organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1355

N-(2-{[7-(2-Anilinoeth­­oxy)-3,6-di­bromo­naphthalen-2-yl]­­oxy}eth­yl)aniline

aCollege of Biology and Chemical Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, People's Republic of China, and bSchool of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
*Correspondence e-mail: zongqs@iccas.ac.cn

(Received 23 March 2012; accepted 4 April 2012; online 13 April 2012)

In the title compound, C26H24Br2N2O2, the central naphthalene system carries two Br atoms and two –CH2CH2NHC6H5 substituents. The phenyl rings of the latter residues are inclined at 74.17 (17) and 51.4 (2)° with respect to the naphthalene ring system. Each alkyl chain adopts a fully extended all-cis conformation with respect to the naphthalene and phenyl rings [N—C—C—O torsion angles = 68.6 (4) and 60.5 (4)°]. In the crystal, one of the N—H groups forms bifurcated N—H⋯(Br,O) hydrogen bonds, which link the mol­ecules into inversion-related dimers. The centrosymmetric dimers are aggregated via pairs of C—H⋯π inter­actions into sheets parallel to (110).

Related literature

For background information on applications of open-chain crown ethers in extraction and analysis, see: Zhang et al. (2002[Zhang, Y. L., Qin, W. W., Liu, W. S., Tan, M. Y. & Tang, N. (2002). Spectrochim. Acta Part A, 58, 2153-2157.]); Qin et al. (2003[Qin, W. W., Zhnag, Y. L., Liu, W. S. & Tan, M. Y. (2003). Spectrochim. Acta Part A, 59, 3085-3092.]); Tan et al. (1986[Tan, G. Z., Xu, J. Z. & Jiao, T. Q. (1986). Chin. J. Org. Chem. 2, 143-145.]); Chandan, Ved & Kumar (2008[Chandan, S., Ved, P. V. & Kumar, P. S. (2008). PCT Int. Appl. 2008099415.]). For related structures, see: Chandan, Ved, Niraj et al. (2008[Chandan, S., Ved, P. V., Niraj, K. N., Ajit, S. S., Mohammad, H. & Sunil, K. P. (2008). J. Med. Chem. 51, 1313-1315.]); Liou et al. (2011[Liou, G. S., Lin, P. H., Yen, H. J., Yu, Y. Y. & Chen, W. C. (2011). J. Poly. Sci. Part A, 48, 1433-1440.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24Br2N2O2

  • Mr = 556.29

  • Triclinic, [P \overline 1]

  • a = 9.588 (3) Å

  • b = 10.898 (3) Å

  • c = 13.060 (4) Å

  • α = 103.190 (4)°

  • β = 93.953 (4)°

  • γ = 115.622 (5)°

  • V = 1176.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.47 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.439, Tmax = 0.659

  • 9333 measured reflections

  • 4156 independent reflections

  • 2712 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.088

  • S = 1.08

  • 4156 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H27⋯Br1i 0.86 3.03 3.705 (4) 137
N1—H27⋯O2i 0.86 2.53 3.349 (4) 160
C5—H5⋯Cg2ii 0.93 2.81 3.626 (5) 147
C15—H15⋯Cg1iii 0.93 2.86 3.782 (4) 175
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x-1, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Open-chain crown ethers are flexible ligands which offer many advantages in extraction and analysis (ion-selective electrodes) of the rare earth ions (Zhang et al., 2002; Qin et al., 2003; Chandan, Ved, Kumar, 2008; Liou et al., 2011). With suitable substitution at the terminal groups, these molecules can recognize anions or cations and may can also form stable complexes with them (Chandan, Ved, Niraj et al., 2008). In particular, the open-chain crown ethers containing amide groups possess suitable molecular structure for this chemistry: a chain with inflexible terminal groups. Therefore, they are excellent reagents for activating ion-selective electrodes and for extraction of rare earth ions (Tan et al., 1986). In the present work, we designed and synthesized a new and doubly functionalised open-chain crown ether ligand with terminal phenylamine groups, and its crystal structure was determined by X-ray diffraction methods.

As shown in Fig. 1, the naphthalene ring of the molecule contains two —CH2CH2NHC6H5 residues and two bromo atoms. The N2-containing —CH2CH2NHC6H5 residue is nearly planar with a maximum deviation of 0.065 (9) Å [for atom C23] from the mean plane of its constituent atoms. However, the other residue [having the N1 atom] is less planar with a maximum deviation of 0.18 (6) Å for the C26 atom. The naphthalene ring system (C7-C16) is oriented with respect to the phenyl rings of the N1- and N2- residues at 74.17 (17) and 51.4 (2)°, respectively; the dihedral angle between the terminal phenyl rings is 56.4 (2)°. Both alkyl chains adopt the same fully extended all-cis conformation with respect to the naphthalene and phenyl rings [torsion angle: C7–O1–C26–C25 = 172.5 (3), O1–C26–C25–N1 = 68.6 (4), C4–N1–C25–C26 = -165.2 (3), C24–C23–N2–C22 = 179.3 (3), N2–C23–C24–O2 = 60.5 (4), C11–O2–C24–C23 = -177.4 (3)°]. In the crystal, only one of the two N—H groups forms hydrogen bonds. The N1—H27 atom is in fact bifurcated forming N—H···Br and N—H···O hydrogen bonds. These link the molecules into centrosymmetric dimers (Fig. 2 and Table 1). These centrosymmetric dimers are further aggregated via pairs of C—H···π interactions into two-dimensional sheets parallel to (1 1 0) (Fig. 3).

Related literature top

For background information on applications of open-chain crown ethers in extraction and analysis, see: Zhang et al. (2002); Qin et al. (2003); Tan et al. (1986); Chandan, Ved & Kumar (2008). For related structures, see: Chandan, Ved, Niraj et al. (2008); Liou et al. (2011).

Experimental top

To a 50 mL two-necked round-bottom flask equipped with a magnetic stirring bar, a thermometer and a dropping funnel was added 3,6-dibromo-2,7-di((N-phenylacetamide)oxy)naphthalene (1.20 g, 2 mmol), sodium borohydride (0.8 g, 22 mmol) and anhydrous tetrahydrofuran (20 mL). The mixture was cooled to 273 K and boron trifluoride etherate (48 %, 4 mL) was added drop-wise via a dropping funnel, while maintaining the temperature at 273 K. After complete addition, the reaction mixture was stirred for one additional hour at 273 K to allow completion of the reaction and then was quenched by drop-wise addition of aqueous NaOH (1 M, 10 mL) while keeping the temperature below 278 K. The tetrahydrofuran was removed under under reduced pressure and the remains were extracted with CH2Cl2 (3×15 mL). The organic layers were combined and washed with water (10 mL) and then dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give the title compound as a white solid (1.10 g, 98% yield). Single crystals suitable for X-ray diffraction were obtained by recrystallizing the crude product from its chloroform solution and slow evaporation at room temperature over a period of 5 days; M.pt: 378.8–379.5 K. 1H NMR (d6-DMSO, 400 MHz) δ (p.p.m.): 3.63-3.66 (t, 4H), 4.26-4.29 (t, 4H), 6.71-6.77 (q, 6H), 6.979 (s, 2H), 7.23-7.25 (t, 4H), 7.87 (s, 2H). 13C NMR (d6-DMSO, 400 MHz) δ (p.p.m.): 43.13, 67.65, 107.06, 112.02, 113.44, 118.13, 125.63, 129.36, 131.03, 133.65, 147.68, 153.30. MS (ESI) m/z: 555.03 [M+H]+, 577.01 [M+Na]+; Anal. Calcd. (%) for C26H24Br2N2O2: C, 56.14; H, 4.35; N, 5.04. Found (%): C, 55.12; H, 4.37; N, 5.05.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93–0.97 Å and N—H = 0.86 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The cyclic hydrogen-bonded dimer in the title compound with hydrogen bonds shown as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
[Figure 3] Fig. 3. Side-on view of the supramolecular layer parallel to (1 1 0) and mediated by N—H···O and N—H···Br hydrogen bonds and C—H···π interactions plane. H atoms have been omitted for clarity, except for those involved in intermolecular interactions (green dashed lines).
N-(2-{[7-(2-Anilinoethoxy)-3,6-dibromonaphthalen-2-yl]oxy}ethyl)aniline top
Crystal data top
C26H24Br2N2O2Z = 2
Mr = 556.29F(000) = 560
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.588 (3) ÅCell parameters from 10579 reflections
b = 10.898 (3) Åθ = 1–28°
c = 13.060 (4) ŵ = 3.47 mm1
α = 103.190 (4)°T = 296 K
β = 93.953 (4)°Cubic, colourless
γ = 115.622 (5)°0.30 × 0.20 × 0.12 mm
V = 1176.0 (6) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4156 independent reflections
Radiation source: fine-focus sealed tube2712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.439, Tmax = 0.659k = 1113
9333 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0261P)2]
where P = (Fo2 + 2Fc2)/3
4156 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C26H24Br2N2O2γ = 115.622 (5)°
Mr = 556.29V = 1176.0 (6) Å3
Triclinic, P1Z = 2
a = 9.588 (3) ÅMo Kα radiation
b = 10.898 (3) ŵ = 3.47 mm1
c = 13.060 (4) ÅT = 296 K
α = 103.190 (4)°0.30 × 0.20 × 0.12 mm
β = 93.953 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4156 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2712 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.659Rint = 0.045
9333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.08Δρmax = 0.48 e Å3
4156 reflectionsΔρmin = 0.60 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.3003 (3)0.3205 (3)0.2453 (2)0.0369 (7)
O10.8547 (3)0.5077 (3)0.1194 (2)0.0400 (7)
N11.0759 (4)0.7489 (3)0.1818 (3)0.0430 (9)
H270.99010.75540.19250.052*
C260.9626 (4)0.6411 (4)0.0431 (3)0.0348 (9)
H26A0.99040.62600.02420.042*
H26B0.91480.70410.02970.042*
C251.1071 (4)0.7051 (4)0.0904 (3)0.0374 (10)
H25A1.18910.78670.03610.045*
H25B1.14560.63590.11180.045*
C230.3021 (5)0.4531 (4)0.4153 (3)0.0400 (10)
H23A0.35590.54390.47010.048*
H23B0.19630.43700.39040.048*
N20.2945 (4)0.3417 (3)0.4602 (3)0.0433 (9)
H280.33630.28960.43210.052*
C220.2227 (5)0.3152 (4)0.5466 (3)0.0412 (10)
C210.1686 (5)0.4035 (4)0.6046 (3)0.0459 (11)
H210.17790.48280.58440.055*
C170.1018 (5)0.3753 (5)0.6910 (4)0.0587 (13)
H170.06630.43590.72870.070*
C200.2069 (6)0.1977 (5)0.5794 (4)0.0620 (14)
H200.24150.13620.54190.074*
C180.0861 (6)0.2601 (6)0.7232 (4)0.0731 (16)
H180.03980.24150.78180.088*
C190.1402 (7)0.1723 (6)0.6672 (5)0.0773 (16)
H190.13160.09420.68890.093*
Br10.11582 (5)0.01770 (4)0.13229 (4)0.05174 (16)
Br20.69190 (6)0.23673 (5)0.29235 (4)0.06357 (18)
C160.6291 (5)0.2847 (4)0.1613 (3)0.0361 (10)
C120.2787 (4)0.1563 (4)0.0850 (3)0.0361 (10)
C140.4497 (4)0.2208 (4)0.0404 (3)0.0335 (9)
C150.4972 (5)0.1871 (4)0.1373 (3)0.0393 (10)
H150.43860.09760.18590.047*
C80.6741 (4)0.4570 (4)0.0051 (3)0.0316 (9)
H80.73250.54780.05210.038*
C110.3604 (4)0.2967 (4)0.1557 (3)0.0306 (9)
C90.5388 (4)0.3599 (4)0.0326 (3)0.0309 (9)
C130.3193 (5)0.1211 (4)0.0093 (3)0.0389 (10)
H130.26070.02960.05510.047*
C100.4885 (4)0.3939 (4)0.1290 (3)0.0333 (10)
H100.54410.48520.17560.040*
C41.1763 (5)0.7809 (4)0.2529 (3)0.0355 (10)
C240.3877 (5)0.4567 (4)0.3245 (3)0.0412 (10)
H24A0.39360.53210.29460.049*
H24B0.49390.47320.34850.049*
C70.7221 (5)0.4225 (4)0.0882 (3)0.0356 (10)
C51.3276 (5)0.7942 (4)0.2341 (3)0.0393 (10)
H51.36350.78090.17160.047*
C31.1295 (5)0.8053 (4)0.3463 (3)0.0464 (11)
H31.03040.80040.36000.056*
C21.2272 (6)0.8364 (5)0.4183 (4)0.0554 (13)
H21.19260.85070.48080.067*
C61.4243 (5)0.8267 (4)0.3071 (3)0.0454 (11)
H61.52490.83520.29270.055*
C11.3768 (5)0.8471 (4)0.4005 (4)0.0533 (12)
H11.44240.86730.45000.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0296 (14)0.0370 (15)0.0298 (15)0.0063 (12)0.0047 (12)0.0028 (12)
O10.0417 (16)0.0303 (15)0.0368 (16)0.0061 (13)0.0161 (13)0.0082 (12)
N10.035 (2)0.056 (2)0.049 (2)0.0236 (17)0.0143 (18)0.0286 (18)
C260.035 (2)0.032 (2)0.034 (2)0.0107 (18)0.0110 (19)0.0106 (18)
C250.038 (2)0.033 (2)0.041 (2)0.0131 (18)0.010 (2)0.0148 (19)
C230.042 (2)0.038 (2)0.033 (2)0.014 (2)0.011 (2)0.0028 (19)
N20.048 (2)0.049 (2)0.039 (2)0.0266 (18)0.0191 (18)0.0123 (17)
C220.034 (2)0.044 (3)0.032 (2)0.009 (2)0.004 (2)0.006 (2)
C210.046 (3)0.041 (3)0.038 (3)0.012 (2)0.010 (2)0.006 (2)
C170.060 (3)0.052 (3)0.041 (3)0.012 (2)0.016 (2)0.001 (2)
C200.069 (3)0.057 (3)0.067 (4)0.029 (3)0.024 (3)0.025 (3)
C180.081 (4)0.071 (4)0.048 (3)0.016 (3)0.028 (3)0.018 (3)
C190.100 (5)0.068 (4)0.079 (4)0.039 (3)0.040 (4)0.043 (3)
Br10.0463 (3)0.0404 (3)0.0531 (3)0.0058 (2)0.0203 (2)0.0115 (2)
Br20.0729 (4)0.0480 (3)0.0541 (3)0.0154 (3)0.0345 (3)0.0052 (2)
C160.046 (2)0.032 (2)0.027 (2)0.0146 (19)0.0151 (19)0.0076 (17)
C120.027 (2)0.033 (2)0.041 (3)0.0069 (17)0.0077 (19)0.0128 (19)
C140.035 (2)0.029 (2)0.031 (2)0.0097 (18)0.0061 (19)0.0077 (17)
C150.042 (2)0.030 (2)0.038 (3)0.0110 (19)0.009 (2)0.0060 (19)
C80.031 (2)0.028 (2)0.034 (2)0.0127 (18)0.0050 (18)0.0075 (17)
C110.025 (2)0.036 (2)0.027 (2)0.0116 (18)0.0038 (18)0.0083 (18)
C90.032 (2)0.031 (2)0.031 (2)0.0150 (18)0.0061 (18)0.0112 (17)
C130.035 (2)0.031 (2)0.038 (3)0.0066 (18)0.006 (2)0.0037 (19)
C100.033 (2)0.030 (2)0.032 (2)0.0121 (18)0.0004 (19)0.0052 (17)
C40.039 (2)0.026 (2)0.034 (2)0.0087 (18)0.010 (2)0.0063 (17)
C240.040 (2)0.037 (2)0.034 (2)0.0096 (19)0.006 (2)0.0058 (19)
C70.038 (2)0.027 (2)0.039 (3)0.0109 (19)0.008 (2)0.0121 (18)
C50.035 (2)0.040 (2)0.044 (3)0.0163 (19)0.009 (2)0.016 (2)
C30.035 (2)0.050 (3)0.043 (3)0.008 (2)0.002 (2)0.020 (2)
C20.055 (3)0.063 (3)0.038 (3)0.015 (2)0.005 (2)0.021 (2)
C60.041 (3)0.041 (2)0.052 (3)0.016 (2)0.017 (2)0.014 (2)
C10.054 (3)0.052 (3)0.044 (3)0.013 (2)0.019 (2)0.014 (2)
Geometric parameters (Å, º) top
O2—C111.360 (4)Br2—C161.889 (4)
O2—C241.442 (4)C16—C151.368 (5)
O1—C71.367 (5)C16—C71.426 (5)
O1—C261.440 (4)C12—C131.339 (5)
N1—C41.375 (5)C12—C111.424 (5)
N1—C251.442 (4)C14—C151.399 (5)
N1—H270.8600C14—C131.416 (5)
C26—C251.505 (5)C14—C91.430 (5)
C26—H26A0.9700C15—H150.9300
C26—H26B0.9700C8—C71.362 (5)
C25—H25A0.9700C8—C91.408 (5)
C25—H25B0.9700C8—H80.9300
C23—N21.442 (5)C11—C101.362 (5)
C23—C241.486 (6)C9—C101.407 (5)
C23—H23A0.9700C13—H130.9300
C23—H23B0.9700C10—H100.9300
N2—C221.384 (5)C4—C31.392 (5)
N2—H280.8600C4—C51.392 (5)
C22—C211.386 (6)C24—H24A0.9700
C22—C201.392 (6)C24—H24B0.9700
C21—C171.365 (6)C5—C61.373 (6)
C21—H210.9300C5—H50.9300
C17—C181.365 (7)C3—C21.368 (6)
C17—H170.9300C3—H30.9300
C20—C191.375 (7)C2—C11.386 (6)
C20—H200.9300C2—H20.9300
C18—C191.371 (7)C6—C11.371 (6)
C18—H180.9300C6—H60.9300
C19—H190.9300C1—H10.9300
Br1—C121.902 (4)
C11—O2—C24117.5 (3)C11—C12—Br1117.5 (3)
C7—O1—C26117.5 (3)C15—C14—C13122.7 (3)
C4—N1—C25123.3 (3)C15—C14—C9119.1 (4)
C4—N1—H27118.3C13—C14—C9118.1 (4)
C25—N1—H27118.3C16—C15—C14120.6 (3)
O1—C26—C25107.3 (3)C16—C15—H15119.7
O1—C26—H26A110.3C14—C15—H15119.7
C25—C26—H26A110.3C7—C8—C9122.2 (3)
O1—C26—H26B110.3C7—C8—H8118.9
C25—C26—H26B110.3C9—C8—H8118.9
H26A—C26—H26B108.5O2—C11—C10126.0 (3)
N1—C25—C26112.2 (3)O2—C11—C12115.4 (3)
N1—C25—H25A109.2C10—C11—C12118.6 (4)
C26—C25—H25A109.2C10—C9—C8122.7 (3)
N1—C25—H25B109.2C10—C9—C14118.8 (4)
C26—C25—H25B109.2C8—C9—C14118.4 (4)
H25A—C25—H25B107.9C12—C13—C14121.1 (4)
N2—C23—C24110.3 (3)C12—C13—H13119.4
N2—C23—H23A109.6C14—C13—H13119.4
C24—C23—H23A109.6C11—C10—C9121.7 (3)
N2—C23—H23B109.6C11—C10—H10119.1
C24—C23—H23B109.6C9—C10—H10119.1
H23A—C23—H23B108.1N1—C4—C3119.9 (4)
C22—N2—C23122.7 (3)N1—C4—C5122.5 (4)
C22—N2—H28118.7C3—C4—C5117.5 (4)
C23—N2—H28118.7O2—C24—C23106.8 (3)
N2—C22—C21122.6 (4)O2—C24—H24A110.4
N2—C22—C20119.5 (4)C23—C24—H24A110.4
C21—C22—C20117.9 (4)O2—C24—H24B110.4
C17—C21—C22120.7 (4)C23—C24—H24B110.4
C17—C21—H21119.6H24A—C24—H24B108.6
C22—C21—H21119.6C8—C7—O1126.1 (3)
C18—C17—C21121.5 (5)C8—C7—C16118.6 (4)
C18—C17—H17119.3O1—C7—C16115.3 (4)
C21—C17—H17119.3C6—C5—C4120.6 (4)
C19—C20—C22120.2 (5)C6—C5—H5119.7
C19—C20—H20119.9C4—C5—H5119.7
C22—C20—H20119.9C2—C3—C4120.8 (4)
C17—C18—C19118.5 (5)C2—C3—H3119.6
C17—C18—H18120.7C4—C3—H3119.6
C19—C18—H18120.7C3—C2—C1121.5 (4)
C18—C19—C20121.2 (5)C3—C2—H2119.2
C18—C19—H19119.4C1—C2—H2119.2
C20—C19—H19119.4C1—C6—C5121.9 (4)
C15—C16—C7121.0 (4)C1—C6—H6119.1
C15—C16—Br2120.0 (3)C5—C6—H6119.1
C7—C16—Br2119.0 (3)C6—C1—C2117.5 (4)
C13—C12—C11121.4 (4)C6—C1—H1121.2
C13—C12—Br1121.0 (3)C2—C1—H1121.2
C7—O1—C26—C25172.5 (3)C13—C14—C9—C8176.4 (3)
C4—N1—C25—C26165.2 (3)C11—C12—C13—C142.8 (6)
O1—C26—C25—N168.6 (4)Br1—C12—C13—C14174.2 (3)
C24—C23—N2—C22179.3 (3)C15—C14—C13—C12178.8 (4)
C23—N2—C22—C217.7 (6)C9—C14—C13—C121.0 (6)
C23—N2—C22—C20174.1 (4)O2—C11—C10—C9178.1 (3)
N2—C22—C21—C17178.4 (4)C12—C11—C10—C91.7 (5)
C20—C22—C21—C170.1 (6)C8—C9—C10—C11177.7 (3)
C22—C21—C17—C180.1 (7)C14—C9—C10—C112.1 (5)
N2—C22—C20—C19178.0 (4)C25—N1—C4—C3172.0 (4)
C21—C22—C20—C190.3 (7)C25—N1—C4—C59.8 (6)
C21—C17—C18—C190.5 (8)C11—O2—C24—C23177.4 (3)
C17—C18—C19—C200.9 (8)N2—C23—C24—O260.5 (4)
C22—C20—C19—C180.9 (8)C9—C8—C7—O1177.2 (3)
C7—C16—C15—C140.5 (6)C9—C8—C7—C162.0 (5)
Br2—C16—C15—C14179.7 (3)C26—O1—C7—C86.6 (5)
C13—C14—C15—C16176.4 (4)C26—O1—C7—C16172.6 (3)
C9—C14—C15—C161.4 (6)C15—C16—C7—C82.1 (6)
C24—O2—C11—C106.2 (5)Br2—C16—C7—C8178.6 (3)
C24—O2—C11—C12174.0 (3)C15—C16—C7—O1177.1 (3)
C13—C12—C11—O2175.6 (3)Br2—C16—C7—O12.1 (5)
Br1—C12—C11—O27.3 (4)N1—C4—C5—C6179.8 (4)
C13—C12—C11—C104.2 (6)C3—C4—C5—C61.6 (6)
Br1—C12—C11—C10172.9 (3)N1—C4—C3—C2179.6 (4)
C7—C8—C9—C10179.6 (3)C5—C4—C3—C22.1 (6)
C7—C8—C9—C140.2 (5)C4—C3—C2—C11.1 (7)
C15—C14—C9—C10178.7 (3)C4—C5—C6—C10.1 (6)
C13—C14—C9—C103.4 (5)C5—C6—C1—C21.2 (6)
C15—C14—C9—C81.5 (5)C3—C2—C1—C60.6 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H27···Br1i0.863.033.705 (4)137
N1—H27···O2i0.862.533.349 (4)160
C5—H5···Cg2ii0.932.813.626 (5)147
C15—H15···Cg1iii0.932.863.782 (4)175
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC26H24Br2N2O2
Mr556.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.588 (3), 10.898 (3), 13.060 (4)
α, β, γ (°)103.190 (4), 93.953 (4), 115.622 (5)
V3)1176.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.47
Crystal size (mm)0.30 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.439, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
9333, 4156, 2712
Rint0.045
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.088, 1.08
No. of reflections4156
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.60

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H27···Br1i0.863.033.705 (4)137
N1—H27···O2i0.862.533.349 (4)160
C5—H5···Cg2ii0.932.813.626 (5)147
C15—H15···Cg1iii0.932.863.782 (4)175
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x1, y1, z.
 

Acknowledgements

We thank the Excellent Young Teachers Program (grant No. 00511024) and the China Postdoctoral Science Foundation (grant No. 2011M500989) for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandan, S., Ved, P. V. & Kumar, P. S. (2008). PCT Int. Appl. 2008099415.  Google Scholar
First citationChandan, S., Ved, P. V., Niraj, K. N., Ajit, S. S., Mohammad, H. & Sunil, K. P. (2008). J. Med. Chem. 51, 1313–1315.  Google Scholar
First citationLiou, G. S., Lin, P. H., Yen, H. J., Yu, Y. Y. & Chen, W. C. (2011). J. Poly. Sci. Part A, 48, 1433–1440.  Web of Science CrossRef Google Scholar
First citationQin, W. W., Zhnag, Y. L., Liu, W. S. & Tan, M. Y. (2003). Spectrochim. Acta Part A, 59, 3085–3092.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, G. Z., Xu, J. Z. & Jiao, T. Q. (1986). Chin. J. Org. Chem. 2, 143–145.  Google Scholar
First citationZhang, Y. L., Qin, W. W., Liu, W. S., Tan, M. Y. & Tang, N. (2002). Spectrochim. Acta Part A, 58, 2153–2157.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1355
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds