organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1542

4′-tert-Butyl-5-chloro-3H-spiro­[1,3-benzo­thia­zole-2,1′-cyclo­hexa­ne]

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazıt, Istanbul, Turkey, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 April 2012; accepted 19 April 2012; online 28 April 2012)

In the title compound, C16H22ClNS, the nine-membered 2,3-dihydro-1,3-benzothia­zole ring system is essentially planar, with a maximum deviation of 0.025 (2) Å for the N atom. Its plane is almost perpendicular to the main plane of the substituted cyclo­hexane ring, which adopts a chair conformation. In the crystal, the molecules are linked by C—H⋯π inter­actions.

Related literature

For the pharmacological activity of benzothia­zole derivatives, see: Coudert et al. (1988[Coudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258-262.]); Karalı et al. (2010[Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068-1077.]); Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For the crystal structures of similar compounds, see, for example: Akkurt et al. (2010[Akkurt, M., Karaca, S., Ermut, G., Karalı, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o399-o400.]); Aryai et al. (1976[Aryai, V. P., Nair, M. G., Wasaiwalla, Y. H. & Shenoy, S. J. (1976). Indian J. Chem. Sect. B, 14, 984-987.]); Karalı et al. (2010[Karalı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068-1077.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of ring-puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22ClNS

  • Mr = 295.87

  • Monoclinic, P 21 /c

  • a = 15.2810 (18) Å

  • b = 8.9830 (8) Å

  • c = 11.8750 (13) Å

  • β = 109.580 (3)°

  • V = 1535.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 296 K

  • 0.27 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.935

  • 14074 measured reflections

  • 3849 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.128

  • S = 1.02

  • 3849 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg1i 0.97 2.84 3.796 (2) 169
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The condensation of aldehydes and ketones with 2-aminothiophenoles lead to benzothiazolines and spirobenzothiazolines which are reported to exhibit antitubercular (Palmer et al., 1971), analgesic (Coudert et al., 1988) and antioxidant (Karalı et al., 2010) properties. The reactivity of cyclic ketones towards 2-aminothiophenoles has also been examined and the structure of the end products has been discussed (Aryai et al., 1976; Coudert et al., 1988; Akkurt et al., 2010; Karalı et al., 2010). Prompted by the above observations, we report here the synthesis, spectroscopic and crystal structure of the title compound.

As shown in Fig. 1, the C7—C12 cyclohexane ring of the title compound adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): QT = 0.564 (2) Å, θ = 176.5 (2) ° and ϕ = 4(4) °]. The mean plane of the 2,3-dihydro-1,3-benzothiazole ring system [max. deviation: -0.025 (2) Å for N1] is almost perpendicular with a dihedral angle of 89.39 (5) ° to the main plane formed by the C8,C9, C11 and C12 atoms of the cyclohexane ring. The bond lengths (Allen et al., 1987) and bond angles are within the expected values.

The crystal packing is stabilized by C—H···π interactions (Table 1 and Fig. 2).

Related literature top

For the pharmacological activity of benzothiazole derivatives, see: Coudert et al. (1988); Karalı et al. (2010); Palmer et al. (1971). For the crystal structures of similar compounds, see, for example: Akkurt et al. (2010); Aryai et al. (1976); Karalı et al. (2010). For standard values of bond lengths, see: Allen et al. (1987). For details of ring-puckering analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 2-amino-4-chlorothiophenol (0.01 mol) and 4-tert-butylcyclohexanone (0.01 mol) in absolute ethanol (50 ml) was refluxed on a water bath for 8 h. The solvent was evaporated in a crystallizing dish at room temperature and the residue was recrystallized twice from ethanol, giving X-ray quality crystals [Yield: 24.3%, m.p.: 453–455 K]. Analysis calculated for C16H22ClNS: C 64.95, H 7.49, N 4.73%. Found: C 64.91, H 7.47, N 4.64%. Spectroscopic data for the title compound are given in the archive CIF.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. C-bound H atoms were placed in calculated positions and treated as riding atoms : C—H = 0.93, 0.96, 0.97 and 0.98 Å, for the aromatic, methyl, methylene and methine H atoms, respectively, with Uiso(H) = xUeq(C), x = 1.5 for methyl H atoms and = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewing along b axis [H atoms have been omitted for clarity].
4'-tert-Butyl-5-chloro-3H-spiro[1,3-benzothiazole-2,1'- cyclohexane] top
Crystal data top
C16H22ClNSF(000) = 632
Mr = 295.87Dx = 1.280 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 776 reflections
a = 15.2810 (18) Åθ = 3.3–19.5°
b = 8.9830 (8) ŵ = 0.37 mm1
c = 11.8750 (13) ÅT = 296 K
β = 109.580 (3)°Prism, colourless
V = 1535.8 (3) Å30.27 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3849 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.915, Tmax = 0.935k = 1110
14074 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2285P]
where P = (Fo2 + 2Fc2)/3
3849 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C16H22ClNSV = 1535.8 (3) Å3
Mr = 295.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2810 (18) ŵ = 0.37 mm1
b = 8.9830 (8) ÅT = 296 K
c = 11.8750 (13) Å0.27 × 0.20 × 0.18 mm
β = 109.580 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2330 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.935Rint = 0.043
14074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
3849 reflectionsΔρmin = 0.24 e Å3
179 parameters
Special details top

Experimental. Spectroscopic data for the title compound: IR (KBr) ν = 3370 (N—H), 2962, 2912, 2862 (C—H), 1585, 1571, 1473, 1442 (C=C) cm-1; 1H-NMR (DMSO-d6, 500 MHz) d= 0.83–0.86 (9H, m, 4'-C(CH3)3-cyc.), 0.95–1.02 (1H, m, CH/CH2-cyc.), 1.09–1.36 (2H, m, CH/CH2-cyc.), 1.58–1.72 (4H, m, CH/CH2-cyc.), 2.15–2.22 (2H, m, CH/CH2-cyc.), 6.40, 6.47 (1H, 2 d, J=2.0 Hz, H4-bt.), 6.50 (1H, dd, J=8.1, 2.0 Hz, H6-bt.), 6.90 (1H, d, J=7.8 Hz, H7-bt.), 6.73, 6.97 (1H, 2 s, NH) p.p.m. (cyc.=cyclohexane, bt.=benzothiazole).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35486 (5)0.80459 (8)0.13722 (7)0.0761 (3)
S10.02827 (4)0.69814 (6)0.07426 (5)0.0503 (2)
N10.00626 (14)0.8895 (2)0.2213 (2)0.0628 (8)
C10.08493 (14)0.7159 (2)0.07911 (17)0.0369 (7)
C20.16334 (16)0.6409 (2)0.0125 (2)0.0474 (8)
C30.24750 (16)0.6684 (2)0.0286 (2)0.0515 (8)
C40.25028 (16)0.7710 (2)0.1132 (2)0.0469 (8)
C50.17272 (16)0.8482 (2)0.1807 (2)0.0447 (7)
C60.08920 (15)0.8210 (2)0.16337 (18)0.0390 (7)
C70.07535 (15)0.8422 (2)0.1936 (2)0.0442 (7)
C80.11774 (16)0.9705 (2)0.1463 (2)0.0519 (8)
C90.20566 (15)0.9285 (2)0.1218 (2)0.0500 (8)
C100.27931 (14)0.8647 (2)0.23261 (18)0.0408 (7)
C110.23620 (15)0.7316 (2)0.27578 (19)0.0438 (7)
C120.14820 (15)0.7730 (2)0.30136 (19)0.0467 (8)
C130.37389 (16)0.8291 (2)0.2176 (2)0.0509 (8)
C140.4048 (2)0.9596 (3)0.1572 (3)0.0845 (14)
C150.44715 (18)0.8047 (3)0.3408 (2)0.0800 (11)
C160.36933 (18)0.6896 (3)0.1415 (2)0.0651 (10)
H1N0.0005 (17)0.955 (2)0.2742 (16)0.070 (8)*
H20.160000.571200.043800.0570*
H30.301000.618500.016900.0620*
H50.176500.917500.237000.0540*
H8A0.072401.007000.073000.0620*
H8B0.131601.051000.204100.0620*
H9A0.230401.016000.095200.0600*
H9B0.190900.855500.058100.0600*
H100.291300.941000.295000.0490*
H11A0.221800.654300.215300.0520*
H11B0.281200.691600.347900.0520*
H12A0.122600.684500.325200.0560*
H12B0.163600.842900.367400.0560*
H14A0.467500.943600.159500.1270*
H14B0.401601.050200.198500.1270*
H14C0.364700.966900.075500.1270*
H15A0.506600.787900.332000.1200*
H15B0.430400.719700.378200.1200*
H15C0.450400.891200.389600.1200*
H16A0.319300.699300.067000.0980*
H16B0.359000.603700.183500.0980*
H16C0.426800.678400.126200.0980*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0543 (4)0.0816 (5)0.1046 (6)0.0027 (3)0.0428 (4)0.0018 (4)
S10.0456 (3)0.0510 (4)0.0568 (4)0.0017 (3)0.0203 (3)0.0182 (3)
N10.0467 (12)0.0636 (14)0.0770 (15)0.0030 (10)0.0191 (11)0.0390 (12)
C10.0441 (12)0.0319 (11)0.0363 (11)0.0025 (9)0.0158 (9)0.0017 (8)
C20.0533 (14)0.0404 (12)0.0483 (13)0.0035 (10)0.0168 (11)0.0086 (10)
C30.0460 (14)0.0488 (14)0.0571 (15)0.0096 (11)0.0139 (12)0.0054 (11)
C40.0438 (13)0.0414 (12)0.0586 (15)0.0046 (10)0.0214 (11)0.0072 (10)
C50.0531 (14)0.0361 (11)0.0492 (13)0.0061 (10)0.0229 (11)0.0011 (9)
C60.0455 (13)0.0295 (10)0.0412 (12)0.0022 (9)0.0133 (10)0.0016 (9)
C70.0402 (13)0.0395 (12)0.0517 (13)0.0018 (9)0.0139 (11)0.0117 (10)
C80.0483 (14)0.0382 (12)0.0580 (15)0.0040 (10)0.0030 (11)0.0069 (10)
C90.0518 (14)0.0434 (12)0.0515 (14)0.0031 (10)0.0131 (11)0.0118 (10)
C100.0424 (12)0.0352 (11)0.0411 (12)0.0016 (9)0.0091 (10)0.0016 (9)
C110.0465 (13)0.0404 (12)0.0400 (12)0.0039 (10)0.0087 (10)0.0094 (9)
C120.0554 (15)0.0414 (12)0.0440 (13)0.0032 (10)0.0176 (11)0.0010 (9)
C130.0451 (14)0.0488 (13)0.0572 (15)0.0010 (10)0.0151 (11)0.0043 (11)
C140.070 (2)0.0732 (19)0.126 (3)0.0153 (15)0.0536 (19)0.0001 (18)
C150.0468 (16)0.105 (2)0.077 (2)0.0111 (15)0.0061 (15)0.0186 (16)
C160.0638 (17)0.0669 (16)0.0687 (17)0.0053 (13)0.0278 (14)0.0127 (13)
Geometric parameters (Å, º) top
Cl1—C41.741 (3)C2—H20.9300
S1—C11.757 (2)C3—H30.9300
S1—C71.875 (2)C5—H50.9300
N1—C61.369 (3)C8—H8A0.9700
N1—C71.456 (3)C8—H8B0.9700
N1—H1N0.844 (18)C9—H9A0.9700
C1—C21.371 (3)C9—H9B0.9700
C1—C61.393 (3)C10—H100.9800
C2—C31.384 (4)C11—H11A0.9700
C3—C41.375 (3)C11—H11B0.9700
C4—C51.375 (3)C12—H12A0.9700
C5—C61.381 (3)C12—H12B0.9700
C7—C121.519 (3)C14—H14A0.9600
C7—C81.519 (3)C14—H14B0.9600
C8—C91.515 (3)C14—H14C0.9600
C9—C101.528 (3)C15—H15A0.9600
C10—C131.548 (3)C15—H15B0.9600
C10—C111.534 (3)C15—H15C0.9600
C11—C121.521 (3)C16—H16A0.9600
C13—C151.531 (3)C16—H16B0.9600
C13—C161.533 (3)C16—H16C0.9600
C13—C141.529 (4)
C1—S1—C792.59 (10)C7—C8—H8A109.00
C6—N1—C7118.31 (19)C7—C8—H8B109.00
C6—N1—H1N122.4 (18)C9—C8—H8A109.00
C7—N1—H1N119.2 (18)C9—C8—H8B109.00
C2—C1—C6120.3 (2)H8A—C8—H8B108.00
S1—C1—C6111.63 (16)C8—C9—H9A109.00
S1—C1—C2128.03 (16)C8—C9—H9B109.00
C1—C2—C3120.35 (19)C10—C9—H9A109.00
C2—C3—C4118.6 (2)C10—C9—H9B109.00
Cl1—C4—C3119.39 (19)H9A—C9—H9B108.00
Cl1—C4—C5118.43 (17)C9—C10—H10107.00
C3—C4—C5122.2 (2)C11—C10—H10107.00
C4—C5—C6118.9 (2)C13—C10—H10107.00
C1—C6—C5119.7 (2)C10—C11—H11A109.00
N1—C6—C1114.0 (2)C10—C11—H11B109.00
N1—C6—C5126.29 (19)C12—C11—H11A109.00
S1—C7—N1103.38 (15)C12—C11—H11B109.00
N1—C7—C8111.46 (17)H11A—C11—H11B108.00
S1—C7—C8110.32 (15)C7—C12—H12A109.00
S1—C7—C12109.96 (13)C7—C12—H12B109.00
C8—C7—C12109.82 (19)C11—C12—H12A109.00
N1—C7—C12111.75 (19)C11—C12—H12B109.00
C7—C8—C9113.43 (16)H12A—C12—H12B108.00
C8—C9—C10111.89 (18)C13—C14—H14A110.00
C9—C10—C11107.78 (18)C13—C14—H14B109.00
C9—C10—C13115.16 (18)C13—C14—H14C109.00
C11—C10—C13113.56 (16)H14A—C14—H14B109.00
C10—C11—C12112.56 (16)H14A—C14—H14C109.00
C7—C12—C11112.28 (18)H14B—C14—H14C109.00
C10—C13—C15109.36 (19)C13—C15—H15A110.00
C10—C13—C16112.15 (19)C13—C15—H15B109.00
C14—C13—C16108.1 (2)C13—C15—H15C110.00
C15—C13—C16108.70 (18)H15A—C15—H15B110.00
C14—C13—C15108.4 (2)H15A—C15—H15C109.00
C10—C13—C14110.04 (18)H15B—C15—H15C109.00
C1—C2—H2120.00C13—C16—H16A110.00
C3—C2—H2120.00C13—C16—H16B109.00
C2—C3—H3121.00C13—C16—H16C109.00
C4—C3—H3121.00H16A—C16—H16B109.00
C4—C5—H5121.00H16A—C16—H16C109.00
C6—C5—H5121.00H16B—C16—H16C110.00
C7—S1—C1—C2180.00 (19)C4—C5—C6—N1178.9 (2)
C7—S1—C1—C60.14 (15)C4—C5—C6—C10.5 (3)
C1—S1—C7—N11.11 (14)S1—C7—C8—C968.5 (2)
C1—S1—C7—C8120.40 (16)N1—C7—C8—C9177.21 (19)
C1—S1—C7—C12118.33 (16)C12—C7—C8—C952.8 (2)
C6—N1—C7—S12.3 (2)S1—C7—C12—C1169.25 (19)
C6—N1—C7—C8120.8 (2)N1—C7—C12—C11176.55 (16)
C6—N1—C7—C12115.9 (2)C8—C7—C12—C1152.3 (2)
C7—N1—C6—C12.6 (3)C7—C8—C9—C1056.6 (2)
C7—N1—C6—C5178.01 (19)C8—C9—C10—C1156.2 (2)
S1—C1—C2—C3179.60 (16)C8—C9—C10—C13175.93 (15)
C6—C1—C2—C30.3 (3)C9—C10—C11—C1256.7 (2)
S1—C1—C6—N11.5 (2)C13—C10—C11—C12174.45 (17)
S1—C1—C6—C5179.09 (15)C9—C10—C13—C1446.7 (2)
C2—C1—C6—N1178.61 (18)C9—C10—C13—C15165.71 (17)
C2—C1—C6—C50.8 (3)C9—C10—C13—C1673.6 (2)
C1—C2—C3—C40.6 (3)C11—C10—C13—C14171.7 (2)
C2—C3—C4—C50.9 (3)C11—C10—C13—C1569.4 (2)
C2—C3—C4—Cl1178.66 (16)C11—C10—C13—C1651.3 (2)
Cl1—C4—C5—C6179.20 (15)C10—C11—C12—C756.6 (2)
C3—C4—C5—C60.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg1i0.972.843.796 (2)169
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H22ClNS
Mr295.87
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)15.2810 (18), 8.9830 (8), 11.8750 (13)
β (°) 109.580 (3)
V3)1535.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.27 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
14074, 3849, 2330
Rint0.043
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.128, 1.02
No. of reflections3849
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg1i0.972.843.796 (2)169
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationAkkurt, M., Karaca, S., Ermut, G., Karalı, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o399–o400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAryai, V. P., Nair, M. G., Wasaiwalla, Y. H. & Shenoy, S. J. (1976). Indian J. Chem. Sect. B, 14, 984–987.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoudert, P., Couquelet, J., Sudre, O. & Bastide, J. (1988). J. Pharm. Belg. 43, 258–262.  CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaralı, N., Güzel, Ö., Özsoy, N., Özbey, S. & Salman, A. (2010). Eur. J. Med. Chem. 45, 1068–1077.  Web of Science PubMed Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds