11)
C190.6042 (6)0.0232 (3)0.1819 (4)0.0625 (12)
H190.63840.04240.16130.075*
C200.4687 (5)0.0778 (3)0.1709 (3)0.0518 (10)
C210.4175 (5)0.1738 (3)0.2008 (3)0.0486 (10)
H210.32480.20970.19280.058*
C220.4453 (4)0.3235 (3)0.2702 (3)0.0432 (9)
H220.35080.35570.26450.052*
C230.5344 (4)0.5333 (3)0.3475 (3)0.0359 (8)
C240.4563 (4)0.6435 (3)0.3554 (3)0.0339 (8)
C250.4952 (4)0.6931 (3)0.4253 (3)0.0376 (8)
H250.56680.65810.46610.045*
C260.4240 (4)0.7935 (3)0.4306 (3)0.0395 (9)
C270.3156 (4)0.8472 (3)0.3720 (3)0.0416 (9)
C280.2767 (4)0.8009 (3)0.3039 (3)0.0453 (9)
H280.20380.83680.26460.054*
C290.3496 (4)0.6983 (3)0.2953 (3)0.0411 (9)
H290.32650.66520.24800.049*
C300.3443 (5)0.9591 (3)0.4641 (4)0.0557 (11)
H30A0.28430.97690.52730.067*
H30B0.39421.01770.43030.067*
H20.146 (2)0.472 (4)0.693 (4)0.080*
H4A0.3647 (15)0.492 (4)0.319 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0662 (3)0.0716 (3)0.0670 (3)0.0066 (2)0.0176 (2)0.0304 (2)
Br20.0815 (4)0.0707 (4)0.1334 (5)0.0298 (3)0.0303 (4)0.0577 (4)
Cl10.1060 (11)0.1103 (11)0.0655 (7)0.0541 (9)0.0172 (7)0.0390 (7)
Cl20.1106 (11)0.0657 (8)0.0708 (7)0.0447 (7)0.0206 (7)0.0219 (6)
N10.0374 (17)0.0426 (17)0.0378 (16)0.0042 (14)0.0025 (13)0.0166 (14)
N20.0320 (16)0.0453 (18)0.0431 (17)0.0064 (14)0.0003 (13)0.0223 (14)
N30.0398 (17)0.0308 (16)0.0480 (17)0.0007 (13)0.0049 (14)0.0172 (14)
N40.0302 (16)0.0333 (16)0.0592 (19)0.0001 (13)0.0061 (14)0.0186 (14)
O10.0400 (15)0.0580 (18)0.0614 (18)0.0081 (13)0.0004 (13)0.0270 (14)
O20.0298 (14)0.0656 (18)0.0775 (19)0.0028 (13)0.0023 (13)0.0440 (16)
O30.0434 (16)0.0454 (16)0.0669 (17)0.0004 (12)0.0123 (13)0.0256 (14)
O40.0269 (14)0.0460 (15)0.0688 (17)0.0012 (11)0.0088 (12)0.0211 (13)
O50.0484 (16)0.0596 (18)0.0627 (17)0.0092 (14)0.0202 (14)0.0336 (15)
O60.0516 (18)0.0624 (19)0.098 (2)0.0120 (15)0.0205 (16)0.0581 (18)
O70.0619 (18)0.0482 (16)0.0630 (17)0.0101 (14)0.0245 (15)0.0329 (14)
O80.066 (2)0.0450 (16)0.082 (2)0.0141 (14)0.0274 (16)0.0353 (15)
C10.046 (2)0.042 (2)0.0371 (19)0.0084 (17)0.0055 (16)0.0121 (16)
C20.048 (2)0.036 (2)0.041 (2)0.0087 (17)0.0067 (17)0.0116 (16)
C30.058 (3)0.042 (2)0.041 (2)0.0035 (19)0.0014 (18)0.0106 (18)
C40.085 (3)0.052 (3)0.040 (2)0.021 (2)0.000 (2)0.0193 (19)
C50.081 (3)0.060 (3)0.037 (2)0.025 (2)0.015 (2)0.0151 (19)
C60.056 (3)0.055 (2)0.042 (2)0.017 (2)0.0079 (18)0.0140 (19)
C70.0341 (19)0.045 (2)0.0378 (19)0.0039 (17)0.0038 (15)0.0134 (17)
C80.0309 (19)0.040 (2)0.043 (2)0.0047 (16)0.0042 (15)0.0152 (16)
C90.0297 (18)0.0350 (19)0.050 (2)0.0051 (15)0.0019 (16)0.0168 (16)
C100.0310 (18)0.040 (2)0.0422 (19)0.0004 (16)0.0045 (15)0.0155 (16)
C110.0341 (19)0.041 (2)0.0406 (19)0.0023 (16)0.0057 (15)0.0144 (16)
C120.040 (2)0.042 (2)0.068 (3)0.0003 (18)0.0067 (19)0.031 (2)
C130.042 (2)0.053 (3)0.102 (4)0.014 (2)0.026 (2)0.047 (3)
C140.039 (2)0.051 (2)0.072 (3)0.0023 (18)0.022 (2)0.030 (2)
C150.058 (3)0.053 (3)0.072 (3)0.007 (2)0.019 (2)0.037 (2)
C160.046 (2)0.036 (2)0.045 (2)0.0074 (17)0.0051 (17)0.0129 (16)
C170.049 (2)0.036 (2)0.042 (2)0.0043 (17)0.0066 (17)0.0146 (17)
C180.063 (3)0.042 (2)0.054 (2)0.004 (2)0.011 (2)0.0182 (19)
C190.086 (4)0.040 (2)0.064 (3)0.005 (2)0.008 (2)0.023 (2)
C200.073 (3)0.041 (2)0.049 (2)0.021 (2)0.008 (2)0.0163 (19)
C210.049 (2)0.045 (2)0.056 (2)0.0101 (19)0.0122 (19)0.0141 (19)
C220.037 (2)0.039 (2)0.057 (2)0.0028 (17)0.0084 (17)0.0186 (18)
C230.033 (2)0.0370 (19)0.0387 (19)0.0071 (16)0.0000 (15)0.0133 (16)
C240.0285 (18)0.0319 (18)0.0411 (19)0.0044 (14)0.0017 (15)0.0112 (15)
C250.0328 (19)0.039 (2)0.0391 (19)0.0005 (16)0.0055 (15)0.0121 (16)
C260.039 (2)0.043 (2)0.0391 (19)0.0039 (17)0.0061 (16)0.0171 (17)
C270.041 (2)0.033 (2)0.050 (2)0.0025 (16)0.0072 (17)0.0157 (17)
C280.046 (2)0.040 (2)0.053 (2)0.0036 (18)0.0173 (18)0.0127 (18)
C290.042 (2)0.036 (2)0.051 (2)0.0074 (16)0.0118 (18)0.0136 (17)
C300.064 (3)0.046 (2)0.062 (3)0.008 (2)0.019 (2)0.031 (2)
Geometric parameters (Å, º) top
Br1—C31.888 (4)C7—H70.9300
Br2—C181.896 (4)C8—C91.484 (5)
Cl1—C51.752 (5)C9—C141.381 (5)
Cl2—C201.761 (4)C9—C101.403 (5)
N1—C71.274 (5)C10—C111.354 (5)
N1—N21.365 (4)C10—H100.9300
N2—C81.359 (5)C11—C121.376 (5)
N2—H20.899 (10)C12—C131.352 (6)
N3—C221.268 (5)C13—C141.392 (6)
N3—N41.372 (4)C13—H130.9300
N4—C231.355 (5)C14—H140.9300
N4—H4A0.898 (10)C15—H15A0.9700
O1—C21.343 (5)C15—H15B0.9700
O1—H10.8200C16—C211.379 (5)
O2—C81.216 (4)C16—C171.405 (6)
O3—C171.338 (5)C16—C221.464 (5)
O3—H30.8200C17—C181.381 (5)
O4—C231.231 (4)C18—C191.373 (6)
O5—C111.370 (4)C19—C201.365 (7)
O5—C151.422 (5)C19—H190.9300
O6—C121.379 (4)C20—C211.362 (6)
O6—C151.419 (5)C21—H210.9300
O7—C261.392 (4)C22—H220.9300
O7—C301.434 (5)C23—C241.481 (5)
O8—C271.351 (4)C24—C291.388 (5)
O8—C301.410 (5)C24—C251.405 (5)
C1—C21.388 (5)C25—C261.343 (5)
C1—C61.390 (6)C25—H250.9300
C1—C71.459 (5)C26—C271.385 (5)
C2—C31.389 (5)C27—C281.355 (5)
C3—C41.383 (6)C28—C291.383 (5)
C4—C51.363 (7)C28—H280.9300
C4—H40.9300C29—H290.9300
C5—C61.372 (6)C30—H30A0.9700
C6—H60.9300C30—H30B0.9700
C7—N1—N2118.6 (3)C13—C14—H14119.6
C8—N2—N1117.5 (3)O6—C15—O5107.1 (3)
C8—N2—H2120 (3)O6—C15—H15A110.3
N1—N2—H2121 (3)O5—C15—H15A110.3
C22—N3—N4115.6 (3)O6—C15—H15B110.3
C23—N4—N3120.5 (3)O5—C15—H15B110.3
C23—N4—H4A122 (3)H15A—C15—H15B108.6
N3—N4—H4A117 (3)C21—C16—C17120.1 (3)
C2—O1—H1109.5C21—C16—C22118.5 (3)
C17—O3—H3109.5C17—C16—C22121.3 (3)
C11—O5—C15105.9 (3)O3—C17—C18119.3 (4)
C12—O6—C15106.2 (3)O3—C17—C16123.4 (3)
C26—O7—C30105.0 (3)C18—C17—C16117.3 (4)
C27—O8—C30106.7 (3)C19—C18—C17122.5 (4)
C2—C1—C6120.0 (3)C19—C18—Br2119.5 (3)
C2—C1—C7121.7 (3)C17—C18—Br2117.9 (3)
C6—C1—C7118.3 (4)C20—C19—C18118.7 (4)
O1—C2—C1122.5 (3)C20—C19—H19120.7
O1—C2—C3119.2 (4)C18—C19—H19120.7
C1—C2—C3118.3 (4)C21—C20—C19121.2 (4)
C4—C3—C2121.9 (4)C21—C20—Cl2118.9 (4)
C4—C3—Br1119.1 (3)C19—C20—Cl2119.9 (3)
C2—C3—Br1119.0 (3)C20—C21—C16120.2 (4)
C5—C4—C3118.3 (4)C20—C21—H21119.9
C5—C4—H4120.8C16—C21—H21119.9
C3—C4—H4120.8N3—C22—C16121.1 (3)
C4—C5—C6121.8 (4)N3—C22—H22119.5
C4—C5—Cl1119.3 (3)C16—C22—H22119.5
C6—C5—Cl1118.8 (4)O4—C23—N4122.4 (3)
C5—C6—C1119.6 (4)O4—C23—C24122.8 (3)
C5—C6—H6120.2N4—C23—C24114.7 (3)
C1—C6—H6120.2C29—C24—C25120.1 (3)
N1—C7—C1118.8 (3)C29—C24—C23122.1 (3)
N1—C7—H7120.6C25—C24—C23117.8 (3)
C1—C7—H7120.6C26—C25—C24116.8 (3)
O2—C8—N2121.2 (3)C26—C25—H25121.6
O2—C8—C9122.8 (3)C24—C25—H25121.6
N2—C8—C9115.9 (3)C25—C26—C27123.0 (3)
C14—C9—C10121.0 (3)C25—C26—O7128.1 (3)
C14—C9—C8120.6 (3)C27—C26—O7108.9 (3)
C10—C9—C8118.3 (3)O8—C27—C28128.5 (3)
C11—C10—C9117.0 (3)O8—C27—C26110.4 (3)
C11—C10—H10121.5C28—C27—C26121.1 (3)
C9—C10—H10121.5C27—C28—C29117.4 (3)
C10—C11—O5128.8 (3)C27—C28—H28121.3
C10—C11—C12121.2 (3)C29—C28—H28121.3
O5—C11—C12109.9 (3)C28—C29—C24121.6 (3)
C13—C12—C11123.2 (3)C28—C29—H29119.2
C13—C12—O6128.1 (3)C24—C29—H29119.2
C11—C12—O6108.7 (3)O8—C30—O7108.6 (3)
C12—C13—C14116.6 (4)O8—C30—H30A110.0
C12—C13—H13121.7O7—C30—H30A110.0
C14—C13—H13121.7O8—C30—H30B110.0
C9—C14—C13120.9 (4)O7—C30—H30B110.0
C9—C14—H14119.6H30A—C30—H30B108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.90 (1)2.00 (2)2.872 (4)162 (5)
O3—H3···N30.821.922.637 (4)145
O1—H1···N10.821.852.561 (4)145
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10BrClN2O4
Mr397.61
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.769 (2), 13.041 (3), 13.251 (3)
α, β, γ (°)75.558 (2), 78.745 (2), 76.527 (2)
V3)1572.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.730, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
8062, 5662, 3817
Rint0.019
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.137, 1.01
No. of reflections5662
No. of parameters423
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.899 (10)2.00 (2)2.872 (4)162 (5)
O3—H3···N30.821.922.637 (4)145.3
O1—H1···N10.821.852.561 (4)145.0
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the 7th issue of the Undergraduate's Research and Training Project of the University of Science and Technology Liaoning, and the Youth Foundation of the University of Science and Technology Liaoning (2010Y06).

References

First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Gemany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1336-o1337
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds