organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1541

Butyl 4-(4-methyl­benzene­sulfonamido)­benzoate

aDepartment of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: gmustafa884@yahoo.com, akkurt@erciyes.edu.tr

(Received 4 April 2012; accepted 9 April 2012; online 28 April 2012)

In the title compound, C18H21NO4S, the aromatic rings are almost normal to each other, with a dihedral angle of 89.27 (18)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O inter­action, which generates an S(6) motif. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds lead to the formation of chains propagating along [010]. Neighbouring chains are linked via a C—H⋯π inter­action. The –CH2CH2CH3 atoms of the butyl group are disordered over two sets of sites, with a refined site-occupancy ratio of 0.536 (16):0.464 (16).

Related literature

For related structures, see: Mustafa et al. (2010[Mustafa, G., Akkurt, M., Khan, I. U., Naseem, R. & Sajjad, B. (2010). Acta Cryst. E66, o1768.], 2011[Mustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.], 2012[Mustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305.]); Khan et al. (2011[Khan, I. U., Mustafa, G. & Akkurt, M. (2011). Acta Cryst. E67, o1857.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO4S

  • Mr = 347.43

  • Monoclinic, P 21 /c

  • a = 17.8216 (13) Å

  • b = 8.2702 (6) Å

  • c = 11.9282 (8) Å

  • β = 91.001 (3)°

  • V = 1757.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13164 measured reflections

  • 3557 independent reflections

  • 2287 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.218

  • S = 1.05

  • 3557 reflections

  • 224 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.11 2.868 (4) 146
C9—H9⋯O2 0.93 2.36 3.015 (4) 127
C10—H10⋯O1ii 0.93 2.53 3.453 (4) 173
C1—H1CCg1iii 0.96 2.76 3.639 (6) 153
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

As part of our ongoing studies of sulfonamides with potential biological properties (Mustafa et al., 2010, 2011, 2012; Khan et al., 2011), we describe herein the synthesis and crystal structure of the title compound.

As seen in Fig. 1, the two aromatic rings (C2—C7) and (C8—C13) are almost normal to each other, with a dihedral angle of 89.27 (18)°. The S atom has a distorted tetrahedral coordination geometry [S1—O1 = 1.411 (3), S1—O2 = 1.419 (3), S1— N1 = 1.626 (3), S1—C5 = 1.760 (4) Å, O1—S1—O2 = 120.43 (15), O1—S1—N1 = 105.23 (17), O1—S1 —C5 = 106.92 (16), O2—S1—N1 = 109.21 (16), O2—S1—C5 = 108.23 (17) and N1— S1—C5 = 105.94 (15)°]. All the bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found for similar structures (Mustafa et al., 2010, 2011, 2012; Khan et al., 2011).

The molecular conformation of the title compound is stabilized by an intramolecular C—H···O interaction, generating an S(6) motif (Table 1; Bernstein et al., 1995). In the crystal, N—H···O and C—H···O hydrogen bonds lead to the formation of chains propagating along [010] - see Fig. 2 and Table 1. Neighbouring chains are linked via a C—H···π interaction (Table 1).

Related literature top

For related structures, see: Mustafa et al. (2010, 2011, 2012); Khan et al. (2011). For bond-length data, see: Allen et al. (1987). For the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental top

To an aquious solution of p-amino benzoic acid (1.0 g, 7.3 mmol), sodium carbonate (1 N) was added to adjust the pH to 8. p-toluenesulfonyl chloride (1.80 g, 9.48 mmol) was then added and the mixture was stirred at room temperature keeping the pH of the mixture up to 8 with occasional addition of sodium carbonate solution. The progress and completion of the reaction was confirmed by TLC and conversion of the suspension into a clear solution. After 2 h, the mixture was poured into a beaker and the pH was adjusted to 2.0 by addition of 1 N HCl. Precipitates were produced which were filtered and washed with distilled water. The prepared sulfonamide (4-(toluene-4-sulfonylamino)-benzoic acid) (1.0 g, 3.43 mmol), DMF (10 ml) and n-hexane washed with sodium hydride (0.25 g, 10.31 mmol) were stirred at room temperature for 40 min, followed by the addition of butyl iodide (0.94 g, 5.15 mmol). The whole reaction mixture was stirred till the completion of the reaction and poured into crushed ice in a beaker. The pH of the mixture was adjusted to 4.0 with 1 N HCl. Precipitates were produced, filtered and washed twice with distilled water. Crystallization in chloroform gave long block-like pale-yellow X-ray quality crystals of the title compound.

Refinement top

All the H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.88 (2) Å, C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(N,C), where k = 1.5 for CH3 H-atoms and = 1.2 for all other H-atoms. The –CH2—CH2—CH3 atoms (C16, C17 and C18) of the butyl group are disordered over two sets of sites (A/B), with a refined site occupancy ratio of 0.536 (16):0.464 (16). Twelve poorly fitted reflections (1 0 0), (1 1 2), (-1 4 2), (1 3 4), (0 2 2), (-11 3 6), (8 3 0), (6 1 2), (2 3 8), (11 1 0), (-7 2 2) and (-14 3 4) were omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 20% probability level. Only the atoms of the major disordered component of the butyl group are shown.
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details). Only the atoms of the major disordered component of the terminal butyl group are shown.
Butyl 4-(4-methylbenzenesulfonamido)benzoate top
Crystal data top
C18H21NO4SF(000) = 736
Mr = 347.43Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2942 reflections
a = 17.8216 (13) Åθ = 2.7–21.5°
b = 8.2702 (6) ŵ = 0.21 mm1
c = 11.9282 (8) ÅT = 296 K
β = 91.001 (3)°Long block, light yellow
V = 1757.8 (2) Å30.33 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2287 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.038
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
ϕ and ω scansh = 2122
13164 measured reflectionsk = 1010
3557 independent reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1157P)2 + 0.8149P]
where P = (Fo2 + 2Fc2)/3
3557 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C18H21NO4SV = 1757.8 (2) Å3
Mr = 347.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.8216 (13) ŵ = 0.21 mm1
b = 8.2702 (6) ÅT = 296 K
c = 11.9282 (8) Å0.33 × 0.25 × 0.21 mm
β = 91.001 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2287 reflections with I > 2σ(I)
13164 measured reflectionsRint = 0.038
3557 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
3557 reflectionsΔρmin = 0.39 e Å3
224 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17821 (5)0.16383 (11)0.79992 (7)0.0561 (3)
O10.19456 (16)0.3261 (3)0.8276 (2)0.0672 (9)
O20.16764 (16)0.0474 (3)0.88556 (19)0.0707 (10)
O30.30722 (17)0.6342 (3)0.5914 (2)0.0779 (10)
O40.36618 (16)0.5025 (3)0.4580 (2)0.0732 (10)
N10.24647 (17)0.1059 (4)0.7206 (2)0.0618 (10)
C10.0991 (3)0.1840 (7)0.5042 (4)0.0992 (19)
C20.0300 (2)0.1785 (5)0.5775 (3)0.0666 (14)
C30.0269 (2)0.0810 (5)0.6726 (4)0.0725 (17)
C40.0361 (2)0.0747 (5)0.7391 (3)0.0618 (12)
C50.09731 (19)0.1661 (4)0.7132 (3)0.0506 (10)
C60.0964 (2)0.2636 (4)0.6183 (3)0.0582 (12)
C70.0334 (2)0.2668 (5)0.5514 (3)0.0659 (16)
C80.25941 (18)0.0499 (4)0.6752 (3)0.0515 (11)
C90.2412 (2)0.1907 (4)0.7308 (3)0.0641 (14)
C100.2598 (2)0.3388 (4)0.6868 (3)0.0625 (12)
C110.29879 (18)0.3488 (4)0.5867 (3)0.0528 (11)
C120.3148 (2)0.2070 (5)0.5310 (3)0.0618 (12)
C130.2953 (2)0.0585 (4)0.5737 (3)0.0582 (12)
C140.3224 (2)0.5084 (4)0.5476 (3)0.0573 (12)
C150.3938 (3)0.6546 (6)0.4172 (5)0.102 (2)
C16A0.4688 (9)0.619 (2)0.3570 (12)0.152 (5)0.536 (16)
C17A0.4608 (8)0.607 (2)0.2481 (12)0.152 (5)0.536 (16)
C18A0.5254 (9)0.601 (2)0.1612 (13)0.152 (5)0.536 (16)
C17B0.5053 (7)0.5832 (16)0.3103 (10)0.086 (3)0.464 (16)
C18B0.5446 (7)0.5739 (17)0.2028 (10)0.086 (3)0.464 (16)
C16B0.4245 (7)0.6307 (15)0.2980 (10)0.086 (3)0.464 (16)
H1B0.103200.288500.469600.1490*
H30.068400.019300.691200.0870*
H40.037500.008100.801900.0740*
H1C0.095900.102400.447200.1490*
H10.278800.179000.704000.0740*
H1A0.142500.164500.548800.1490*
H100.246200.432900.724000.0750*
H120.339300.211900.462800.0740*
H130.306300.035500.534400.0700*
H15B0.404200.727700.479100.1220*0.536 (16)
H15D0.356900.704400.367400.1220*0.536 (16)
H16C0.504100.705800.374000.1820*0.536 (16)
H16D0.490000.519600.386300.1820*0.536 (16)
H17C0.428900.696500.225300.1820*0.536 (16)
H17D0.431600.509600.235300.1820*0.536 (16)
H18D0.573000.603400.200100.2280*0.536 (16)
H18E0.521500.693300.112400.2280*0.536 (16)
H18F0.521300.503900.117800.2280*0.536 (16)
H60.138100.325700.600600.0700*
H70.033000.329900.486800.0790*
H90.216100.185200.798400.0770*
H15A0.433400.694400.466800.1220*0.464 (16)
H15C0.353600.733600.415400.1220*0.464 (16)
H16A0.396500.546700.258900.1030*0.464 (16)
H16B0.420000.730200.255300.1030*0.464 (16)
H17A0.530800.661200.358300.1030*0.464 (16)
H17B0.508300.478700.347100.1030*0.464 (16)
H18A0.508700.557300.143000.1280*0.464 (16)
H18B0.579400.485300.204900.1280*0.464 (16)
H18C0.571300.672900.190400.1280*0.464 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0664 (6)0.0498 (5)0.0523 (5)0.0032 (4)0.0105 (4)0.0025 (4)
O10.0839 (17)0.0506 (15)0.0674 (15)0.0016 (13)0.0124 (13)0.0131 (12)
O20.0923 (19)0.0690 (17)0.0512 (13)0.0142 (14)0.0126 (13)0.0087 (12)
O30.102 (2)0.0505 (16)0.0821 (18)0.0024 (14)0.0267 (16)0.0034 (14)
O40.0831 (18)0.0614 (17)0.0760 (17)0.0054 (13)0.0292 (15)0.0018 (13)
N10.0649 (18)0.0483 (16)0.0727 (19)0.0003 (14)0.0159 (15)0.0005 (14)
C10.079 (3)0.122 (4)0.096 (3)0.023 (3)0.016 (3)0.043 (3)
C20.065 (2)0.071 (3)0.064 (2)0.010 (2)0.0044 (18)0.026 (2)
C30.069 (3)0.069 (3)0.080 (3)0.014 (2)0.014 (2)0.013 (2)
C40.073 (2)0.056 (2)0.057 (2)0.0118 (18)0.0151 (18)0.0002 (17)
C50.0594 (19)0.0450 (18)0.0479 (17)0.0002 (15)0.0139 (15)0.0061 (14)
C60.061 (2)0.060 (2)0.054 (2)0.0045 (17)0.0137 (17)0.0102 (16)
C70.075 (3)0.073 (3)0.050 (2)0.005 (2)0.0067 (19)0.0060 (18)
C80.0508 (18)0.0503 (19)0.0536 (18)0.0025 (15)0.0047 (15)0.0010 (15)
C90.078 (3)0.054 (2)0.061 (2)0.0025 (18)0.0210 (19)0.0067 (17)
C100.070 (2)0.052 (2)0.066 (2)0.0026 (17)0.0158 (18)0.0109 (17)
C110.0501 (18)0.054 (2)0.0545 (18)0.0032 (15)0.0042 (15)0.0006 (16)
C120.071 (2)0.061 (2)0.054 (2)0.0027 (18)0.0191 (17)0.0031 (17)
C130.066 (2)0.050 (2)0.059 (2)0.0004 (17)0.0144 (17)0.0052 (16)
C140.057 (2)0.054 (2)0.061 (2)0.0013 (16)0.0057 (17)0.0010 (17)
C150.118 (4)0.074 (3)0.115 (4)0.012 (3)0.056 (3)0.015 (3)
C16A0.107 (7)0.237 (12)0.113 (7)0.056 (6)0.042 (5)0.048 (6)
C17A0.107 (7)0.237 (12)0.113 (7)0.056 (6)0.042 (5)0.048 (6)
C18A0.107 (7)0.237 (12)0.113 (7)0.056 (6)0.042 (5)0.048 (6)
C17B0.062 (5)0.104 (5)0.091 (6)0.005 (3)0.007 (3)0.015 (4)
C18B0.062 (5)0.104 (5)0.091 (6)0.005 (3)0.007 (3)0.015 (4)
C16B0.062 (5)0.104 (5)0.091 (6)0.005 (3)0.007 (3)0.015 (4)
Geometric parameters (Å, º) top
S1—O11.411 (3)C1—H1A0.9600
S1—O21.419 (3)C1—H1B0.9600
S1—N11.626 (3)C1—H1C0.9600
S1—C51.760 (4)C3—H30.9300
O3—C141.197 (4)C4—H40.9300
O4—C141.335 (4)C6—H60.9300
O4—C151.439 (6)C7—H70.9300
N1—C81.418 (5)C9—H90.9300
N1—H10.8600C10—H100.9300
C1—C21.499 (6)C12—H120.9300
C2—C31.392 (6)C13—H130.9300
C2—C71.385 (5)C15—H15B0.9700
C3—C41.364 (5)C15—H15D0.9700
C4—C51.367 (5)C15—H15A0.9700
C5—C61.390 (5)C15—H15C0.9700
C6—C71.366 (5)C16A—H16C0.9700
C8—C131.381 (5)C16A—H16D0.9700
C8—C91.382 (5)C16B—H16B0.9700
C9—C101.375 (5)C16B—H16A0.9700
C10—C111.394 (5)C17A—H17D0.9700
C11—C121.380 (5)C17A—H17C0.9700
C11—C141.464 (5)C17B—H17A0.9700
C12—C131.377 (5)C17B—H17B0.9700
C15—C16B1.545 (13)C18A—H18E0.9600
C15—C16A1.556 (17)C18A—H18F0.9600
C16A—C17A1.31 (2)C18A—H18D0.9600
C16B—C17B1.497 (18)C18B—H18A0.9600
C17A—C18A1.56 (2)C18B—H18B0.9600
C17B—C18B1.474 (17)C18B—H18C0.9600
O1—S1—O2120.43 (15)C6—C7—H7119.00
O1—S1—N1105.23 (17)C8—C9—H9120.00
O1—S1—C5106.92 (16)C10—C9—H9120.00
O2—S1—N1109.21 (16)C9—C10—H10120.00
O2—S1—C5108.23 (17)C11—C10—H10120.00
N1—S1—C5105.94 (15)C11—C12—H12119.00
C14—O4—C15116.6 (3)C13—C12—H12119.00
S1—N1—C8128.2 (3)C8—C13—H13120.00
C8—N1—H1116.00C12—C13—H13120.00
S1—N1—H1116.00O4—C15—H15B110.00
C3—C2—C7117.9 (3)O4—C15—H15D110.00
C1—C2—C7121.2 (4)O4—C15—H15A110.00
C1—C2—C3120.9 (4)O4—C15—H15C110.00
C2—C3—C4121.1 (4)C16A—C15—H15B108.00
C3—C4—C5120.0 (4)C16A—C15—H15D112.00
S1—C5—C6118.9 (3)H15B—C15—H15D109.00
S1—C5—C4120.7 (3)C16B—C15—H15A110.00
C4—C5—C6120.5 (3)C16B—C15—H15C110.00
C5—C6—C7119.0 (3)H15A—C15—H15C108.00
C2—C7—C6121.6 (3)C15—C16A—H16C109.00
N1—C8—C9122.8 (3)C15—C16A—H16D109.00
N1—C8—C13117.6 (3)C17A—C16A—H16C109.00
C9—C8—C13119.6 (3)C17A—C16A—H16D109.00
C8—C9—C10120.5 (3)H16C—C16A—H16D108.00
C9—C10—C11120.4 (3)H16A—C16B—H16B109.00
C12—C11—C14123.4 (3)C15—C16B—H16A110.00
C10—C11—C14118.5 (3)C15—C16B—H16B110.00
C10—C11—C12118.2 (3)C17B—C16B—H16A110.00
C11—C12—C13121.6 (3)C17B—C16B—H16B110.00
C8—C13—C12119.6 (3)C18A—C17A—H17C106.00
O3—C14—C11125.2 (3)C18A—C17A—H17D106.00
O3—C14—O4121.4 (3)C16A—C17A—H17D106.00
O4—C14—C11113.4 (3)C16A—C17A—H17C106.00
O4—C15—C16B109.2 (6)H17C—C17A—H17D106.00
O4—C15—C16A107.0 (7)C16B—C17B—H17A109.00
C15—C16A—C17A113.1 (12)C16B—C17B—H17B109.00
C15—C16B—C17B107.4 (9)H17A—C17B—H17B108.00
C16A—C17A—C18A126.3 (14)C18B—C17B—H17B109.00
C16B—C17B—C18B113.5 (10)C18B—C17B—H17A109.00
C2—C1—H1A109.00C17A—C18A—H18F110.00
C2—C1—H1B109.00C17A—C18A—H18E109.00
C2—C1—H1C109.00H18E—C18A—H18F110.00
H1A—C1—H1B109.00H18D—C18A—H18E109.00
H1A—C1—H1C109.00H18D—C18A—H18F110.00
H1B—C1—H1C109.00C17A—C18A—H18D109.00
C2—C3—H3120.00C17B—C18B—H18A109.00
C4—C3—H3119.00C17B—C18B—H18B109.00
C3—C4—H4120.00C17B—C18B—H18C110.00
C5—C4—H4120.00H18A—C18B—H18B109.00
C5—C6—H6120.00H18A—C18B—H18C109.00
C7—C6—H6121.00H18B—C18B—H18C109.00
C2—C7—H7119.00
O1—S1—N1—C8176.1 (3)C3—C4—C5—C61.1 (6)
O2—S1—N1—C845.5 (3)S1—C5—C6—C7179.4 (3)
C5—S1—N1—C870.9 (3)C4—C5—C6—C70.1 (5)
O1—S1—C5—C4126.3 (3)C5—C6—C7—C21.6 (6)
O1—S1—C5—C653.2 (3)N1—C8—C9—C10175.3 (3)
O2—S1—C5—C44.8 (4)C13—C8—C9—C101.2 (5)
O2—S1—C5—C6175.7 (3)N1—C8—C13—C12174.5 (3)
N1—S1—C5—C4121.9 (3)C9—C8—C13—C122.2 (5)
N1—S1—C5—C658.7 (3)C8—C9—C10—C111.4 (5)
C15—O4—C14—O30.1 (5)C9—C10—C11—C123.0 (5)
C15—O4—C14—C11177.9 (3)C9—C10—C11—C14175.4 (3)
C14—O4—C15—C16A153.3 (6)C10—C11—C12—C132.0 (5)
S1—N1—C8—C933.7 (5)C14—C11—C12—C13176.3 (3)
S1—N1—C8—C13149.7 (3)C10—C11—C14—O34.6 (5)
C1—C2—C3—C4179.5 (4)C10—C11—C14—O4173.1 (3)
C7—C2—C3—C41.1 (6)C12—C11—C14—O3177.1 (4)
C1—C2—C7—C6179.4 (4)C12—C11—C14—O45.2 (5)
C3—C2—C7—C62.2 (6)C11—C12—C13—C80.6 (5)
C2—C3—C4—C50.5 (6)O4—C15—C16A—C17A98.0 (13)
C3—C4—C5—S1178.3 (3)C15—C16A—C17A—C18A169.1 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.112.868 (4)146
C4—H4···O20.932.532.908 (4)105
C9—H9···O20.932.363.015 (4)127
C10—H10···O1ii0.932.533.453 (4)173
C1—H1C···Cg1iii0.962.763.639 (6)153
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H21NO4S
Mr347.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.8216 (13), 8.2702 (6), 11.9282 (8)
β (°) 91.001 (3)
V3)1757.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.33 × 0.25 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13164, 3557, 2287
Rint0.038
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.218, 1.05
No. of reflections3557
No. of parameters224
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.112.868 (4)146
C9—H9···O20.932.363.015 (4)127
C10—H10···O1ii0.932.533.453 (4)173
C1—H1C···Cg1iii0.962.763.639 (6)153
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z+1.
 

Acknowledgements

The authors are grateful to Mr Muhammad Nadeem Arshad for his assistance and the Higher Education Commission (HEC), Pakistan, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Mustafa, G. & Akkurt, M. (2011). Acta Cryst. E67, o1857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Akkurt, M., Khan, I. U., Naseem, R. & Sajjad, B. (2010). Acta Cryst. E66, o1768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Khan, F. M. & Akkurt, M. (2012). Acta Cryst. E68, o1305.  CSD CrossRef IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Zia-ur-Rehman, M., Sharif, S. & Arshad, M. N. (2011). Acta Cryst. E67, o1018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1541
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds