metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m580-m581

Bis[μ-N-(2-oxido­benzyl­­idene)pyridine-2-carbohydrazidato]bis­­[chlorido(methanol-κO)erbium(III)]

aCollege of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yanghua7687@163.com

(Received 16 March 2012; accepted 31 March 2012; online 13 April 2012)

In the binuclear title complex, [Er2(C13H9N3O2)2Cl2(CH3OH)2], the entire mol­ecule is generated by the application of inversion symmetry. Each ErIII ion is seven-coordinated by two O atoms and one N atom from one N-(2-oxidobenzyl­idene)pyridine-2-carbohydrazidate (L2−) ligand, one O atom and one N atom from the symmetry-related L2− ligand, one O atom of a methanol mol­ecule and one chloride anion. The coordination geometry is based on a pseudo-penta­gonal bipyramid. Linear supra­molecular chains along [010] are formed in the crystal packing through O—H⋯Cl hydrogen bonds.

Related literature

For complexes containing salicyl­aldehyde-2-pyridine­carboxyl-hydrazone and related ligands, see: Guo et al. (2011a[Guo, Y. N., Chen, X. H., Xue, S. F. & Tang, J. K. (2011a). Inorg. Chem. 50, 9705-9713.],b[Guo, Y. N., Xu, G. F., Wernsdorfer, W., Ungur, L., Guo, Y., Tang, J. K., Zhang, H. J., Chibotaru, L. F. & Powell, A. K. (2011b). J. Am. Chem. Soc. 133, 11948-11951.]); Bai et al. (2005[Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972-5974.], 2006[Bai, Y., Dang, D. B., Cao, X., Duan, C. Y. & Meng, Q. J. (2006). Inorg. Chem. Commun. 9, 86-89.]); Wu et al. (2004[Wu, W. S., Feng, Y. L., Lan, X. R. & Huang, T. T. (2004). Chin. J. Appl. Chem. 21, 135-139.]); Milway et al. (2003[Milway, V. A., Zhao, L., Abedin, T. S. M., Thompson, L. K. & Xu, Z. Q. (2003). Polyhedron, 22, 1271-1279.]). For the mechanism of the hydrolysis of salicyl­aldehyde thio­semicarbazone, see: Narang & Aggarwal (1974[Narang, K. K. & Aggarwal, A. (1974). Inorg. Chim. Acta, 9, 137-142.]).

[Scheme 1]

Experimental

Crystal data
  • [Er2(C13H9N3O2)2Cl2(CH4O)2]

  • Mr = 947.97

  • Monoclinic, P 21 /c

  • a = 9.5810 (4) Å

  • b = 7.0906 (3) Å

  • c = 22.3504 (8) Å

  • β = 96.920 (3)°

  • V = 1507.31 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.76 mm−1

  • T = 128 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.479, Tmax = 0.545

  • 14182 measured reflections

  • 3732 independent reflections

  • 2931 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.059

  • S = 0.99

  • 3732 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O1 2.157 (3)
Er1—O2i 2.284 (3)
Er1—O2 2.316 (3)
Er1—O3 2.327 (3)
Er1—N3 2.433 (3)
Er1—N1 2.488 (3)
Er1—Cl1 2.5901 (12)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H7⋯Cl1ii 0.95 2.42 3.128 (4) 131
Symmetry code: (ii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of coordination complexes supported by salicylaldehyde-2-pyridinecarboxyl-hydrazone (H2L) and its derivatives has received intensive attention as these form coordination complexes with aesthetically pleasing structures and intriguing magnetic behaviour (Guo et al., 2011a,b). A handful of transition metal complexes based on the H2L ligand have been prepared (Bai et al., 2005; Wu et al., 2004; Bai et al., 2006; Milway et al., 2003), but no complex containing rare earth elements has been reported to date. Herein, we report the structure of a new dinuclear ErIII complex (Scheme 1). The complex was synthesized by the 2:1:1 reaction of ErCl3.6H2O/α-pyridoin/salicylaldehyde thiosemicarbazone under solvothermal conditions. The X-ray analysis reveals that the centrosymmetric complex consists of two ErIII ions, two L2- ligands, two Cl- ions and two methanol molecules, Fig. 1 and Table 1. The intermolecular O—H···Cl hydrogen bonds, Table 2, lead to linear supramolecular chains along [010] (Fig. 2).

The remarkable structural feature of the complex is the presence of the in situ formed H2L ligand, which was proposed to be constructed by the reaction of picolinic acid, hydrazine and salicylaldehyde. The picolinic acid was assumed to be derived from the hydrolysis of α-pyridoin, and hydrazine and salicylaldehyde were believed to be originated from the hydrolysis of salicylaldehyde thiosemicarbazone (Narang & Aggarwal, 1974).

Related literature top

For complexes containing salicylaldehyde-2-pyridinecarboxyl-hydrazone and related ligands, see: Guo et al. (2011a,b); Bai et al. (2005, 2006); Wu et al. (2004); Milway et al. (2003). For the mechanism of the hydrolysis of salicylaldehyde thiosemicarbazone, see: Narang & Aggarwal (1974).

Experimental top

A mixture of ErCl3.6H2O (0.0762 g, 0.2 mmol), α-pyridoin (0.0214 g, 0.1 mmol), salicylaldehyde thiosemicarbazone (0.0390 g, 0.2 mmol) and CH3OH (2 ml) was sealed in a 6 ml Pyrex-tube. The tube was heated at 393 K for 3 days under autogenous pressure. Cooling of the resultant solution to room temperature gave yellow crystals. The crystals were collected by filtration, washed with CH3OH (2 ml) and dried in air.

Refinement top

The H atoms were placed in calculated positions with O—H = 0.95 Å and C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the linear supramolecular chain along [010] with the O—H···Cl hydrogen bonds shown as dashed lines.
Bis[µ-N-(2-oxidobenzylidene)pyridine-2- carbohydrazidato]bis[chlorido(methanol-κO)erbium(III)] top
Crystal data top
[Er2(C13H9N3O2)2Cl2(CH4O)2]F(000) = 908
Mr = 947.97Dx = 2.089 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4466 reflections
a = 9.5810 (4) Åθ = 2.7–28.1°
b = 7.0906 (3) ŵ = 5.76 mm1
c = 22.3504 (8) ÅT = 128 K
β = 96.920 (3)°Block, yellow
V = 1507.31 (10) Å30.15 × 0.13 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3732 independent reflections
Radiation source: fine-focus sealed tube2931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ scans and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker 2000)
h = 1211
Tmin = 0.479, Tmax = 0.545k = 99
14182 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
3732 reflections(Δ/σ)max = 0.004
200 parametersΔρmax = 1.25 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Er2(C13H9N3O2)2Cl2(CH4O)2]V = 1507.31 (10) Å3
Mr = 947.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5810 (4) ŵ = 5.76 mm1
b = 7.0906 (3) ÅT = 128 K
c = 22.3504 (8) Å0.15 × 0.13 × 0.12 mm
β = 96.920 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2000)
2931 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.545Rint = 0.040
14182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 0.99Δρmax = 1.25 e Å3
3732 reflectionsΔρmin = 0.71 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.372121 (17)0.91591 (3)0.432040 (7)0.02740 (6)
O20.5836 (3)1.0615 (4)0.46548 (11)0.0323 (6)
O30.2988 (3)1.2290 (5)0.42893 (15)0.0526 (8)
H70.35911.31500.45210.063*
C50.6425 (4)1.0757 (5)0.36561 (16)0.0289 (8)
Cl10.48595 (13)0.58790 (16)0.42195 (5)0.0476 (3)
N10.5108 (3)1.0104 (5)0.34970 (14)0.0282 (7)
O10.1993 (3)0.8698 (4)0.36235 (12)0.0386 (7)
C140.0511 (4)0.7742 (6)0.46482 (18)0.0366 (9)
H140.01220.74980.49350.044*
C80.0727 (4)0.7952 (5)0.35398 (17)0.0306 (9)
C60.6814 (4)1.1036 (5)0.43082 (17)0.0287 (8)
N30.1753 (3)0.8294 (5)0.48577 (14)0.0308 (7)
N40.8066 (3)1.1581 (5)0.45048 (14)0.0344 (8)
C10.4695 (4)0.9753 (6)0.29156 (18)0.0343 (9)
H10.37650.93090.28020.041*
C40.7340 (4)1.1077 (6)0.32293 (18)0.0373 (10)
H40.82571.15590.33470.045*
C100.1348 (5)0.6619 (7)0.3905 (2)0.0435 (11)
H100.18580.63130.42300.052*
C120.1223 (5)0.6715 (7)0.2860 (2)0.0440 (11)
H120.16250.64470.24590.053*
C90.0018 (4)0.7457 (6)0.40305 (17)0.0332 (8)
C30.6899 (5)1.0688 (6)0.26356 (19)0.0413 (10)
H30.75131.08860.23380.050*
C130.0074 (4)0.7590 (6)0.29574 (18)0.0366 (9)
H130.05320.79540.26210.044*
C20.5561 (5)1.0008 (7)0.24736 (18)0.0393 (10)
H20.52410.97210.20650.047*
C110.1934 (5)0.6230 (7)0.3332 (2)0.0499 (12)
H110.28250.56290.32620.060*
C70.1756 (6)1.3080 (8)0.3970 (3)0.0722 (17)
H7A0.10781.20750.38500.108*
H7B0.20001.37280.36090.108*
H7C0.13411.39850.42290.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02276 (9)0.03156 (11)0.02796 (10)0.00645 (8)0.00334 (6)0.00213 (8)
O20.0269 (13)0.0435 (18)0.0273 (14)0.0087 (12)0.0062 (10)0.0013 (12)
O30.0461 (19)0.0366 (19)0.073 (2)0.0010 (15)0.0021 (15)0.0050 (17)
C50.0294 (18)0.027 (2)0.0304 (19)0.0045 (16)0.0041 (15)0.0008 (17)
Cl10.0544 (7)0.0371 (6)0.0535 (7)0.0029 (5)0.0145 (5)0.0048 (5)
N10.0286 (16)0.0276 (17)0.0285 (17)0.0043 (13)0.0038 (13)0.0008 (14)
O10.0266 (14)0.054 (2)0.0347 (16)0.0102 (13)0.0012 (11)0.0015 (13)
C140.0283 (19)0.042 (3)0.040 (2)0.0070 (18)0.0065 (16)0.003 (2)
C80.0251 (18)0.032 (2)0.034 (2)0.0003 (15)0.0017 (15)0.0056 (17)
C60.0285 (19)0.031 (2)0.0273 (19)0.0042 (16)0.0040 (14)0.0006 (16)
N30.0264 (16)0.0361 (19)0.0299 (17)0.0075 (14)0.0033 (13)0.0026 (14)
N40.0288 (17)0.046 (2)0.0289 (18)0.0093 (15)0.0066 (14)0.0029 (15)
C10.035 (2)0.038 (3)0.029 (2)0.0038 (17)0.0004 (16)0.0010 (18)
C40.032 (2)0.045 (3)0.035 (2)0.0083 (19)0.0059 (16)0.003 (2)
C100.035 (2)0.048 (3)0.046 (3)0.012 (2)0.0013 (19)0.002 (2)
C120.036 (2)0.047 (3)0.046 (3)0.003 (2)0.0083 (19)0.011 (2)
C90.0263 (18)0.036 (2)0.036 (2)0.0036 (18)0.0003 (15)0.0054 (19)
C30.041 (2)0.049 (3)0.036 (2)0.002 (2)0.0135 (18)0.005 (2)
C130.033 (2)0.040 (2)0.036 (2)0.0003 (19)0.0012 (16)0.006 (2)
C20.044 (2)0.047 (3)0.026 (2)0.000 (2)0.0002 (18)0.0001 (19)
C110.037 (2)0.050 (3)0.060 (3)0.018 (2)0.007 (2)0.005 (2)
C70.069 (4)0.058 (4)0.088 (4)0.019 (3)0.003 (3)0.013 (3)
Geometric parameters (Å, º) top
Er1—O12.157 (3)C6—N41.286 (5)
Er1—O2i2.284 (3)N3—N4i1.417 (4)
Er1—O22.316 (3)N4—N3i1.417 (4)
Er1—O32.327 (3)C1—C21.376 (6)
Er1—N32.433 (3)C1—H10.9500
Er1—N12.488 (3)C4—C31.371 (6)
Er1—Cl12.5901 (12)C4—H40.9500
O2—C61.320 (4)C10—C111.362 (6)
O2—Er1i2.284 (3)C10—C91.403 (5)
O3—C71.419 (6)C10—H100.9500
O3—H70.9500C12—C111.369 (7)
C5—N11.351 (5)C12—C131.382 (6)
C5—C41.390 (5)C12—H120.9500
C5—C61.474 (5)C3—C21.377 (6)
N1—C11.335 (5)C3—H30.9500
O1—C81.316 (4)C13—H130.9500
C14—N31.286 (5)C2—H20.9500
C14—C91.427 (5)C11—H110.9500
C14—H140.9500C7—H7A0.9800
C8—C131.398 (5)C7—H7B0.9800
C8—C91.423 (5)C7—H7C0.9800
O1—Er1—O2i140.21 (10)O1—C8—C13120.5 (4)
O1—Er1—O2149.99 (10)O1—C8—C9122.0 (3)
O2i—Er1—O266.16 (10)C13—C8—C9117.5 (3)
O1—Er1—O385.42 (12)N4—C6—O2124.5 (3)
O2i—Er1—O388.97 (11)N4—C6—C5119.5 (3)
O2—Er1—O380.42 (11)O2—C6—C5115.9 (3)
O1—Er1—N375.24 (10)C14—N3—N4i112.4 (3)
O2i—Er1—N365.42 (10)C14—N3—Er1129.4 (3)
O2—Er1—N3130.77 (10)N4i—N3—Er1118.2 (2)
O3—Er1—N390.34 (11)C6—N4—N3i111.0 (3)
O1—Er1—N186.47 (10)N1—C1—C2122.7 (4)
O2i—Er1—N1132.20 (10)N1—C1—H1118.6
O2—Er1—N166.06 (9)C2—C1—H1118.6
O3—Er1—N184.69 (11)C3—C4—C5119.0 (4)
N3—Er1—N1161.38 (11)C3—C4—H4120.5
O1—Er1—Cl195.50 (9)C5—C4—H4120.5
O2i—Er1—Cl196.94 (7)C11—C10—C9122.4 (4)
O2—Er1—Cl193.86 (7)C11—C10—H10118.8
O3—Er1—Cl1169.37 (9)C9—C10—H10118.8
N3—Er1—Cl1100.15 (8)C11—C12—C13120.8 (4)
N1—Er1—Cl184.80 (8)C11—C12—H12119.6
O1—Er1—Er1i167.32 (8)C13—C12—H12119.6
O2i—Er1—Er1i33.34 (6)C10—C9—C8118.5 (4)
O2—Er1—Er1i32.82 (6)C10—C9—C14117.5 (4)
O3—Er1—Er1i83.65 (8)C8—C9—C14123.9 (3)
N3—Er1—Er1i98.39 (7)C4—C3—C2119.6 (4)
N1—Er1—Er1i98.87 (7)C4—C3—H3120.2
Cl1—Er1—Er1i96.43 (3)C2—C3—H3120.2
C6—O2—Er1i120.9 (2)C12—C13—C8121.5 (4)
C6—O2—Er1124.5 (2)C12—C13—H13119.3
Er1i—O2—Er1113.84 (10)C8—C13—H13119.3
C7—O3—Er1128.4 (3)C1—C2—C3118.7 (4)
C7—O3—H7115.8C1—C2—H2120.7
Er1—O3—H7115.8C3—C2—H2120.7
N1—C5—C4121.5 (4)C10—C11—C12119.2 (4)
N1—C5—C6115.0 (3)C10—C11—H11120.4
C4—C5—C6123.5 (3)C12—C11—H11120.4
C1—N1—C5118.5 (3)O3—C7—H7A109.5
C1—N1—Er1123.2 (3)O3—C7—H7B109.5
C5—N1—Er1117.6 (2)H7A—C7—H7B109.5
C8—O1—Er1141.0 (2)O3—C7—H7C109.5
N3—C14—C9126.9 (4)H7A—C7—H7C109.5
N3—C14—H14116.5H7B—C7—H7C109.5
C9—C14—H14116.5
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H7···Cl1ii0.952.423.128 (4)131
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Er2(C13H9N3O2)2Cl2(CH4O)2]
Mr947.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)128
a, b, c (Å)9.5810 (4), 7.0906 (3), 22.3504 (8)
β (°) 96.920 (3)
V3)1507.31 (10)
Z2
Radiation typeMo Kα
µ (mm1)5.76
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2000)
Tmin, Tmax0.479, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
14182, 3732, 2931
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 0.99
No. of reflections3732
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.25, 0.71

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O12.157 (3)Er1—N32.433 (3)
Er1—O2i2.284 (3)Er1—N12.488 (3)
Er1—O22.316 (3)Er1—Cl12.5901 (12)
Er1—O32.327 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H7···Cl1ii0.952.423.128 (4)131
Symmetry code: (ii) x, y+1, z.
 

Acknowledgements

The author appreciates financial support from Yanan University (grant No. YD2011–20) and the Science and Technology Bureau of Yanan City (grant No. kn2009–16).

References

First citationBai, Y., Dang, D. B., Cao, X., Duan, C. Y. & Meng, Q. J. (2006). Inorg. Chem. Commun. 9, 86–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationBai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972–5974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y. N., Chen, X. H., Xue, S. F. & Tang, J. K. (2011a). Inorg. Chem. 50, 9705–9713.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuo, Y. N., Xu, G. F., Wernsdorfer, W., Ungur, L., Guo, Y., Tang, J. K., Zhang, H. J., Chibotaru, L. F. & Powell, A. K. (2011b). J. Am. Chem. Soc. 133, 11948–11951.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMilway, V. A., Zhao, L., Abedin, T. S. M., Thompson, L. K. & Xu, Z. Q. (2003). Polyhedron, 22, 1271–1279.  Web of Science CSD CrossRef CAS Google Scholar
First citationNarang, K. K. & Aggarwal, A. (1974). Inorg. Chim. Acta, 9, 137–142.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. S., Feng, Y. L., Lan, X. R. & Huang, T. T. (2004). Chin. J. Appl. Chem. 21, 135–139.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m580-m581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds