organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1537

Methyl 5-hy­dr­oxy-3-phenyl-1,2-oxazolidine-5-carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: yejia407169849@163.com

(Received 7 April 2012; accepted 20 April 2012; online 25 April 2012)

In the title compound, C11H13NO4, the isoxazolidine ring has an envelope conformation with the O atom as the flap. In the crystal, mol­ecules are liked via N—H⋯O and bifurcated O—H⋯(O,N) hydrogen bonds forming chains propagating along [010]. There are also C—H⋯O inter­actions present.

Related literature

For the use of isoxazolidine-containing compounds as building blocks in synthesis, see: Carrillo et al. (2006[Carrillo, N., Davalos, E. A., Russak, J. A. & Bode, J. W. (2006). J. Am. Chem. Soc. 128, 1452-1453.]); Lv et al. (2010[Lv, J., Li, X., Zhong, L., Luo, S. & Cheng, J. P. (2010). Org. Lett. 12, 1096-1099.]); Ibrahem et al. (2007[Ibrahem, I., Rios, R., Vesely, J., Zhao, G. L. & Cordova, A. (2007). Chem. Commun. 8, 849-851.]); Sharma et al. (1999[Sharma, G. V. M., Reddy, I. S., Reddy, V. G. & Rao, A. V. R. (1999). Tetrahedron Asymmetry, 10, 229-235.]). For information on conjugation additions to α,β-unsaturated ketones, see: Wu et al. (2006[Wu, Y. C., Liu, L., Li, H. J., Wang, D. & Chen, Y. J. (2006). J. Org. Chem. 71, 6592-6595.]). For standard bond-lengths see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO4

  • Mr = 223.22

  • Monoclinic, P 21 /n

  • a = 11.8322 (3) Å

  • b = 6.0853 (1) Å

  • c = 15.8570 (3) Å

  • β = 101.864 (2)°

  • V = 1117.35 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 291 K

  • 0.40 × 0.36 × 0.30 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.726, Tmax = 0.784

  • 10901 measured reflections

  • 2165 independent reflections

  • 1921 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.05

  • 2165 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O1i 0.907 (18) 2.315 (18) 3.1158 (15) 147.0 (13)
O2—H9⋯O1i 0.82 2.51 3.0673 (13) 127
O2—H9⋯N1i 0.82 1.99 2.7826 (16) 162
C11—H11A⋯O3ii 0.96 2.54 3.480 (2) 166
C11—H11C⋯O2iii 0.96 2.53 3.419 (2) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isoxazolidines are interesting heterocyclic compounds that may be regarded as unusual constrained β-amino acids or as furanose mimetics, and have been exploited as analogues of natural products (Lv et al., 2010). Isoxazolidines are also applied in the synthesis of oligopeptides in the absence of coupling reagents (Carrillo et al., 2006) and used as building blocks in organic synthesis (Ibrahem et al., 2007; Sharma et al., 1999).

Nitrogen containing nucleophiles such as hydroxylamines and hydrazoic acid are widely employed in conjugation additions to α,β-unsaturated ketones (Wu et al., 2006). The title compound is a Michael addition product from the transformation of hydroxylamine to an α,β-unsaturated ketone ester. We report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The isoxazolidine ring possesses an envelope conformation with atom O1 as the flap.

In the crystal, molecules are linked via N—H···O and bifurcated O—H···O,N hydrogen bonds to form chains along the b axis (Table 1). These chains are linked via C-H···O interactions (Table 1).

Related literature top

For the use of isoxazolidine-containing compounds as building blocks in synthesis, see: Carrillo et al. (2006); Lv et al. (2010); Ibrahem et al. (2007); Sharma et al. (1999). For information on conjugation additions to α,β-unsaturated ketones, see: Wu et al. (2006). For standard bond-lengths see: Allen et al. (1987).

Experimental top

To the solution of (E)-methyl 2-oxo-4-phenylbut-3-enoate (0.019 g, 0.1 mmol) and hydroxylamine hydrochloride (0.07 g, 0.1 mmol) in dichloromethane (1 mL) was added triethylamine (0.012 g, 0.12mmol) at room temperature. The reaction mixture was stirred for 24 h at 273 K. The solvent was then removed under reduced pressure, and the residue was purified through column chromatography (petroleum ether: ethyl acetate = 3:1(V/V)). Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of an ethyl acetate solution at room temperature for 2 d.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH3, CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms and = 1.2 for other H-atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
Methyl 5-hydroxy-3-phenyl-1,2-oxazolidine-5-carboxylate top
Crystal data top
C11H13NO4F(000) = 472
Mr = 223.22Dx = 1.327 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 7888 reflections
a = 11.8322 (3) Åθ = 3.8–71.9°
b = 6.0853 (1) ŵ = 0.85 mm1
c = 15.8570 (3) ÅT = 291 K
β = 101.864 (2)°Block, colourless
V = 1117.35 (4) Å30.40 × 0.36 × 0.30 mm
Z = 4
Data collection top
Oxford Gemini S Ultra
diffractometer
2165 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1921 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 15.9149 pixels mm-1θmax = 72.1°, θmin = 5.7°
ω scansh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 67
Tmin = 0.726, Tmax = 0.784l = 1918
10901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.2933P]
where P = (Fo2 + 2Fc2)/3
2165 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C11H13NO4V = 1117.35 (4) Å3
Mr = 223.22Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.8322 (3) ŵ = 0.85 mm1
b = 6.0853 (1) ÅT = 291 K
c = 15.8570 (3) Å0.40 × 0.36 × 0.30 mm
β = 101.864 (2)°
Data collection top
Oxford Gemini S Ultra
diffractometer
2165 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1921 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.784Rint = 0.034
10901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2165 reflectionsΔρmin = 0.12 e Å3
151 parameters
Special details top

Experimental. Absorption correction: (CrysAlisPro; Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79693 (8)0.06822 (15)0.78232 (6)0.0518 (3)
O20.82481 (9)0.20986 (16)0.88556 (6)0.0604 (4)
O31.04065 (10)0.0305 (2)0.89858 (10)0.0901 (5)
O40.96722 (8)0.30583 (16)0.89779 (7)0.0641 (4)
N10.67179 (10)0.0582 (2)0.76513 (8)0.0535 (4)
C10.3265 (2)0.1664 (6)0.87113 (15)0.1076 (12)
C20.4303 (2)0.2651 (4)0.90278 (16)0.1061 (10)
C30.53265 (17)0.1617 (3)0.89530 (14)0.0857 (7)
C40.53083 (13)0.0405 (3)0.85666 (10)0.0629 (5)
C50.42474 (15)0.1361 (4)0.82446 (13)0.0843 (7)
C60.32309 (17)0.0312 (5)0.83205 (16)0.1066 (10)
C70.63963 (12)0.1531 (2)0.84333 (10)0.0577 (5)
C80.74876 (13)0.1335 (3)0.91548 (10)0.0613 (5)
C90.83371 (12)0.0138 (2)0.87205 (9)0.0522 (4)
C100.96003 (12)0.0898 (2)0.89183 (9)0.0553 (5)
C111.08082 (14)0.4029 (3)0.90958 (12)0.0719 (6)
H10.258200.235400.876500.1290*
H20.432500.401700.929400.1270*
H30.603000.230200.916700.1030*
H40.6564 (13)0.088 (3)0.7630 (10)0.062 (4)*
H50.421400.272200.797400.1010*
H60.252300.097500.810100.1280*
H70.622600.309500.832700.0690*
H8A0.777800.277400.935600.0740*
H8B0.733100.049900.963900.0740*
H90.841500.277400.845100.0900*
H11A1.075200.558700.917300.1080*
H11B1.112800.374400.859700.1080*
H11C1.129900.340200.959500.1080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0502 (5)0.0495 (6)0.0538 (5)0.0012 (4)0.0064 (4)0.0012 (4)
O20.0731 (7)0.0478 (6)0.0577 (6)0.0060 (5)0.0076 (5)0.0027 (4)
O30.0607 (7)0.0555 (7)0.1493 (12)0.0081 (6)0.0105 (7)0.0051 (7)
O40.0539 (6)0.0465 (6)0.0867 (8)0.0031 (4)0.0023 (5)0.0018 (5)
N10.0496 (6)0.0472 (7)0.0608 (7)0.0018 (5)0.0049 (5)0.0032 (5)
C10.0765 (14)0.163 (3)0.0888 (15)0.0423 (16)0.0295 (11)0.0271 (16)
C20.1073 (18)0.1077 (18)0.1067 (16)0.0414 (14)0.0303 (13)0.0013 (13)
C30.0734 (11)0.0809 (13)0.1028 (14)0.0142 (10)0.0179 (10)0.0070 (11)
C40.0565 (8)0.0657 (10)0.0669 (9)0.0030 (7)0.0136 (7)0.0112 (8)
C50.0627 (10)0.0975 (14)0.0922 (13)0.0080 (10)0.0149 (9)0.0081 (11)
C60.0572 (11)0.153 (2)0.1111 (18)0.0031 (13)0.0211 (11)0.0198 (17)
C70.0593 (8)0.0481 (8)0.0653 (9)0.0006 (6)0.0120 (7)0.0059 (6)
C80.0593 (8)0.0635 (9)0.0605 (8)0.0063 (7)0.0110 (7)0.0115 (7)
C90.0564 (8)0.0463 (7)0.0511 (7)0.0023 (6)0.0046 (6)0.0007 (6)
C100.0566 (8)0.0474 (8)0.0588 (8)0.0015 (6)0.0044 (6)0.0008 (6)
C110.0593 (9)0.0615 (10)0.0893 (12)0.0118 (8)0.0026 (8)0.0030 (8)
Geometric parameters (Å, º) top
O1—N11.4507 (16)C5—C61.389 (3)
O1—C91.4384 (17)C7—C81.544 (2)
O2—C91.3852 (16)C8—C91.517 (2)
O3—C101.1897 (18)C9—C101.534 (2)
O4—C101.3195 (16)C1—H10.9300
O4—C111.445 (2)C2—H20.9300
O2—H90.8200C3—H30.9300
N1—C71.4866 (19)C5—H50.9300
N1—H40.907 (18)C6—H60.9300
C1—C21.367 (4)C7—H70.9800
C1—C61.350 (5)C8—H8A0.9700
C2—C31.391 (3)C8—H8B0.9700
C3—C41.373 (3)C11—H11A0.9600
C4—C71.511 (2)C11—H11B0.9600
C4—C51.383 (3)C11—H11C0.9600
N1—O1—C9105.41 (10)O4—C10—C9111.15 (11)
C10—O4—C11117.46 (12)C2—C1—H1120.00
C9—O2—H9109.00C6—C1—H1120.00
O1—N1—C7104.68 (10)C1—C2—H2120.00
C7—N1—H4109.2 (10)C3—C2—H2120.00
O1—N1—H4103.7 (10)C2—C3—H3120.00
C2—C1—C6120.0 (2)C4—C3—H3120.00
C1—C2—C3120.2 (2)C4—C5—H5120.00
C2—C3—C4120.62 (19)C6—C5—H5120.00
C3—C4—C5118.15 (17)C1—C6—H6120.00
C3—C4—C7122.23 (15)C5—C6—H6120.00
C5—C4—C7119.50 (16)N1—C7—H7108.00
C4—C5—C6120.8 (2)C4—C7—H7108.00
C1—C6—C5120.3 (2)C8—C7—H7108.00
C4—C7—C8117.92 (13)C7—C8—H8A111.00
N1—C7—C8105.64 (11)C7—C8—H8B111.00
N1—C7—C4108.18 (12)C9—C8—H8A111.00
C7—C8—C9103.42 (12)C9—C8—H8B111.00
O1—C9—O2111.23 (10)H8A—C8—H8B109.00
O1—C9—C8104.16 (11)O4—C11—H11A109.00
C8—C9—C10118.11 (12)O4—C11—H11B109.00
O1—C9—C10102.52 (11)O4—C11—H11C109.00
O2—C9—C8108.85 (12)H11A—C11—H11B109.00
O2—C9—C10111.50 (11)H11A—C11—H11C109.00
O3—C10—O4124.61 (14)H11B—C11—H11C109.00
O3—C10—C9124.22 (12)
C9—O1—N1—C738.90 (12)C3—C4—C7—C838.7 (2)
N1—O1—C9—O276.12 (13)C5—C4—C7—N194.88 (18)
N1—O1—C9—C840.98 (12)C5—C4—C7—C8145.43 (16)
N1—O1—C9—C10164.61 (9)C4—C5—C6—C10.0 (4)
C11—O4—C10—O32.8 (2)N1—C7—C8—C93.24 (15)
C11—O4—C10—C9175.29 (12)C4—C7—C8—C9117.76 (14)
O1—N1—C7—C4148.04 (11)C7—C8—C9—O126.43 (14)
O1—N1—C7—C820.90 (13)C7—C8—C9—O292.30 (13)
C6—C1—C2—C30.4 (4)C7—C8—C9—C10139.28 (12)
C2—C1—C6—C50.6 (4)O1—C9—C10—O3103.08 (16)
C1—C2—C3—C40.4 (3)O1—C9—C10—O475.06 (13)
C2—C3—C4—C51.0 (3)O2—C9—C10—O316.0 (2)
C2—C3—C4—C7176.90 (18)O2—C9—C10—O4165.86 (11)
C3—C4—C5—C60.8 (3)C8—C9—C10—O3143.17 (16)
C7—C4—C5—C6176.83 (19)C8—C9—C10—O438.69 (17)
C3—C4—C7—N181.02 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.907 (18)2.315 (18)3.1158 (15)147.0 (13)
O2—H9···O1i0.822.513.0673 (13)127
O2—H9···N1i0.821.992.7826 (16)162
C11—H11A···O3ii0.962.543.480 (2)166
C11—H11C···O2iii0.962.533.419 (2)154
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC11H13NO4
Mr223.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)11.8322 (3), 6.0853 (1), 15.8570 (3)
β (°) 101.864 (2)
V3)1117.35 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.40 × 0.36 × 0.30
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.726, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
10901, 2165, 1921
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.05
No. of reflections2165
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.907 (18)2.315 (18)3.1158 (15)147.0 (13)
O2—H9···O1i0.822.513.0673 (13)127
O2—H9···N1i0.821.992.7826 (16)162
C11—H11A···O3ii0.962.543.480 (2)166
C11—H11C···O2iii0.962.533.419 (2)154
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z; (iii) x+2, y, z+2.
 

Acknowledgements

The authors thank the Testing Centre of Sichuan University for the diffraction measurements and China West Normal University for suport.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCarrillo, N., Davalos, E. A., Russak, J. A. & Bode, J. W. (2006). J. Am. Chem. Soc. 128, 1452–1453.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIbrahem, I., Rios, R., Vesely, J., Zhao, G. L. & Cordova, A. (2007). Chem. Commun. 8, 849–851.  Web of Science CrossRef Google Scholar
First citationLv, J., Li, X., Zhong, L., Luo, S. & Cheng, J. P. (2010). Org. Lett. 12, 1096–1099.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSharma, G. V. M., Reddy, I. S., Reddy, V. G. & Rao, A. V. R. (1999). Tetrahedron Asymmetry, 10, 229–235.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y. C., Liu, L., Li, H. J., Wang, D. & Chen, Y. J. (2006). J. Org. Chem. 71, 6592–6595.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1537
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds