metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m605-m606

cis-Di­chlorido[2,3-di­methyl-3-(4,4,5,5-tetra­methyl-1,3,2λ5-dioxa­phospho­lan-2-yl­­oxy)butan-2-olato-κ2O,P]oxido(tri­phenyl­phosphane-κP)rhenium(V)

aFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@netesa.com

(Received 4 April 2012; accepted 10 April 2012; online 18 April 2012)

The title compound, cis-[Re(C12H24O4P)Cl2O(C18H15P)], was prepared from the analogous trans isomer [Głowiak et al. (2000[Głowiak, T., Rybak, W. K. & Skarżyńska, A. (2000). Polyhedron, 19, 2667-2672.]). Polyhedron, 19, 2667–2672] by a transcis isomerization reaction. The ReV atom adopts a distorted octa­hedral coordination geometry. Besides being coordinated by the oxide and the butano­late O atoms, the ReV atom is coordinated by a pair of chloride ligands and two P atoms in cis positions with respect to each other. In the crystal, adjacent mol­ecules are linked by weak C—H⋯Cl inter­actions, forming a three-dimensional network.

Related literature

For related structures and further discussion, see: Głowiak et al. (1998[Głowiak, T., Rybak, W. K. & Skarżyńska, A. (1998). Polyhedron, 17, 3153-3160.], 2000[Głowiak, T., Rybak, W. K. & Skarżyńska, A. (2000). Polyhedron, 19, 2667-2672.]); Rybak et al. (2005[Rybak, W. K., Skarżyńska, A., Szterenberg, L., Ciunik, Z. & Głowiak, T. (2005). Eur. J. Inorg. Chem. pp. 4964-4975.]). For typical bond lengths in coordination complexes, see: Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). For hydrogen-bond inter­actions, see: Aullón et al. (1998[Aullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653-654.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]); Fábry et al. (2004[Fábry, J., Krupková, R., Vaněk, P., Dušek, M. & Němec, I. (2004). Acta Cryst. E60, m924-m926.]). For details of the temperature control unit used during the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For specifications of the analytical numeric absorption correction, see: Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C12H24O4P)Cl2O(C18H15P)]

  • Mr = 798.65

  • Orthorhombic, P 21 21 21

  • a = 10.963 (3) Å

  • b = 16.328 (4) Å

  • c = 17.797 (5) Å

  • V = 3185.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.12 mm−1

  • T = 100 K

  • 0.16 × 0.12 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur PX diffractometer with a CCD detector

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.582, Tmax = 0.808

  • 15943 measured reflections

  • 8614 independent reflections

  • 6813 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.046

  • S = 0.87

  • 8614 reflections

  • 369 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3463 Friedel pairs

  • Flack parameter: −0.015 (4)

Table 1
Selected bond lengths (Å)

Re1—O1 1.698 (2)
Re1—O2 1.877 (3)
Re1—P1 2.3659 (12)
Re1—P2 2.4883 (12)
Re1—Cl1 2.4461 (10)
Re1—Cl2 2.4339 (10)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31B⋯Cl2i 0.98 2.86 3.796 (4) 161
C42—H42B⋯Cl1ii 0.98 2.87 3.830 (4) 167
C51—H51B⋯Cl1ii 0.98 2.85 3.809 (4) 166
C65—H65⋯Cl2iii 0.95 2.91 3.514 (4) 123
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Most of the transition metal derivatives of spirophosphoranes are obtained in ligand substitution reactions, resulting in corresponding metal complexes with κ2-O,P ligand coordination mode (Rybak et al., 2005). In this paper we report the synthesis and crystal structure of the title oxidorhenium(V) complex, obtained starting from an analogous trans complex (Głowiak et al. 2000). As a result of the trans-cis isomerization reaction single crystals of the cis isomer were obtained.

The coordination environment around the metal center, Re1, is a distorted octahedron with three sets of donor atoms: two O atoms in a trans arrangement and two chlorides and both phosphorus located in cis positions to each other (Fig. 1). The Re-ligand bond distances (Table 1) are generally similar to those reported for other rhenium complexes, nevertheless some disparities are observed. The distortions of the angles in the coordination sphere of the Re1 atom are significant, for example the O1—Re1—O2 angle of 168.36 (10) ° that differs from the expected value of 180°. The rhenium atom is located 0.06 Å out of the P1/P2/Cl1/Cl2 plane, towards the terminal oxo ligand. The Re1—P2 (phosphane) bond length of 2.4883 (12) Å is within the range 2.42–2.57 Å reported for analogous PR3 derivatives, however the Re1—P1 (phosphite) distance of 2.3659 (12) Å is quite short. This shortening may be explained by the strong π-acceptor character of the phosphite moiety and is consistent with the Re—P distances observed for other phosphite derivatives (Głowiak et al. 1998). The Re1—Cl bond lengths [2.4461 (10) and 2.4339 (10) Å] appear long compared with the expected values of 2.36–2.41 Å (Orpen et al., 1989). This is a result of the high trans influence of the phosphorus ligands.

The crystal structure of the title compound is stabilized by a number of weak hydrogen bonds of the C—H···Cl type (Desiraju & Steiner, 1999). Consequently, a three-dimensional network is formed (Table 2). Even though the observed H···Cl distances may first appear to be fairly long compared with the expected values (Aullón et al., 1998), the presence of C—H···Cl hydrogen bonds was confirmed spectroscopically for complexes with H···Cl spacings even above 3 Å (Fábry et al., 2004).

Related literature top

For related structures and further discussion, see: Głowiak et al. (1998, 2000); Rybak et al. (2005). For typical bond lengths in coordination complexes, see: Orpen et al. (1989). For hydrogen-bond interactions, see: Aullón et al. (1998); Desiraju & Steiner (1999); Fábry et al. (2004). For details of the temperature control unit used during the data collection, see: Cosier & Glazer (1986). For specifications of the analytical numeric absorption correction, see: Clark & Reid (1995).

Experimental top

The title compound, cis-[ReOCl2{P(OCMe2CMe2O)OCMe2CMe2O}PPh3], was prepared from an analogous trans isomer, which had been synthesized according to a previously reported procedure (Głowiak et al. 2000). The trans complex (0.1 g, 0.12 mmol) was dissolved in acetonitrile and refluxed for 6 h. Single crystals of the cis isomer suitable for the X-ray analysis were obtained after continuous, slow evaporation of the solvent at ambient temperature. Analysis for [C30H39Cl2O5P2Re]: calc. C 45.11, H 4.92; found: C 45.00, H 4.94%. Spectrosopic data for the title compound is given in the archived CIF.

Refinement top

The C-bonded H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms. In the final difference electron density map the highest residual peak and the deepest hole are located 1.27 and 1.36 Å, respectively, from atom P2.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
cis-Dichlorido[2,3-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2λ5- dioxaphospholan-2-yloxy)butan-2-olato- κ2O,P]oxido(triphenylphosphane-κP)rhenium(V) top
Crystal data top
[Re(C12H24O4P)Cl2O(C18H15P)]F(000) = 1592
Mr = 798.65Dx = 1.665 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8908 reflections
a = 10.963 (3) Åθ = 4.8–30.0°
b = 16.328 (4) ŵ = 4.12 mm1
c = 17.797 (5) ÅT = 100 K
V = 3185.7 (15) Å3Plate, orange
Z = 40.16 × 0.12 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with a CCD detector
8614 independent reflections
Radiation source: fine-focus sealed tube6813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.0°, θmin = 4.8°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1410
Tmin = 0.582, Tmax = 0.808k = 2215
15943 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0111P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.002
8614 reflectionsΔρmax = 1.21 e Å3
369 parametersΔρmin = 1.09 e Å3
0 restraintsAbsolute structure: Flack (1983), 3463 Friedel pairs
Primary atom site location: heavy-atom methodAbsolute structure parameter: 0.015 (4)
Crystal data top
[Re(C12H24O4P)Cl2O(C18H15P)]V = 3185.7 (15) Å3
Mr = 798.65Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.963 (3) ŵ = 4.12 mm1
b = 16.328 (4) ÅT = 100 K
c = 17.797 (5) Å0.16 × 0.12 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur PX
diffractometer with a CCD detector
8614 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2010)
6813 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 0.808Rint = 0.036
15943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.046Δρmax = 1.21 e Å3
S = 0.87Δρmin = 1.09 e Å3
8614 reflectionsAbsolute structure: Flack (1983), 3463 Friedel pairs
369 parametersAbsolute structure parameter: 0.015 (4)
0 restraints
Special details top

Experimental. Spectrosopic data for the title compound: IR (KBr, cm-1): ν(C—O—P) 926 (vs), 941 (vs), 1019 (s), 1140 (s), ν(Re=O) 955 (vs). 1H NMR (CDCl3): δ 0.59, 0.82, 1.18, 1.28, 1.33, 1.43, 1.45, 1.54 (8H, s's, CH3), 7.46 (2H, m, CH), 7.52 (1H, m, CH), 7.76 (2H, m, CH). 31P NMR (CDCl3): δ -3.67, 87.4 p.p.m..

The crystal was placed in the cold stream of an open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 K. An analytical numeric absorption correction was carried out with CrysAlis RED (Oxford Diffraction, 2010) using a multifaceted crystal model (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.24960 (2)0.319412 (7)0.721741 (7)0.00859 (3)
Cl10.30747 (8)0.46317 (5)0.73671 (5)0.0139 (2)
Cl20.15281 (9)0.36291 (5)0.60531 (6)0.0153 (2)
P10.20198 (9)0.18153 (6)0.69328 (6)0.01015 (18)
P20.35706 (9)0.28754 (5)0.84137 (6)0.0099 (2)
O10.1159 (2)0.32297 (13)0.76977 (15)0.0121 (5)
O20.3915 (2)0.29251 (13)0.66814 (15)0.0108 (6)
O30.3151 (2)0.13616 (13)0.65569 (16)0.0127 (6)
O40.0825 (2)0.17154 (14)0.64371 (15)0.0120 (6)
O50.1665 (2)0.11895 (13)0.75739 (15)0.0120 (6)
C20.4648 (4)0.2422 (2)0.6201 (2)0.0138 (9)
C210.5790 (3)0.2159 (2)0.6628 (3)0.0178 (9)
H21A0.61640.26390.68650.027*
H21B0.63710.19110.62770.027*
H21C0.55680.17590.70150.027*
C220.5024 (4)0.2971 (2)0.5541 (2)0.0221 (10)
H22A0.42950.32160.53150.033*
H22B0.54530.26420.51640.033*
H22C0.55650.34060.57230.033*
C30.3877 (3)0.1669 (2)0.5924 (2)0.0119 (8)
C310.4656 (4)0.0946 (2)0.5698 (2)0.0189 (9)
H31A0.50570.07190.61440.028*
H31B0.52750.11240.53370.028*
H31C0.41400.05250.54680.028*
C320.3019 (4)0.1889 (2)0.5283 (2)0.0185 (9)
H32A0.24600.14320.51900.028*
H32B0.34960.19990.48280.028*
H32C0.25500.23780.54180.028*
C40.0126 (4)0.0977 (2)0.6663 (2)0.0137 (8)
C410.0616 (4)0.0267 (2)0.6204 (3)0.0211 (10)
H41A0.06120.04150.56700.032*
H41B0.01000.02150.62830.032*
H41C0.14520.01440.63630.032*
C420.1203 (4)0.1148 (2)0.6464 (3)0.0212 (10)
H42A0.14440.16810.66700.032*
H42B0.17220.07190.66780.032*
H42C0.12970.11550.59160.032*
C50.0380 (3)0.0919 (2)0.7508 (2)0.0123 (8)
C510.0327 (3)0.00532 (19)0.7833 (3)0.0152 (8)
H51A0.08980.03000.75610.023*
H51B0.05030.01630.77810.023*
H51C0.05500.00680.83660.023*
C520.0384 (4)0.1492 (2)0.7990 (2)0.0182 (9)
H52A0.00490.15090.85000.027*
H52B0.12270.12930.80070.027*
H52C0.03680.20430.77720.027*
C610.3018 (5)0.3519 (3)0.9191 (3)0.0120 (10)
C620.1749 (4)0.3585 (3)0.9323 (3)0.0151 (11)
H620.11840.33090.90070.018*
C630.1342 (4)0.4053 (2)0.9912 (3)0.0158 (10)
H630.04920.40871.00110.019*
C640.2152 (4)0.4477 (2)1.0365 (3)0.0204 (13)
H640.18630.48021.07700.024*
C650.3385 (4)0.4421 (2)1.0219 (3)0.0188 (10)
H650.39430.47171.05240.023*
C660.3823 (4)0.3943 (2)0.9639 (3)0.0172 (11)
H660.46760.39070.95500.021*
C710.3430 (3)0.1828 (2)0.8771 (2)0.0112 (7)
C720.4035 (3)0.1196 (2)0.8402 (2)0.0146 (8)
H720.45410.13160.79830.018*
C730.3906 (4)0.0390 (2)0.8641 (2)0.0140 (8)
H730.43350.00370.83940.017*
C740.3157 (4)0.0214 (2)0.9236 (3)0.0216 (10)
H740.30580.03380.93920.026*
C750.2541 (6)0.08333 (18)0.9614 (2)0.0217 (8)
H750.20250.07071.00270.026*
C760.2690 (4)0.16424 (19)0.9379 (2)0.0168 (10)
H760.22790.20700.96370.020*
C810.5210 (3)0.3057 (2)0.8386 (2)0.0130 (8)
C820.5652 (4)0.3742 (2)0.8016 (2)0.0176 (9)
H820.50990.41060.77760.021*
C830.6886 (4)0.3902 (2)0.7994 (2)0.0198 (10)
H830.71760.43760.77400.024*
C840.7713 (4)0.33728 (19)0.8340 (2)0.0187 (10)
H840.85640.34750.83120.022*
C850.7275 (4)0.2695 (2)0.8726 (2)0.0186 (11)
H850.78270.23350.89720.022*
C860.6027 (4)0.2543 (2)0.8753 (2)0.0147 (9)
H860.57300.20840.90260.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.00898 (5)0.00806 (5)0.00874 (5)0.00034 (11)0.00038 (11)0.00042 (6)
Cl10.0147 (4)0.0095 (4)0.0175 (6)0.0004 (4)0.0008 (4)0.0002 (4)
Cl20.0188 (5)0.0149 (4)0.0123 (5)0.0020 (4)0.0035 (4)0.0022 (4)
P10.0096 (4)0.0098 (4)0.0111 (5)0.0000 (4)0.0007 (4)0.0001 (4)
P20.0103 (5)0.0090 (4)0.0103 (5)0.0007 (4)0.0009 (4)0.0005 (4)
O10.0119 (12)0.0116 (11)0.0128 (14)0.0021 (11)0.0004 (11)0.0025 (12)
O20.0115 (13)0.0099 (11)0.0109 (15)0.0009 (10)0.0006 (12)0.0020 (11)
O30.0121 (14)0.0088 (11)0.0172 (16)0.0009 (11)0.0043 (12)0.0028 (11)
O40.0118 (13)0.0113 (12)0.0127 (15)0.0056 (11)0.0016 (11)0.0002 (11)
O50.0073 (13)0.0110 (12)0.0177 (16)0.0029 (10)0.0002 (11)0.0031 (10)
C20.0093 (19)0.0145 (19)0.018 (2)0.0020 (16)0.0008 (16)0.0021 (16)
C210.013 (2)0.0197 (19)0.021 (2)0.0000 (17)0.0012 (18)0.0044 (18)
C220.032 (3)0.019 (2)0.015 (2)0.0042 (19)0.008 (2)0.0013 (17)
C30.0088 (18)0.012 (2)0.014 (2)0.0009 (15)0.0063 (15)0.0008 (16)
C310.017 (2)0.019 (2)0.021 (3)0.0040 (18)0.0053 (19)0.0056 (18)
C320.0186 (19)0.0193 (19)0.018 (2)0.0014 (19)0.0002 (17)0.0032 (18)
C40.015 (2)0.0105 (17)0.015 (2)0.0044 (16)0.0013 (18)0.0012 (17)
C410.025 (2)0.017 (2)0.021 (3)0.0075 (19)0.000 (2)0.0085 (18)
C420.011 (2)0.027 (2)0.025 (3)0.0013 (18)0.0033 (19)0.0050 (19)
C50.0083 (18)0.0106 (17)0.018 (2)0.0027 (15)0.0002 (16)0.0013 (16)
C510.0129 (18)0.0144 (17)0.018 (2)0.0037 (15)0.0045 (19)0.0018 (18)
C520.020 (2)0.0138 (18)0.020 (3)0.0009 (17)0.0081 (18)0.0010 (16)
C610.017 (2)0.0074 (19)0.011 (2)0.0015 (17)0.0019 (19)0.0020 (16)
C620.016 (2)0.014 (2)0.015 (3)0.001 (2)0.003 (2)0.0004 (19)
C630.019 (2)0.015 (2)0.014 (3)0.0072 (19)0.003 (2)0.0048 (19)
C640.042 (4)0.0092 (17)0.010 (2)0.0057 (18)0.0033 (19)0.0015 (15)
C650.028 (3)0.013 (2)0.016 (3)0.003 (2)0.003 (2)0.0015 (18)
C660.017 (2)0.013 (2)0.022 (3)0.0013 (18)0.004 (2)0.0001 (19)
C710.0128 (18)0.0075 (15)0.013 (2)0.0026 (17)0.0013 (15)0.0009 (17)
C720.0113 (19)0.0163 (19)0.016 (2)0.0032 (16)0.0008 (17)0.0007 (17)
C730.016 (2)0.0116 (17)0.015 (2)0.0005 (17)0.0046 (17)0.0018 (16)
C740.030 (3)0.013 (2)0.021 (3)0.0036 (18)0.004 (2)0.0073 (17)
C750.030 (2)0.0160 (15)0.019 (2)0.002 (3)0.008 (3)0.0074 (14)
C760.017 (3)0.0129 (17)0.021 (2)0.0001 (16)0.0001 (17)0.0020 (13)
C810.0172 (19)0.0130 (19)0.009 (2)0.0002 (16)0.0014 (16)0.0031 (16)
C820.016 (2)0.0163 (19)0.021 (2)0.0007 (17)0.0018 (17)0.0005 (17)
C830.014 (2)0.0195 (19)0.026 (3)0.0048 (17)0.0013 (18)0.0036 (17)
C840.012 (3)0.0197 (18)0.025 (2)0.0008 (15)0.0019 (17)0.0050 (15)
C850.019 (3)0.0146 (16)0.022 (2)0.0078 (17)0.0052 (17)0.0044 (15)
C860.017 (2)0.0096 (17)0.018 (2)0.0048 (16)0.0029 (17)0.0017 (16)
Geometric parameters (Å, º) top
Re1—O11.698 (2)C5—C521.520 (5)
Re1—O21.877 (3)C5—C511.529 (5)
Re1—P12.3659 (12)C51—H51A0.9800
Re1—P22.4883 (12)C51—H51B0.9800
Re1—Cl12.4461 (10)C51—H51C0.9800
Re1—Cl22.4339 (10)C52—H52A0.9800
P1—O31.592 (3)C52—H52B0.9800
P1—O41.588 (3)C52—H52C0.9800
P1—O51.580 (3)C61—C661.377 (6)
P2—C611.840 (4)C61—C621.415 (5)
P2—C711.831 (4)C62—C631.372 (6)
P2—C811.822 (4)C62—H620.9500
O2—C21.432 (4)C63—C641.384 (6)
O3—C31.468 (4)C63—H630.9500
O4—C41.484 (4)C64—C651.380 (6)
O5—C51.481 (4)C64—H640.9500
C2—C211.526 (5)C65—C661.380 (6)
C2—C221.534 (5)C65—H650.9500
C2—C31.571 (5)C66—H660.9500
C21—H21A0.9800C71—C761.386 (5)
C21—H21B0.9800C71—C721.391 (5)
C21—H21C0.9800C72—C731.390 (5)
C22—H22A0.9800C72—H720.9500
C22—H22B0.9800C73—C741.369 (6)
C22—H22C0.9800C73—H730.9500
C3—C311.511 (5)C74—C751.390 (6)
C3—C321.520 (5)C74—H740.9500
C31—H31A0.9800C75—C761.395 (4)
C31—H31B0.9800C75—H750.9500
C31—H31C0.9800C76—H760.9500
C32—H32A0.9800C81—C821.386 (5)
C32—H32B0.9800C81—C861.390 (5)
C32—H32C0.9800C82—C831.378 (5)
C4—C411.515 (5)C82—H820.9500
C4—C421.525 (5)C83—C841.396 (5)
C4—C51.534 (6)C83—H830.9500
C41—H41A0.9800C84—C851.389 (5)
C41—H41B0.9800C84—H840.9500
C41—H41C0.9800C85—C861.391 (6)
C42—H42A0.9800C85—H850.9500
C42—H42B0.9800C86—H860.9500
C42—H42C0.9800
O1—Re1—O2168.36 (10)C4—C42—H42A109.5
O1—Re1—P187.13 (8)C4—C42—H42B109.5
O2—Re1—P181.45 (8)H42A—C42—H42B109.5
O1—Re1—P289.15 (9)C4—C42—H42C109.5
O2—Re1—P289.63 (9)H42A—C42—H42C109.5
O1—Re1—Cl292.42 (9)H42B—C42—H42C109.5
O2—Re1—Cl289.82 (9)O5—C5—C52107.3 (3)
P1—Re1—Cl289.96 (3)O5—C5—C51106.4 (3)
O1—Re1—Cl197.83 (8)C52—C5—C51109.6 (3)
O2—Re1—Cl193.73 (8)O5—C5—C4103.4 (3)
P1—Re1—Cl1173.56 (3)C52—C5—C4114.5 (3)
P2—Re1—Cl2174.79 (3)C51—C5—C4114.9 (3)
Cl1—Re1—Cl285.74 (3)C5—C51—H51A109.5
P1—Re1—P295.09 (3)C5—C51—H51B109.5
Cl1—Re1—P289.12 (3)H51A—C51—H51B109.5
O5—P1—O497.57 (14)C5—C51—H51C109.5
O5—P1—O3101.19 (13)H51A—C51—H51C109.5
O4—P1—O3111.19 (15)H51B—C51—H51C109.5
O5—P1—Re1121.00 (10)C5—C52—H52A109.5
O4—P1—Re1113.50 (10)C5—C52—H52B109.5
O3—P1—Re1111.16 (9)H52A—C52—H52B109.5
C81—P2—C71104.11 (17)C5—C52—H52C109.5
C81—P2—C61104.6 (2)H52A—C52—H52C109.5
C71—P2—C61104.15 (19)H52B—C52—H52C109.5
C81—P2—Re1114.21 (13)C66—C61—C62119.7 (5)
C71—P2—Re1116.91 (12)C66—C61—P2120.8 (4)
C61—P2—Re1111.59 (15)C62—C61—P2119.5 (4)
C2—O2—Re1154.5 (2)C63—C62—C61119.3 (5)
C3—O3—P1125.9 (2)C63—C62—H62120.4
C4—O4—P1111.0 (2)C61—C62—H62120.4
C5—O5—P1111.7 (2)C62—C63—C64121.0 (4)
O2—C2—C21109.0 (3)C62—C63—H63119.5
O2—C2—C22105.8 (3)C64—C63—H63119.5
C21—C2—C22108.9 (3)C65—C64—C63119.0 (5)
O2—C2—C3109.6 (3)C65—C64—H64120.5
C21—C2—C3112.2 (3)C63—C64—H64120.5
C22—C2—C3111.1 (3)C64—C65—C66121.3 (5)
C2—C21—H21A109.5C64—C65—H65119.4
C2—C21—H21B109.5C66—C65—H65119.4
H21A—C21—H21B109.5C61—C66—C65119.7 (5)
C2—C21—H21C109.5C61—C66—H66120.2
H21A—C21—H21C109.5C65—C66—H66120.2
H21B—C21—H21C109.5C76—C71—C72119.0 (3)
C2—C22—H22A109.5C76—C71—P2121.6 (3)
C2—C22—H22B109.5C72—C71—P2119.3 (3)
H22A—C22—H22B109.5C73—C72—C71120.6 (4)
C2—C22—H22C109.5C73—C72—H72119.7
H22A—C22—H22C109.5C71—C72—H72119.7
H22B—C22—H22C109.5C74—C73—C72119.8 (4)
O3—C3—C31104.1 (3)C74—C73—H73120.1
O3—C3—C32108.7 (3)C72—C73—H73120.1
C31—C3—C32109.6 (3)C73—C74—C75120.8 (4)
O3—C3—C2108.5 (3)C73—C74—H74119.6
C31—C3—C2113.0 (3)C75—C74—H74119.6
C32—C3—C2112.6 (3)C74—C75—C76119.1 (4)
C3—C31—H31A109.5C74—C75—H75120.4
C3—C31—H31B109.5C76—C75—H75120.4
H31A—C31—H31B109.5C71—C76—C75120.7 (4)
C3—C31—H31C109.5C71—C76—H76119.7
H31A—C31—H31C109.5C75—C76—H76119.7
H31B—C31—H31C109.5C82—C81—C86119.1 (3)
C3—C32—H32A109.5C82—C81—P2119.2 (3)
C3—C32—H32B109.5C86—C81—P2121.6 (3)
H32A—C32—H32B109.5C83—C82—C81120.7 (4)
C3—C32—H32C109.5C83—C82—H82119.7
H32A—C32—H32C109.5C81—C82—H82119.7
H32B—C32—H32C109.5C82—C83—C84120.5 (4)
O4—C4—C41107.0 (3)C82—C83—H83119.8
O4—C4—C42106.3 (3)C84—C83—H83119.8
C41—C4—C42110.7 (3)C85—C84—C83119.2 (4)
O4—C4—C5102.8 (3)C85—C84—H84120.4
C41—C4—C5114.6 (3)C83—C84—H84120.4
C42—C4—C5114.4 (4)C84—C85—C86119.9 (4)
C4—C41—H41A109.5C84—C85—H85120.0
C4—C41—H41B109.5C86—C85—H85120.0
H41A—C41—H41B109.5C81—C86—C85120.6 (4)
C4—C41—H41C109.5C81—C86—H86119.7
H41A—C41—H41C109.5C85—C86—H86119.7
H41B—C41—H41C109.5
O1—RE1—P1—O551.92 (14)P1—O4—C4—C532.4 (3)
O2—RE1—P1—O5125.82 (14)P1—O5—C5—C5292.2 (3)
Cl2—RE1—P1—O5144.35 (12)P1—O5—C5—C51150.6 (2)
P2—RE1—P1—O536.96 (12)P1—O5—C5—C429.1 (3)
O1—RE1—P1—O463.47 (14)O4—C4—C5—O536.4 (3)
O2—RE1—P1—O4118.78 (14)C41—C4—C5—O579.3 (4)
Cl2—RE1—P1—O428.96 (12)C42—C4—C5—O5151.2 (3)
P2—RE1—P1—O4152.35 (12)O4—C4—C5—C5279.9 (4)
O1—RE1—P1—O3170.31 (15)C41—C4—C5—C52164.3 (3)
O2—RE1—P1—O37.44 (14)C42—C4—C5—C5234.9 (4)
Cl2—RE1—P1—O397.26 (12)O4—C4—C5—C51151.9 (3)
P2—RE1—P1—O381.42 (12)C41—C4—C5—C5136.2 (5)
O1—RE1—P2—C81161.66 (14)C42—C4—C5—C5193.2 (4)
O2—RE1—P2—C8129.91 (14)C81—P2—C61—C665.3 (4)
P1—RE1—P2—C81111.30 (12)C71—P2—C61—C66103.7 (4)
Cl1—RE1—P2—C8163.82 (12)RE1—P2—C61—C66129.3 (3)
O1—RE1—P2—C7176.47 (16)C81—P2—C61—C62173.9 (4)
O2—RE1—P2—C7191.95 (15)C71—P2—C61—C6277.1 (5)
P1—RE1—P2—C7110.57 (14)RE1—P2—C61—C6249.9 (5)
Cl1—RE1—P2—C71174.32 (14)C66—C61—C62—C632.0 (8)
O1—RE1—P2—C6143.24 (18)P2—C61—C62—C63178.8 (3)
O2—RE1—P2—C61148.34 (17)C61—C62—C63—C641.8 (7)
P1—RE1—P2—C61130.28 (16)C62—C63—C64—C650.3 (7)
Cl1—RE1—P2—C6154.60 (16)C63—C64—C65—C660.9 (7)
O1—RE1—O2—C223.7 (10)C62—C61—C66—C650.8 (7)
P1—RE1—O2—C212.4 (6)P2—C61—C66—C65180.0 (3)
Cl2—RE1—O2—C277.5 (6)C64—C65—C66—C610.6 (7)
Cl1—RE1—O2—C2163.3 (6)C81—P2—C71—C76127.8 (3)
P2—RE1—O2—C2107.6 (6)C61—P2—C71—C7618.4 (4)
O5—P1—O3—C3179.1 (3)RE1—P2—C71—C76105.2 (3)
O4—P1—O3—C378.1 (3)C81—P2—C71—C7255.3 (3)
RE1—P1—O3—C349.4 (3)C61—P2—C71—C72164.7 (3)
O5—P1—O4—C414.6 (3)RE1—P2—C71—C7271.7 (3)
O3—P1—O4—C490.5 (2)C76—C71—C72—C730.4 (6)
RE1—P1—O4—C4143.3 (2)P2—C71—C72—C73177.4 (3)
O4—P1—O5—C59.6 (2)C71—C72—C73—C741.3 (6)
O3—P1—O5—C5123.1 (2)C72—C73—C74—C751.2 (7)
RE1—P1—O5—C5113.7 (2)C73—C74—C75—C760.2 (8)
RE1—O2—C2—C21119.4 (5)C72—C71—C76—C750.6 (7)
RE1—O2—C2—C22123.7 (5)P2—C71—C76—C75176.2 (4)
RE1—O2—C2—C33.8 (7)C74—C75—C76—C710.7 (8)
P1—O3—C3—C31169.5 (2)C71—P2—C81—C82168.6 (3)
P1—O3—C3—C3252.8 (4)C61—P2—C81—C8282.3 (4)
P1—O3—C3—C270.0 (4)RE1—P2—C81—C8240.0 (3)
O2—C2—C3—O341.2 (4)C71—P2—C81—C8614.1 (4)
C21—C2—C3—O380.0 (4)C61—P2—C81—C8694.9 (3)
C22—C2—C3—O3157.8 (3)RE1—P2—C81—C86142.8 (3)
O2—C2—C3—C31156.1 (3)C86—C81—C82—C831.8 (6)
C21—C2—C3—C3134.9 (5)P2—C81—C82—C83179.2 (3)
C22—C2—C3—C3187.4 (4)C81—C82—C83—C840.3 (7)
O2—C2—C3—C3279.2 (4)C82—C83—C84—C851.8 (6)
C21—C2—C3—C32159.6 (3)C83—C84—C85—C861.1 (6)
C22—C2—C3—C3237.4 (4)C82—C81—C86—C852.5 (6)
P1—O4—C4—C4188.7 (3)P2—C81—C86—C85179.8 (3)
P1—O4—C4—C42152.9 (3)C84—C85—C86—C811.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31B···Cl2i0.982.863.796 (4)161
C42—H42B···Cl1ii0.982.873.830 (4)167
C51—H51B···Cl1ii0.982.853.809 (4)166
C65—H65···Cl2iii0.952.913.514 (4)123
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Re(C12H24O4P)Cl2O(C18H15P)]
Mr798.65
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)10.963 (3), 16.328 (4), 17.797 (5)
V3)3185.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.12
Crystal size (mm)0.16 × 0.12 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur PX
diffractometer with a CCD detector
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.582, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
15943, 8614, 6813
Rint0.036
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.046, 0.87
No. of reflections8614
No. of parameters369
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.09
Absolute structureFlack (1983), 3463 Friedel pairs
Absolute structure parameter0.015 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Re1—O11.698 (2)Re1—P22.4883 (12)
Re1—O21.877 (3)Re1—Cl12.4461 (10)
Re1—P12.3659 (12)Re1—Cl22.4339 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31B···Cl2i0.982.863.796 (4)161
C42—H42B···Cl1ii0.982.873.830 (4)167
C51—H51B···Cl1ii0.982.853.809 (4)166
C65—H65···Cl2iii0.952.913.514 (4)123
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported with European funds in the frame of the Human Capital Operational Programme, through project POKL.04.01.01–00–054/10–00 "Development of the potential and educational offer of the University of Wrocław - the chance to enhance the competitiveness of the University".

References

First citationAullón, G., Bellamy, D., Brammer, L., Bruton, E. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationFábry, J., Krupková, R., Vaněk, P., Dušek, M. & Němec, I. (2004). Acta Cryst. E60, m924–m926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGłowiak, T., Rybak, W. K. & Skarżyńska, A. (1998). Polyhedron, 17, 3153–3160.  Google Scholar
First citationGłowiak, T., Rybak, W. K. & Skarżyńska, A. (2000). Polyhedron, 19, 2667–2672.  Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationRybak, W. K., Skarżyńska, A., Szterenberg, L., Ciunik, Z. & Głowiak, T. (2005). Eur. J. Inorg. Chem. pp. 4964–4975.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m605-m606
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds