organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1540

2-Chloro-5-nitro­pyridin-4-amine

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No.9 Yancheng, Yancheng 224051, People's Republic of China
*Correspondence e-mail: jlheyc@163.com

(Received 11 April 2012; accepted 20 April 2012; online 28 April 2012)

The title mol­ecule, C5H4ClN3O2, possesses mirror symmetry, with all of the atoms lying in the mirror plane. There is an intra­molecular N—H⋯O hydrogen bond involving the adjacent –NO2 and –NH2 groups. A short C—H⋯O inter­action is also observed. In the crystal, adjacent mol­ecules are linked via N—H⋯Cl and N—H⋯N hydrogen bonds, forming chains propagating along [100].

Related literature

For details concerning the importance of the title compound as an inter­mediate in organic synthesis, and for the synthetic procedure, see: Hu et al. (2011[Hu, Y., Jin, Y. Z., Xiong, Y. P. & Li, Z. C. (2011). Sci. Technol. Eng. 11, 1841-1843.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H4ClN3O2

  • Mr = 173.5

  • Orthorhombic, P n m a

  • a = 14.596 (2) Å

  • b = 6.2782 (10) Å

  • c = 7.3018 (12) Å

  • V = 669.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.913, Tmax = 0.927

  • 3496 measured reflections

  • 663 independent reflections

  • 625 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.082

  • S = 1.16

  • 663 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.85 2.06 2.673 (3) 128
C5—H5⋯O1 0.93 2.34 2.682 (2) 101
N2—H2A⋯Cl1i 0.80 2.77 3.3023 (18) 126
N2—H2B⋯N1i 0.85 2.61 3.213 (2) 128
Symmetry code: (i) x, y, z-1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an important nitropyridine compound which is widely used in organic synthesis, especially in the synthesis of heterocyclic drugs and cytokine inhibitors (Hu et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. The molecule lies in a mirror plane. In the molecule there is an N-H···O hydrogen bond involving the adjacent NO2 and NH2 groups (Table 1). A short C-H···O interaction is also observed. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal, adjacent molecules are linked via N–H···Cl and N–H···N hydrogen bonds so forming chains propagating along the a axis direction. (Table 1 and Fig. 2).

Related literature top

For details concerning the importance of the title compound as an intermediate in organic synthesis, and for the synthetic procedure, see: Hu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the literature procedure (Hu et al., 2011). To a solution of tert-butyl 2-chloro-5-nitropyridin-4-ylcarbamate (5 g, 18.3 mmol) in dichloromethane (30 ml) in a 100 mL flask was added slowly a solution of trifluoroaceticacid (10 ml). After being stirred for 4 h at the room temperature, the solvent was evaporated on a rotary evaporator. The pH of the remaining mixture was then adjusted to 7 with saturated sodium bicarbonate solution, giving the title compound. Colourless block-like crytsals were grown in ethanol (30 ml) by evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

The NH H atoms were located in a difference Fourier map and were treated as riding atoms. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å. For all H atoms Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [H atoms not involved in hydrogen bonding have been omitted for clarity].
2-Chloro-5-nitropyridin-4-amine top
Crystal data top
C5H4ClN3O2F(000) = 352
Mr = 173.5Dx = 1.723 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2718 reflections
a = 14.596 (2) Åθ = 2.8–29.8°
b = 6.2782 (10) ŵ = 0.52 mm1
c = 7.3018 (12) ÅT = 296 K
V = 669.11 (18) Å3Block, colourless
Z = 40.18 × 0.17 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
625 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.2°, θmin = 2.8°
ω/2θ scansh = 1717
Absorption correction: multi-scan
(North et al., 1968)
k = 67
Tmin = 0.913, Tmax = 0.927l = 87
3496 measured reflections3 standard reflections every 200 reflections
663 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.1012P]
where P = (Fo2 + 2Fc2)/3
663 reflections(Δ/σ)max < 0.001
67 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C5H4ClN3O2V = 669.11 (18) Å3
Mr = 173.5Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.596 (2) ŵ = 0.52 mm1
b = 6.2782 (10) ÅT = 296 K
c = 7.3018 (12) Å0.18 × 0.17 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
625 reflections with I > 2σ(I)
Absorption correction: multi-scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.913, Tmax = 0.9273 standard reflections every 200 reflections
3496 measured reflections intensity decay: 1%
663 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.16Δρmax = 0.21 e Å3
663 reflectionsΔρmin = 0.35 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49841 (3)0.25000.77100 (7)0.0475 (2)
O10.10325 (10)0.25000.3741 (2)0.0610 (5)
O20.18179 (10)0.25000.12421 (19)0.0495 (4)
N10.32242 (10)0.25000.70422 (19)0.0329 (4)
N20.36482 (14)0.25000.1360 (2)0.0492 (5)
H2A0.41860.25000.11450.059*
H2B0.31960.25000.06230.059*
N30.17674 (11)0.25000.2932 (2)0.0377 (4)
C10.40493 (11)0.25000.6229 (2)0.0317 (4)
C20.42218 (12)0.25000.4395 (2)0.0350 (4)
H20.48210.25000.39640.042*
C30.34767 (13)0.25000.3155 (3)0.0329 (4)
C40.26029 (11)0.25000.3989 (2)0.0311 (4)
C50.25209 (11)0.25000.5895 (2)0.0330 (4)
H50.19340.25000.63920.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0280 (3)0.0797 (4)0.0347 (4)0.0000.00544 (16)0.000
O10.0275 (8)0.0978 (12)0.0575 (10)0.0000.0049 (7)0.000
O20.0551 (9)0.0551 (8)0.0384 (8)0.0000.0163 (7)0.000
N10.0277 (8)0.0446 (8)0.0264 (8)0.0000.0025 (5)0.000
N20.0451 (10)0.0759 (12)0.0266 (9)0.0000.0030 (7)0.000
N30.0346 (9)0.0395 (8)0.0390 (10)0.0000.0097 (7)0.000
C10.0261 (8)0.0403 (9)0.0288 (8)0.0000.0020 (6)0.000
C20.0262 (8)0.0479 (10)0.0310 (9)0.0000.0059 (7)0.000
C30.0359 (10)0.0355 (8)0.0272 (8)0.0000.0020 (7)0.000
C40.0296 (9)0.0327 (8)0.0311 (9)0.0000.0026 (7)0.000
C50.0258 (9)0.0397 (9)0.0333 (10)0.0000.0046 (6)0.000
Geometric parameters (Å, º) top
Cl1—C11.7410 (16)N3—C41.443 (2)
O1—N31.225 (2)C1—C21.363 (2)
O2—N31.236 (2)C2—C31.415 (3)
N1—C51.325 (2)C2—H20.9300
N1—C11.343 (2)C3—C41.413 (2)
N2—C31.335 (3)C4—C51.397 (3)
N2—H2A0.8009C5—H50.9300
N2—H2B0.8515
C5—N1—C1114.55 (14)C1—C2—H2120.4
C3—N2—H2A112.1C3—C2—H2120.4
C3—N2—H2B118.4N2—C3—C4126.34 (18)
H2A—N2—H2B129.5N2—C3—C2118.97 (16)
O1—N3—O2122.27 (16)C4—C3—C2114.70 (16)
O1—N3—C4118.81 (16)C5—C4—C3120.44 (16)
O2—N3—C4118.92 (16)C5—C4—N3117.42 (15)
N1—C1—C2126.90 (15)C3—C4—N3122.14 (17)
N1—C1—Cl1115.35 (12)N1—C5—C4124.29 (14)
C2—C1—Cl1117.75 (13)N1—C5—H5117.9
C1—C2—C3119.13 (16)C4—C5—H5117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.852.062.673 (3)128
C5—H5···O10.932.342.682 (2)101
N2—H2A···Cl1i0.802.773.3023 (18)126
N2—H2B···N1i0.852.613.213 (2)128
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC5H4ClN3O2
Mr173.5
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)14.596 (2), 6.2782 (10), 7.3018 (12)
V3)669.11 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.913, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
3496, 663, 625
Rint0.034
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.082, 1.16
No. of reflections663
No. of parameters67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.852.062.673 (3)128
C5—H5···O10.932.342.682 (2)101
N2—H2A···Cl1i0.802.773.3023 (18)126
N2—H2B···N1i0.852.613.213 (2)128
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHu, Y., Jin, Y. Z., Xiong, Y. P. & Li, Z. C. (2011). Sci. Technol. Eng. 11, 1841–1843.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1540
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds