organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1538-o1539

(E)-3-(2-Chloro­phen­yl)-1-(4,4′′-di­fluoro-5′-meth­­oxy-1,1′:3′,1′′-terphenyl-4′-yl)prop-2-en-1-one

aMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 11 April 2012; accepted 20 April 2012; online 28 April 2012)

The title compound, C28H19ClF2O2, is a polysubstituted terphenyl derivative bearing a Michael system in which the C=C double bond has an E conformation. In the crystal, C—H⋯Cl and C—H⋯O contacts connect the mol­ecules into layers lying perpendicular to the a axis. The shortest inter­centroid distance between symmetry-related 4-fluoro­phenyl groups is 3.7547 (16) Å.

Related literature

For pharmacological background information about terphen­yls, see: Astrue (2002[Astrue, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley-VCH.]); Liu (2006[Liu, J. K. (2006). Chem. Rev. 106, 2209-2223.]). For the crystal structures of other terphenyl derivatives, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2996-o2997.],b[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3181-o3182.],c[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o3179-o3180.],d[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011d). Acta Cryst. E67, o3159-o3160.],e[Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011e). Acta Cryst. E67, o3323-o3324.]); Samshuddin et al. (2011[Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Molbank, M745.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19ClF2O2

  • Mr = 460.88

  • Monoclinic, P 21 /c

  • a = 14.2065 (7) Å

  • b = 6.8651 (3) Å

  • c = 22.4817 (11) Å

  • β = 101.406 (2)°

  • V = 2149.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 200 K

  • 0.40 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]) Tmin = 0.918, Tmax = 0.962

  • 17828 measured reflections

  • 5318 independent reflections

  • 3817 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.141

  • S = 1.07

  • 5318 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯Cl1i 0.95 2.73 3.641 (2) 161
C33—H33⋯Cl1ii 0.95 2.76 3.697 (3) 170
C43—H43⋯O1i 0.95 2.54 3.411 (3) 153
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Polysubstituted aromatics are key structures of great efficacy in synthetic, medicinal and natural product chemistry. Terphenyl derivatives exhibit a considerable range of biological activities and show anticoagulant, immunosuppressant, antithrombotic, neuroprotective, specific 5-lipoxygenase inhibitory and cytotoxic activity effects (Liu, 2006). Due to their promising biological activities terphenyls have received increasing research interest. Therefore, synthesis of polysubstituted aromatics has been a fascinating area in the field of organic chemistry (Astrue, 2002). The molecular and crystal structures of several terphenyl derivatives (Samshuddin et al., 2011; Betz et al., 2011a,b,c,d,e) have already been reported. In view of the importance of these derivatives, the title compound was prepared and its molecular and crystal structure is reported.

The CC double of the Michael system has an E conformation. The mean planes of the para-fluoro phenyl rings, (C31-C36) and (C41-C46), of the terphenyl moiety and the central phenyl ring (C21-C26), enclose angles of 43.39 (12)° and 49.65 (13)°, respectively (Fig. 1).

In the crystal, two different C–H···Cl contacts whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating are observed (Fig. 2 and Table 1). These are supported by two different hydrogen atoms of the terphenyl moiety. Apart from these, a C–H···O contact involving a hydrogen atom from one of the para-fluoro phenyl ring (C41-C46) and the ketonic oxygen atom O1 is apparent (Fig. 2 and Table 1). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···F contacts is C11(10)C11(12) on the unary level while the C–H···O contacts necessitate a C11(10) descriptor on the same level. In total, the molecules are connected to form layers lying perpendicular to the a axis (Fig. 3).

The shortest intercentroid distance between two π systems was found at 3.7547 (16) Å and is apparent between the para-fluoro phenyl ring (C41-C46) and its symmetry-generated (-x, y-1/2, -z-1/2) equivalent.

Related literature top

For pharmacological background information about terphenyls, see: Astrue (2002); Liu (2006). For the crystal structures of other terphenyl derivatives, see: Betz et al. (2011a,b,c,d,e); Samshuddin et al. (2011). For graph-set analysis, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

To a mixture of 1-(4,4''-difluoro-5'-methoxy-1,1':3',1''-terphenyl-4'-yl) ethanone (0.338 g, 0.001 mol) and 2-chlorobenzaldehyde (0.104 g, 0.001 mol) in 30 ml of ethanol, 1 ml of a 10% sodium hydroxide solution was added and stirred at 278–283 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by slow evaporation at room temperature. The yield of the title compound was 81% (m.p.: 452 K).

Refinement top

Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation: C—H = 0.95 Å for aromatic and vinylic H atoms and 0.98 Å for methyl H atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. The CH3 H atoms were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density (HFIX 137 in the SHELXL; Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along b axis of the C–H···O and C–H···Cl contacts (dashed lines) in the crystal structure of the title compound [symmetry operators: (i) x, -y + 1/2, z + 1/2; (ii) x, -y + 1/2, z - 1/2].
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the b axis (displacement ellipsoids are drawn at the 50% probability level).
(E)-3-(2-Chlorophenyl)-1-(4,4''-difluoro-5'-methoxy-1,1':3',1''- terphenyl-4'-yl)prop-2-en-1-one top
Crystal data top
C28H19ClF2O2F(000) = 952
Mr = 460.88Dx = 1.424 Mg m3
Monoclinic, P21/cMelting point: 452 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.2065 (7) ÅCell parameters from 7266 reflections
b = 6.8651 (3) Åθ = 2.6–28.2°
c = 22.4817 (11) ŵ = 0.22 mm1
β = 101.406 (2)°T = 200 K
V = 2149.32 (18) Å3Block, yellow
Z = 40.40 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
5318 independent reflections
Radiation source: fine-focus sealed tube3817 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.918, Tmax = 0.962k = 98
17828 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0356P)2 + 2.7063P]
where P = (Fo2 + 2Fc2)/3
5318 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C28H19ClF2O2V = 2149.32 (18) Å3
Mr = 460.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2065 (7) ŵ = 0.22 mm1
b = 6.8651 (3) ÅT = 200 K
c = 22.4817 (11) Å0.40 × 0.20 × 0.18 mm
β = 101.406 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3817 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.962Rint = 0.051
17828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.07Δρmax = 0.41 e Å3
5318 reflectionsΔρmin = 0.31 e Å3
299 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32945 (5)0.46688 (11)0.32261 (3)0.0424 (2)
F10.48872 (13)0.3590 (3)0.05070 (8)0.0542 (5)
F20.02840 (13)0.4610 (3)0.34871 (6)0.0483 (4)
O10.21690 (15)0.2023 (3)0.11598 (8)0.0394 (5)
O20.10962 (14)0.6409 (3)0.04792 (7)0.0360 (4)
C10.29266 (17)0.5306 (4)0.18625 (10)0.0286 (5)
H10.27500.41890.20650.034*
C20.27497 (18)0.5259 (4)0.12635 (10)0.0308 (5)
H20.29160.63540.10480.037*
C30.22992 (17)0.3548 (4)0.09182 (10)0.0266 (5)
C40.0579 (2)0.8171 (4)0.03123 (12)0.0380 (6)
H4A0.09290.89750.00680.057*
H4B0.05120.88850.06790.057*
H4C0.00590.78630.00750.057*
C110.33711 (17)0.6927 (4)0.22443 (10)0.0280 (5)
C120.35889 (17)0.6785 (4)0.28769 (10)0.0283 (5)
C130.40353 (19)0.8263 (4)0.32436 (12)0.0353 (6)
H130.41680.81140.36720.042*
C140.4286 (2)0.9946 (4)0.29868 (13)0.0410 (7)
H140.46121.09540.32350.049*
C150.4060 (2)1.0165 (4)0.23610 (14)0.0440 (7)
H150.42171.13410.21800.053*
C160.3608 (2)0.8686 (4)0.20019 (12)0.0378 (6)
H160.34530.88690.15750.045*
C210.19968 (16)0.3801 (4)0.02426 (10)0.0250 (5)
C220.22967 (16)0.2553 (3)0.01771 (10)0.0236 (5)
C230.19342 (17)0.2854 (4)0.07951 (10)0.0262 (5)
H230.21420.20300.10830.031*
C240.12777 (16)0.4327 (4)0.09994 (10)0.0250 (5)
C250.09855 (17)0.5559 (4)0.05830 (10)0.0271 (5)
H250.05370.65700.07160.033*
C260.13545 (17)0.5300 (4)0.00332 (10)0.0261 (5)
C310.29922 (17)0.0940 (3)0.00053 (10)0.0245 (5)
C320.38279 (17)0.1197 (4)0.04463 (11)0.0301 (5)
H320.39610.24340.06340.036*
C330.44637 (19)0.0325 (4)0.06131 (11)0.0359 (6)
H330.50260.01500.09160.043*
C340.4265 (2)0.2090 (4)0.03319 (12)0.0360 (6)
C350.34726 (19)0.2412 (4)0.01133 (11)0.0332 (6)
H350.33610.36440.03070.040*
C360.28382 (18)0.0874 (4)0.02719 (11)0.0294 (5)
H360.22820.10670.05790.035*
C410.08695 (17)0.4497 (4)0.16619 (10)0.0263 (5)
C420.14603 (19)0.4464 (4)0.20846 (11)0.0314 (5)
H420.21370.43980.19490.038*
C430.1081 (2)0.4526 (4)0.27020 (11)0.0350 (6)
H430.14870.45180.29910.042*
C440.0103 (2)0.4598 (4)0.28813 (10)0.0335 (6)
C450.05083 (19)0.4642 (4)0.24832 (11)0.0342 (6)
H450.11840.46940.26250.041*
C460.01178 (18)0.4607 (4)0.18650 (11)0.0300 (5)
H460.05290.46590.15800.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0517 (4)0.0472 (4)0.0245 (3)0.0136 (3)0.0019 (3)0.0057 (3)
F10.0605 (11)0.0418 (10)0.0580 (11)0.0263 (9)0.0060 (9)0.0116 (8)
F20.0676 (12)0.0481 (10)0.0226 (7)0.0027 (9)0.0072 (7)0.0013 (7)
O10.0562 (12)0.0328 (11)0.0284 (9)0.0035 (10)0.0062 (8)0.0048 (8)
O20.0450 (11)0.0365 (11)0.0255 (8)0.0141 (9)0.0047 (7)0.0039 (8)
C10.0295 (12)0.0278 (13)0.0275 (11)0.0002 (11)0.0030 (9)0.0031 (10)
C20.0332 (13)0.0316 (14)0.0269 (11)0.0026 (12)0.0039 (10)0.0013 (10)
C30.0270 (12)0.0284 (13)0.0246 (11)0.0035 (11)0.0055 (9)0.0019 (10)
C40.0452 (16)0.0288 (15)0.0402 (14)0.0087 (13)0.0093 (12)0.0050 (11)
C110.0282 (12)0.0287 (13)0.0264 (11)0.0008 (11)0.0032 (9)0.0009 (10)
C120.0254 (12)0.0296 (14)0.0286 (12)0.0000 (10)0.0021 (9)0.0003 (10)
C130.0330 (13)0.0405 (16)0.0299 (12)0.0000 (12)0.0003 (10)0.0079 (11)
C140.0370 (15)0.0354 (16)0.0486 (16)0.0036 (13)0.0032 (12)0.0113 (13)
C150.0499 (17)0.0293 (15)0.0536 (17)0.0066 (13)0.0118 (14)0.0007 (13)
C160.0485 (16)0.0338 (15)0.0301 (13)0.0005 (13)0.0053 (11)0.0015 (11)
C210.0257 (11)0.0252 (12)0.0227 (10)0.0021 (10)0.0013 (9)0.0006 (9)
C220.0231 (11)0.0219 (12)0.0246 (11)0.0024 (10)0.0014 (9)0.0005 (9)
C230.0262 (12)0.0264 (13)0.0249 (11)0.0006 (10)0.0027 (9)0.0037 (9)
C240.0241 (11)0.0260 (13)0.0233 (10)0.0019 (10)0.0006 (8)0.0001 (9)
C250.0270 (12)0.0246 (13)0.0282 (11)0.0028 (10)0.0014 (9)0.0001 (10)
C260.0296 (12)0.0220 (12)0.0265 (11)0.0005 (10)0.0049 (9)0.0021 (9)
C310.0278 (12)0.0224 (12)0.0236 (10)0.0012 (10)0.0062 (9)0.0022 (9)
C320.0298 (13)0.0310 (14)0.0285 (12)0.0004 (11)0.0030 (10)0.0015 (10)
C330.0308 (13)0.0434 (17)0.0313 (12)0.0075 (13)0.0007 (10)0.0044 (12)
C340.0398 (15)0.0346 (15)0.0352 (13)0.0129 (12)0.0111 (11)0.0121 (11)
C350.0427 (15)0.0230 (13)0.0360 (13)0.0007 (12)0.0130 (11)0.0019 (11)
C360.0324 (13)0.0268 (13)0.0287 (12)0.0006 (11)0.0052 (10)0.0007 (10)
C410.0309 (12)0.0226 (12)0.0231 (10)0.0011 (10)0.0006 (9)0.0016 (9)
C420.0315 (13)0.0312 (14)0.0302 (12)0.0001 (11)0.0026 (10)0.0007 (11)
C430.0454 (16)0.0324 (15)0.0277 (12)0.0013 (13)0.0085 (11)0.0002 (11)
C440.0496 (16)0.0262 (13)0.0206 (11)0.0017 (12)0.0034 (10)0.0007 (10)
C450.0342 (13)0.0310 (14)0.0321 (12)0.0026 (12)0.0063 (10)0.0001 (11)
C460.0304 (13)0.0306 (14)0.0278 (11)0.0020 (11)0.0026 (9)0.0006 (10)
Geometric parameters (Å, º) top
Cl1—C121.741 (3)C22—C311.487 (3)
F1—C341.364 (3)C23—C241.391 (3)
F2—C441.364 (3)C23—H230.9500
O1—C31.211 (3)C24—C251.385 (3)
O2—C261.366 (3)C24—C411.492 (3)
O2—C41.426 (3)C25—C261.392 (3)
C1—C21.321 (3)C25—H250.9500
C1—C111.470 (3)C31—C361.390 (3)
C1—H10.9500C31—C321.399 (3)
C2—C31.481 (3)C32—C331.384 (4)
C2—H20.9500C32—H320.9500
C3—C211.504 (3)C33—C341.370 (4)
C4—H4A0.9800C33—H330.9500
C4—H4B0.9800C34—C351.368 (4)
C4—H4C0.9800C35—C361.388 (4)
C11—C161.393 (4)C35—H350.9500
C11—C121.398 (3)C36—H360.9500
C12—C131.380 (3)C41—C421.387 (3)
C13—C141.369 (4)C41—C461.389 (3)
C13—H130.9500C42—C431.387 (3)
C14—C151.388 (4)C42—H420.9500
C14—H140.9500C43—C441.368 (4)
C15—C161.375 (4)C43—H430.9500
C15—H150.9500C44—C451.365 (4)
C16—H160.9500C45—C461.391 (3)
C21—C261.394 (3)C45—H450.9500
C21—C221.402 (3)C46—H460.9500
C22—C231.398 (3)
C26—O2—C4118.60 (19)C25—C24—C41121.2 (2)
C2—C1—C11126.0 (2)C23—C24—C41119.3 (2)
C2—C1—H1117.0C24—C25—C26119.4 (2)
C11—C1—H1117.0C24—C25—H25120.3
C1—C2—C3121.9 (2)C26—C25—H25120.3
C1—C2—H2119.0O2—C26—C25123.8 (2)
C3—C2—H2119.0O2—C26—C21114.6 (2)
O1—C3—C2122.6 (2)C25—C26—C21121.5 (2)
O1—C3—C21120.9 (2)C36—C31—C32117.8 (2)
C2—C3—C21116.4 (2)C36—C31—C22120.4 (2)
O2—C4—H4A109.5C32—C31—C22121.7 (2)
O2—C4—H4B109.5C33—C32—C31120.9 (2)
H4A—C4—H4B109.5C33—C32—H32119.5
O2—C4—H4C109.5C31—C32—H32119.5
H4A—C4—H4C109.5C34—C33—C32118.6 (2)
H4B—C4—H4C109.5C34—C33—H33120.7
C16—C11—C12115.9 (2)C32—C33—H33120.7
C16—C11—C1122.5 (2)F1—C34—C35118.8 (3)
C12—C11—C1121.6 (2)F1—C34—C33118.1 (2)
C13—C12—C11122.6 (2)C35—C34—C33123.1 (2)
C13—C12—Cl1117.85 (19)C34—C35—C36117.6 (2)
C11—C12—Cl1119.51 (19)C34—C35—H35121.2
C14—C13—C12119.7 (2)C36—C35—H35121.2
C14—C13—H13120.1C35—C36—C31122.0 (2)
C12—C13—H13120.1C35—C36—H36119.0
C13—C14—C15119.4 (3)C31—C36—H36119.0
C13—C14—H14120.3C42—C41—C46119.0 (2)
C15—C14—H14120.3C42—C41—C24120.9 (2)
C16—C15—C14120.2 (3)C46—C41—C24120.0 (2)
C16—C15—H15119.9C43—C42—C41121.1 (2)
C14—C15—H15119.9C43—C42—H42119.4
C15—C16—C11122.1 (2)C41—C42—H42119.4
C15—C16—H16119.0C44—C43—C42117.8 (2)
C11—C16—H16119.0C44—C43—H43121.1
C26—C21—C22119.3 (2)C42—C43—H43121.1
C26—C21—C3117.6 (2)F2—C44—C45118.1 (2)
C22—C21—C3123.0 (2)F2—C44—C43118.7 (2)
C23—C22—C21118.5 (2)C45—C44—C43123.2 (2)
C23—C22—C31118.6 (2)C44—C45—C46118.4 (2)
C21—C22—C31122.9 (2)C44—C45—H45120.8
C24—C23—C22121.8 (2)C46—C45—H45120.8
C24—C23—H23119.1C41—C46—C45120.5 (2)
C22—C23—H23119.1C41—C46—H46119.8
C25—C24—C23119.5 (2)C45—C46—H46119.8
C11—C1—C2—C3179.9 (2)C24—C25—C26—C211.5 (4)
C1—C2—C3—O18.7 (4)C22—C21—C26—O2178.9 (2)
C1—C2—C3—C21170.7 (2)C3—C21—C26—O21.8 (3)
C2—C1—C11—C164.0 (4)C22—C21—C26—C251.6 (4)
C2—C1—C11—C12175.5 (3)C3—C21—C26—C25175.6 (2)
C16—C11—C12—C131.7 (4)C23—C22—C31—C3643.5 (3)
C1—C11—C12—C13177.8 (2)C21—C22—C31—C36137.3 (2)
C16—C11—C12—Cl1178.4 (2)C23—C22—C31—C32135.0 (2)
C1—C11—C12—Cl12.0 (3)C21—C22—C31—C3244.2 (3)
C11—C12—C13—C140.4 (4)C36—C31—C32—C331.9 (4)
Cl1—C12—C13—C14179.5 (2)C22—C31—C32—C33179.6 (2)
C12—C13—C14—C152.0 (4)C31—C32—C33—C340.8 (4)
C13—C14—C15—C161.6 (4)C32—C33—C34—F1178.9 (2)
C14—C15—C16—C110.7 (5)C32—C33—C34—C351.0 (4)
C12—C11—C16—C152.3 (4)F1—C34—C35—C36178.4 (2)
C1—C11—C16—C15177.3 (3)C33—C34—C35—C361.5 (4)
O1—C3—C21—C26122.1 (3)C34—C35—C36—C310.2 (4)
C2—C3—C21—C2657.3 (3)C32—C31—C36—C351.4 (4)
O1—C3—C21—C2254.9 (3)C22—C31—C36—C35180.0 (2)
C2—C3—C21—C22125.6 (3)C25—C24—C41—C42134.0 (3)
C26—C21—C22—C230.3 (3)C23—C24—C41—C4248.6 (3)
C3—C21—C22—C23176.7 (2)C25—C24—C41—C4648.7 (3)
C26—C21—C22—C31178.9 (2)C23—C24—C41—C46128.6 (3)
C3—C21—C22—C314.1 (4)C46—C41—C42—C430.4 (4)
C21—C22—C23—C241.1 (4)C24—C41—C42—C43176.8 (2)
C31—C22—C23—C24179.7 (2)C41—C42—C43—C440.7 (4)
C22—C23—C24—C251.3 (4)C42—C43—C44—F2178.4 (2)
C22—C23—C24—C41176.1 (2)C42—C43—C44—C451.0 (4)
C23—C24—C25—C260.0 (4)F2—C44—C45—C46179.3 (2)
C41—C24—C25—C26177.4 (2)C43—C44—C45—C460.1 (4)
C4—O2—C26—C2513.5 (4)C42—C41—C46—C451.4 (4)
C4—O2—C26—C21169.2 (2)C24—C41—C46—C45175.9 (2)
C24—C25—C26—O2178.5 (2)C44—C45—C46—C411.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···Cl1i0.952.733.641 (2)161
C33—H33···Cl1ii0.952.763.697 (3)170
C43—H43···O1i0.952.543.411 (3)153
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H19ClF2O2
Mr460.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.2065 (7), 6.8651 (3), 22.4817 (11)
β (°) 101.406 (2)
V3)2149.32 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.918, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
17828, 5318, 3817
Rint0.051
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.141, 1.07
No. of reflections5318
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···Cl1i0.952.733.641 (2)161
C33—H33···Cl1ii0.952.763.697 (3)170
C43—H43···O1i0.952.543.411 (3)153
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through SAP and BSR one-time grants for the purchase of chemicals. SS thanks Mangalore University for the research facilities.

References

First citationAstrue, D. (2002). In Modern Arene Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2996–o2997.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o3181–o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011c). Acta Cryst. E67, o3179–o3180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011d). Acta Cryst. E67, o3159–o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011e). Acta Cryst. E67, o3323–o3324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, J. K. (2006). Chem. Rev. 106, 2209–2223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Molbank, M745.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1538-o1539
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds