metal-organic compounds
(Acetato-κO)(2-bromo-6-{[3-(dimethylazaniumyl)propylimino-κN]methyl}phenolato-κO)(thiocyanato-κN)zinc
aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China
*Correspondence e-mail: chengli_han@126.com
In the title compound, [Zn(CH3COO)(NCS)(C12H17BrN2O)], the ZnII atom is four-coordinated in a distorted tetrahedral geometry, binding to a phenolate O and an imine N atom of the Schiff base ligand, the O atom of an acetate ligand and one thiocyanate N atom. In the crystal, molecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers.
Related literature
For a zinc Schiff base complex reported previously by the author, see: Han (2009). For related zinc complexes, see: Ali et al. (2008); You (2005); Zhu & Yang (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812017564/su2407sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017564/su2407Isup2.hkl
Equimolar quantities (1.0 mmol each) of 3-bromosalicyaldehyde, N,N-dimethylpropane-1,3-diamine, ammonium thiocyanate, and zinc acetate were mixed in methanol. The mixture was stirred at reflux for 30 min and filtered. The filtrate was left to evaporate slowly for a few days, yielding colourless block-like crystals.
The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.91 Å, C-H = 93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and = 1.2 for other H-atoms. A region of disordered electron density (ca. 1.3 Å3) was located at position 0,0,0.5 but it could not be identified and was not taken into consideration during
it corresponds to the position of a small void in the of ca. 83 Å3, as detected by checkcif (PLATON; Spek, 2009).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Zn(C2H3O2)(NCS)(C12H17BrN2O)] | Z = 2 |
Mr = 467.68 | F(000) = 472 |
Triclinic, P1 | Dx = 1.524 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.3091 (6) Å | Cell parameters from 5991 reflections |
b = 10.2687 (6) Å | θ = 2.2–27.9° |
c = 11.8353 (7) Å | µ = 3.28 mm−1 |
α = 66.299 (2)° | T = 298 K |
β = 79.891 (2)° | Block, colourless |
γ = 88.122 (2)° | 0.17 × 0.15 × 0.15 mm |
V = 1018.96 (11) Å3 |
Bruker SMART CCD area-detector diffractometer | 3720 independent reflections |
Radiation source: fine-focus sealed tube | 3021 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.129 |
ω scans | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.605, Tmax = 0.639 | k = −12→12 |
9684 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.201 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0811P)2 + 2.5468P] where P = (Fo2 + 2Fc2)/3 |
3720 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 1.32 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Zn(C2H3O2)(NCS)(C12H17BrN2O)] | γ = 88.122 (2)° |
Mr = 467.68 | V = 1018.96 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3091 (6) Å | Mo Kα radiation |
b = 10.2687 (6) Å | µ = 3.28 mm−1 |
c = 11.8353 (7) Å | T = 298 K |
α = 66.299 (2)° | 0.17 × 0.15 × 0.15 mm |
β = 79.891 (2)° |
Bruker SMART CCD area-detector diffractometer | 3720 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3021 reflections with I > 2σ(I) |
Tmin = 0.605, Tmax = 0.639 | Rint = 0.129 |
9684 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.201 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.32 e Å−3 |
3720 reflections | Δρmin = −0.61 e Å−3 |
220 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.71920 (7) | 0.16314 (7) | 0.17582 (7) | 0.0445 (3) | |
Br1 | 0.86805 (11) | 0.41595 (10) | 0.41002 (10) | 0.0872 (4) | |
N1 | 0.5145 (5) | 0.0900 (5) | 0.2551 (5) | 0.0429 (11) | |
N2 | 0.2396 (5) | 0.2871 (5) | −0.0322 (5) | 0.0436 (11) | |
H2 | 0.2172 | 0.2258 | −0.0653 | 0.052* | |
N3 | 0.7308 (6) | 0.2974 (7) | 0.0016 (6) | 0.0642 (15) | |
O1 | 0.7416 (5) | 0.2599 (5) | 0.2823 (5) | 0.0599 (12) | |
O2 | 0.8893 (5) | 0.0442 (5) | 0.1972 (5) | 0.0598 (12) | |
O3 | 0.7888 (5) | −0.0922 (5) | 0.1276 (5) | 0.0565 (11) | |
S1 | 0.7396 (3) | 0.5055 (2) | −0.2352 (2) | 0.0807 (6) | |
C1 | 0.5007 (7) | 0.1983 (6) | 0.4068 (5) | 0.0478 (14) | |
C2 | 0.6446 (7) | 0.2621 (6) | 0.3737 (6) | 0.0475 (14) | |
C3 | 0.6772 (9) | 0.3331 (6) | 0.4473 (7) | 0.0589 (17) | |
C4 | 0.5794 (11) | 0.3442 (7) | 0.5422 (7) | 0.070 (2) | |
H4 | 0.6069 | 0.3901 | 0.5891 | 0.084* | |
C5 | 0.4342 (11) | 0.2853 (8) | 0.5701 (7) | 0.075 (2) | |
H5 | 0.3646 | 0.2963 | 0.6320 | 0.090* | |
C6 | 0.4007 (9) | 0.2134 (7) | 0.5044 (6) | 0.0640 (19) | |
H6 | 0.3073 | 0.1718 | 0.5243 | 0.077* | |
C7 | 0.4463 (7) | 0.1182 (6) | 0.3462 (6) | 0.0473 (14) | |
H7 | 0.3503 | 0.0826 | 0.3767 | 0.057* | |
C8 | 0.4325 (7) | 0.0049 (6) | 0.2105 (6) | 0.0486 (14) | |
H8A | 0.3428 | −0.0341 | 0.2699 | 0.058* | |
H8B | 0.4903 | −0.0740 | 0.2065 | 0.058* | |
C9 | 0.3960 (6) | 0.0940 (6) | 0.0817 (6) | 0.0430 (13) | |
H9A | 0.4839 | 0.1438 | 0.0248 | 0.052* | |
H9B | 0.3587 | 0.0321 | 0.0485 | 0.052* | |
C10 | 0.2827 (6) | 0.2011 (7) | 0.0899 (6) | 0.0468 (14) | |
H10A | 0.1967 | 0.1508 | 0.1495 | 0.056* | |
H10B | 0.3217 | 0.2641 | 0.1210 | 0.056* | |
C11 | 0.3592 (8) | 0.3865 (8) | −0.1235 (8) | 0.0659 (19) | |
H11A | 0.3239 | 0.4437 | −0.1991 | 0.099* | |
H11B | 0.4392 | 0.3329 | −0.1423 | 0.099* | |
H11C | 0.3916 | 0.4470 | −0.0879 | 0.099* | |
C12 | 0.1071 (7) | 0.3664 (8) | −0.0167 (9) | 0.074 (2) | |
H12A | 0.0287 | 0.3006 | 0.0379 | 0.110* | |
H12B | 0.0797 | 0.4187 | −0.0969 | 0.110* | |
H12C | 0.1269 | 0.4314 | 0.0192 | 0.110* | |
C13 | 0.7343 (6) | 0.3843 (7) | −0.0990 (6) | 0.0471 (14) | |
C14 | 0.8872 (6) | −0.0647 (6) | 0.1725 (6) | 0.0418 (13) | |
C15 | 1.0122 (8) | −0.1603 (8) | 0.2014 (8) | 0.068 (2) | |
H15A | 0.9755 | −0.2559 | 0.2535 | 0.102* | |
H15B | 1.0720 | −0.1286 | 0.2445 | 0.102* | |
H15C | 1.0694 | −0.1579 | 0.1247 | 0.102* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0424 (4) | 0.0461 (4) | 0.0530 (5) | 0.0063 (3) | −0.0081 (3) | −0.0288 (3) |
Br1 | 0.1033 (7) | 0.0773 (6) | 0.1037 (7) | −0.0066 (5) | −0.0388 (6) | −0.0506 (5) |
N1 | 0.041 (2) | 0.038 (2) | 0.050 (3) | 0.0034 (19) | −0.012 (2) | −0.017 (2) |
N2 | 0.036 (2) | 0.036 (2) | 0.073 (3) | 0.0091 (18) | −0.018 (2) | −0.034 (2) |
N3 | 0.047 (3) | 0.075 (4) | 0.072 (4) | 0.007 (3) | −0.010 (3) | −0.031 (3) |
O1 | 0.056 (2) | 0.069 (3) | 0.072 (3) | −0.001 (2) | −0.008 (2) | −0.047 (3) |
O2 | 0.053 (2) | 0.057 (3) | 0.095 (4) | 0.016 (2) | −0.027 (2) | −0.052 (3) |
O3 | 0.052 (2) | 0.055 (2) | 0.082 (3) | 0.0154 (19) | −0.024 (2) | −0.044 (2) |
S1 | 0.0938 (15) | 0.0725 (13) | 0.0613 (12) | −0.0063 (11) | −0.0086 (11) | −0.0134 (10) |
C1 | 0.067 (4) | 0.038 (3) | 0.039 (3) | 0.013 (3) | −0.012 (3) | −0.017 (2) |
C2 | 0.062 (4) | 0.039 (3) | 0.049 (3) | 0.013 (3) | −0.014 (3) | −0.024 (3) |
C3 | 0.088 (5) | 0.037 (3) | 0.057 (4) | 0.013 (3) | −0.023 (4) | −0.020 (3) |
C4 | 0.127 (7) | 0.044 (3) | 0.049 (4) | 0.018 (4) | −0.021 (4) | −0.027 (3) |
C5 | 0.112 (7) | 0.058 (4) | 0.051 (4) | 0.016 (4) | 0.001 (4) | −0.025 (3) |
C6 | 0.084 (5) | 0.047 (3) | 0.051 (4) | 0.011 (3) | 0.001 (3) | −0.015 (3) |
C7 | 0.047 (3) | 0.040 (3) | 0.048 (3) | 0.002 (2) | −0.004 (3) | −0.012 (3) |
C8 | 0.046 (3) | 0.040 (3) | 0.062 (4) | 0.003 (2) | −0.011 (3) | −0.022 (3) |
C9 | 0.046 (3) | 0.041 (3) | 0.057 (3) | 0.012 (2) | −0.020 (3) | −0.032 (3) |
C10 | 0.042 (3) | 0.051 (3) | 0.061 (4) | 0.012 (2) | −0.010 (3) | −0.035 (3) |
C11 | 0.061 (4) | 0.051 (4) | 0.079 (5) | −0.003 (3) | −0.008 (4) | −0.021 (4) |
C12 | 0.048 (3) | 0.063 (4) | 0.130 (7) | 0.027 (3) | −0.028 (4) | −0.057 (5) |
C13 | 0.038 (3) | 0.053 (3) | 0.055 (4) | 0.002 (2) | −0.005 (3) | −0.027 (3) |
C14 | 0.040 (3) | 0.040 (3) | 0.052 (3) | 0.010 (2) | −0.007 (2) | −0.026 (3) |
C15 | 0.058 (4) | 0.059 (4) | 0.104 (6) | 0.023 (3) | −0.031 (4) | −0.045 (4) |
Zn1—O1 | 1.931 (4) | C5—C6 | 1.345 (11) |
Zn1—N3 | 1.952 (7) | C5—H5 | 0.9300 |
Zn1—O2 | 1.957 (4) | C6—H6 | 0.9300 |
Zn1—N1 | 1.994 (5) | C7—H7 | 0.9300 |
Br1—C3 | 1.897 (8) | C8—C9 | 1.523 (9) |
N1—C7 | 1.284 (8) | C8—H8A | 0.9700 |
N1—C8 | 1.476 (8) | C8—H8B | 0.9700 |
N2—C10 | 1.477 (8) | C9—C10 | 1.518 (7) |
N2—C12 | 1.482 (7) | C9—H9A | 0.9700 |
N2—C11 | 1.488 (8) | C9—H9B | 0.9700 |
N2—H2 | 0.9100 | C10—H10A | 0.9700 |
N3—C13 | 1.161 (9) | C10—H10B | 0.9700 |
O1—C2 | 1.289 (7) | C11—H11A | 0.9600 |
O2—C14 | 1.265 (7) | C11—H11B | 0.9600 |
O3—C14 | 1.229 (7) | C11—H11C | 0.9600 |
S1—C13 | 1.586 (7) | C12—H12A | 0.9600 |
C1—C6 | 1.407 (9) | C12—H12B | 0.9600 |
C1—C2 | 1.430 (9) | C12—H12C | 0.9600 |
C1—C7 | 1.442 (9) | C14—C15 | 1.493 (8) |
C2—C3 | 1.414 (9) | C15—H15A | 0.9600 |
C3—C4 | 1.356 (11) | C15—H15B | 0.9600 |
C4—C5 | 1.428 (13) | C15—H15C | 0.9600 |
C4—H4 | 0.9300 | ||
O1—Zn1—N3 | 111.3 (2) | N1—C8—H8A | 109.3 |
O1—Zn1—O2 | 100.4 (2) | C9—C8—H8A | 109.3 |
N3—Zn1—O2 | 111.2 (2) | N1—C8—H8B | 109.3 |
O1—Zn1—N1 | 96.3 (2) | C9—C8—H8B | 109.3 |
N3—Zn1—N1 | 111.3 (2) | H8A—C8—H8B | 108.0 |
O2—Zn1—N1 | 124.1 (2) | C10—C9—C8 | 110.5 (5) |
C7—N1—C8 | 116.7 (5) | C10—C9—H9A | 109.5 |
C7—N1—Zn1 | 121.0 (4) | C8—C9—H9A | 109.5 |
C8—N1—Zn1 | 122.2 (4) | C10—C9—H9B | 109.5 |
C10—N2—C12 | 111.3 (5) | C8—C9—H9B | 109.5 |
C10—N2—C11 | 112.8 (5) | H9A—C9—H9B | 108.1 |
C12—N2—C11 | 110.2 (5) | N2—C10—C9 | 112.7 (5) |
C10—N2—H2 | 107.4 | N2—C10—H10A | 109.1 |
C12—N2—H2 | 107.4 | C9—C10—H10A | 109.1 |
C11—N2—H2 | 107.4 | N2—C10—H10B | 109.1 |
C13—N3—Zn1 | 175.3 (6) | C9—C10—H10B | 109.1 |
C2—O1—Zn1 | 125.7 (4) | H10A—C10—H10B | 107.8 |
C14—O2—Zn1 | 117.7 (4) | N2—C11—H11A | 109.5 |
C6—C1—C2 | 119.7 (6) | N2—C11—H11B | 109.5 |
C6—C1—C7 | 115.5 (6) | H11A—C11—H11B | 109.5 |
C2—C1—C7 | 124.8 (5) | N2—C11—H11C | 109.5 |
O1—C2—C3 | 119.9 (6) | H11A—C11—H11C | 109.5 |
O1—C2—C1 | 124.3 (5) | H11B—C11—H11C | 109.5 |
C3—C2—C1 | 115.8 (6) | N2—C12—H12A | 109.5 |
C4—C3—C2 | 123.3 (7) | N2—C12—H12B | 109.5 |
C4—C3—Br1 | 119.1 (6) | H12A—C12—H12B | 109.5 |
C2—C3—Br1 | 117.6 (5) | N2—C12—H12C | 109.5 |
C3—C4—C5 | 120.0 (7) | H12A—C12—H12C | 109.5 |
C3—C4—H4 | 120.0 | H12B—C12—H12C | 109.5 |
C5—C4—H4 | 120.0 | N3—C13—S1 | 178.7 (6) |
C6—C5—C4 | 118.3 (7) | O3—C14—O2 | 122.9 (5) |
C6—C5—H5 | 120.9 | O3—C14—C15 | 120.9 (5) |
C4—C5—H5 | 120.9 | O2—C14—C15 | 116.2 (6) |
C5—C6—C1 | 122.9 (8) | C14—C15—H15A | 109.5 |
C5—C6—H6 | 118.6 | C14—C15—H15B | 109.5 |
C1—C6—H6 | 118.6 | H15A—C15—H15B | 109.5 |
N1—C7—C1 | 127.8 (6) | C14—C15—H15C | 109.5 |
N1—C7—H7 | 116.1 | H15A—C15—H15C | 109.5 |
C1—C7—H7 | 116.1 | H15B—C15—H15C | 109.5 |
N1—C8—C9 | 111.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.91 | 1.81 | 2.703 (6) | 168 |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C2H3O2)(NCS)(C12H17BrN2O)] |
Mr | 467.68 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 9.3091 (6), 10.2687 (6), 11.8353 (7) |
α, β, γ (°) | 66.299 (2), 79.891 (2), 88.122 (2) |
V (Å3) | 1018.96 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.28 |
Crystal size (mm) | 0.17 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.605, 0.639 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9684, 3720, 3021 |
Rint | 0.129 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.201, 1.07 |
No. of reflections | 3720 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.32, −0.61 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O3i | 0.91 | 1.81 | 2.703 (6) | 168 |
Symmetry code: (i) −x+1, −y, −z. |
Acknowledgements
The author acknowledges Qiqihar University for a research grant.
References
Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Han, C.-L. (2009). Acta Cryst. E65, m418. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
You, Z.-L. (2005). Acta Cryst. E61, m1571–m1573. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1090–m1091. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Continuing our research into the synthesis of Schiff base zinc(II) complexes (Han, 2009), we report herein on the crystal structure of the title complex. It was synthesized by the reaction of equimolar quantities of 3-bromosalicyaldehyde, N,N-dimethylpropane-1,3-diamine, ammonium thiocyanate, and zinc acetate in methanol.
In the title complex (Fig. 1), the ZnII atom is four-coordinate in a tetrahedral geometry, with one O and one imine N atoms of the Schiff base ligand, one O atom of an acetate ligand, and one thiocyanate N atom. The tetrahedral geometry is severely distorted, as evidenced by the coordinate bond lengths [1.931 (4) - 1.994 (5) Å] and bond angles [96.3 (2) - 124.1 (2)°]. They are however comparable to those in similar zinc(II) complexes (Ali et al., 2008; You, 2005; Zhu & Yang, 2008).
In the crystal, molecules are linked through N–H···O hydrogen bonds to form inversion dimers (Table 1 and Fig. 2).